Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
36
36
corpus-id
stringlengths
36
36
score
float64
1
1
2d3e200a-8ddf-4062-a678-f5d0401c54ad
0377f7ec-d481-4bb2-a878-5d279a2a11fe
1
bf3b28a5-db6f-412d-96f1-d67d17bcaef8
2f249bba-2201-424f-8515-182cd5272cd9
1
e385efaa-fc37-4ae4-9f85-bc5c0d09e5bc
935eb313-ccf5-4135-9de6-f6b9cfb6a8f5
1
ebb4ab78-ff5f-4e78-ac14-bb98760c2a0a
f28f93b1-0df2-47cf-9349-e85683402cf8
1
9fd75f16-1bd5-4451-af69-5885b7d5267a
8e253cda-fa64-4f77-ae17-e1d8774f96bb
1
0f303917-6e53-449c-8242-7ab82e8fb78f
e273d4a7-96e7-4d03-848c-7bf991820771
1
4a4eb447-3a4b-4cfa-b244-63d951527d06
aca185f2-ebc5-4ce6-8298-9b1ba5a36474
1
061c5091-8d9f-4b40-ae1e-ef7554f347a1
679ad3a7-8b69-461e-96c1-c32f3051a534
1
dda9da1d-3dbd-4d58-b0c3-84690b5b5488
222c486b-1ba3-4c39-8873-1f733c4066b3
1
703f96ef-019c-4313-938c-6309362b280b
c8fc0c89-b9a7-478f-8334-fb956e09d4de
1
23a00128-e91c-4e27-969d-35ff3aeaf16d
3652603f-30c4-4083-9771-11c11564be73
1
e1928d15-edfc-4da5-b55c-105d9f082394
f165f3f9-5603-4724-bddc-135d15572a38
1
13d798ff-8990-4cab-a649-9e5575bbfdfe
42d6925d-a37f-49d9-8b07-86b198988c2c
1
c8ec32b7-87c2-4fec-95a6-d56dc6030fa4
514af5c5-5488-4489-b65c-577b1b6c3366
1
c6f39623-8917-4407-9257-0087d36ee378
13a52913-27e0-41e9-b208-06a820efc761
1
261f9be2-4686-4df1-b186-233947da3000
2595c0f7-8b7c-4b53-8898-06a58a14da62
1
b38e417a-ab05-41b3-aa06-3fb39d1d0a96
ef498e4a-b408-40e7-8b8e-8ef0b977d012
1
e9cb89fb-4668-4949-9228-c47003e496ab
72fc85ec-7ccb-4ad5-b418-769f9b589502
1
69f8d07b-0b17-4c51-8e55-881abaa47528
3eb2670b-b37f-4c88-bb6e-d6198fdf7189
1
e4be7bb3-ee6d-46ea-8625-b75dff7ea177
d20c541f-2c02-444f-b0a4-2ed41321078d
1
bfe00097-743f-4f88-acc4-9fc2ceadea5a
54c38746-acfd-4f95-a051-bc685ca3f748
1
a605f977-6760-47bf-8b42-9f0eb73e8dbd
3b5855ba-46b2-4b68-9cd6-17384b1fe7d3
1
005d31a7-615d-4e82-b5a7-9f9b60db9cf7
9014982c-dadf-44d9-bfe0-8945a24c57d5
1
6703d7b3-5450-4d72-bfe2-87765aff627e
efc0eefc-22ad-4c6e-a555-d52e943f3440
1
cf7a2eaf-d962-4afc-882f-33273340070d
367afc34-5c53-4a01-a7fe-43c63a19d9ca
1
827a02e6-746b-43c2-93fc-ec743634c70f
cd282fea-bc2b-4593-b8a8-ac625964e1c5
1
3fa2314e-2d36-4967-b3cb-91be3330e8e5
93dbeb9a-bc93-4356-87f3-aa28c3152511
1
a46c630d-a957-49cc-a31b-956dd60fba19
035184c9-3f45-4ad0-9ae1-65f75a5075c3
1
c18a4484-b1d6-4ef8-9e4f-dd03c90a10d9
e704e779-5222-4694-98e9-6e1a83522c9d
1
bb532b38-6e3f-45ed-967d-01b447a0edde
64bcdc49-1aed-4e03-b8db-51cf0451f19b
1
cbee9982-6266-45f6-bbdf-18f37143f0b7
1cb1ab4f-59a4-4766-a79e-6e3064fb091b
1
ae054cc9-fdd3-4ddc-9354-77d1ddfddf66
e7427374-41c0-43bd-a064-77ec1bc2a187
1
50585512-b0b2-4794-84a8-9b623d023abe
c60c9366-3aaa-437c-94fd-b893841c00ba
1
39d33a9c-7d1d-47ad-aefc-aa6e1c944998
937f6174-aeec-4b21-bc50-16f032c4fa28
1
c0d388a9-0153-4e07-b49c-4064a95e72b7
c840b061-b03f-46a6-aed6-c2dec4831202
1
355e6fd5-bfcb-4520-96d0-ee1cf280a8bf
024ec447-e4b1-499b-ae3c-a65c322e31d4
1
9f301535-b246-40ff-b715-5fc475bf0cfc
2f7a36b8-efb5-4d32-9323-4b6a2d160145
1
c1ba804f-1ed8-43e0-be7b-d973994aab62
b6b8f96d-5d6c-4a22-b4ef-d383161dcee8
1
783c4a8b-4347-453a-b932-03a150ea7d47
3a6a8091-324d-46d2-a278-8f7696cf49aa
1
72065337-dbc1-4802-8b61-636a56e94502
13715a87-6ac0-475c-b357-27bbb1cca759
1
71b34a2b-c8ee-437a-842e-428aa9c1f02e
28937a49-d45e-41f2-b07f-59e67beb6ef3
1
c58b3e2c-045b-4665-bb25-9f45b9459dbe
d6089f7b-4d25-4e2b-b368-9820a4509faf
1
c2aa3728-ad24-480e-b0ba-d5097048bc92
bf75b9e7-1af5-40aa-91b1-05b36467195b
1
5048638b-ae01-4241-bbc9-fe853dc1e381
7045b973-bb3c-4c9e-abf2-b29f2b694107
1
f4f217fa-4d40-4320-a7d5-4802b17dd2f1
e681cb5f-78c3-4cdb-8699-be82b4db5900
1
2d586cae-0a2f-4bee-94b5-fb60b1fcbf03
c2d8232b-41e9-471c-86d4-d91a765d7cb4
1
92a8082f-a2b9-457a-8c83-b074eca068d5
ccfacbdc-2659-4cd6-8a05-c3d7f6a4fb98
1
34f59937-eaaa-4808-b403-c4acf50ea3ff
2be5c007-b08e-46f4-ae56-44f6ceedc9c1
1
bda4c585-fc59-414b-a73e-9ec2bb057524
004cd43f-e782-4329-abc1-5950b45fa4ee
1
6722838d-b96e-4eac-8c73-5ea667bfa18b
957fe4ff-5eb0-41fb-a32e-bc8c2917ef64
1
f773d98c-3025-4858-abf9-5d096b622b92
e739fcd7-3e93-4b80-9918-4c44546ec550
1
afe477cf-31de-43fc-bfbb-767a78ee208a
68aef146-d3ec-4516-820d-ad9781084564
1
02a96a99-f856-435b-a474-43024df987ca
ff83a236-3ea1-40c4-b52d-ed0685614755
1
075489d4-96cb-4141-aa07-617cc7b32f81
14ccad88-cdc4-449a-836d-2b7977912902
1
60fd8193-0167-445b-b595-eb7316e80cac
4c94cd94-8cdd-454f-bb25-7b53e5280049
1
37b0c3df-84fb-4789-a414-92ddcf9f9c93
263ee4d7-91a8-4c61-a8b4-3ade5f8218bb
1
fecf3059-bcc7-4f0d-b233-6f70620584da
9a536bcd-848f-4125-b9ab-3e6e5be542a4
1
c4e4428a-597f-48f3-9f53-b9ee2ebd6e6e
d9e5a8ac-209a-497b-be29-a61743f7add1
1
6d950595-c550-47a4-bb9f-b58c3e427085
ef6e8855-d4f2-4475-b563-5f2b98f7ce82
1
3a1fd546-0310-4eeb-b7f9-adf050335abb
79466755-e872-4a55-b065-5372c3079e65
1
91ae2dec-0c97-4d04-96f8-be048d350d8c
83ad2d88-c5d4-498e-998e-45a54cc23691
1
b6506a90-2955-4de2-bac7-d7bed8317108
102f0ac8-5135-4bc0-9e81-1c7ccbcb5c89
1
342648ec-6314-4cbd-be14-2f773c0e60f0
965c2ed8-71ce-4e27-bd6a-0a3b2db02cd9
1
f2480f5f-af6a-4176-be68-e36923e4a6f2
d0ef70cf-46f9-48ee-afb7-93c55ff08c4a
1
479744cc-8546-43c2-9776-43071d34bbe4
17caf873-6674-470d-94ce-f3920222c419
1
d6497e08-1cd5-44bd-8e94-eed85042c275
cc363c2b-b89e-4a36-a4ff-396e73302f49
1
0eeb9a32-05c1-4087-a2eb-f77ca410d8db
93b1b8de-7565-42b6-aabf-8e60b9785a66
1
c104799e-7ccf-4542-9815-3c4d4788c564
82ba1cd4-3f7d-457e-af9f-ca01d758e989
1
23411bc4-6b48-4281-8963-9cf44b9e4067
00d7c38e-22c2-4fab-9b93-036b3ce21f13
1
ac31ce88-3663-4174-b889-0df28358f7e0
dd7c49c0-657f-434d-a64c-adb507742acf
1
b01ad124-da5b-465c-a832-03bf2000cce7
956a1ce3-58f5-4a7b-a0fb-0d1ced82ccd0
1
906dba41-a9ca-4eb3-9957-4e8a1e193afa
e9a7a2c7-1f64-4d6b-84ec-f4c65c6d6e4c
1
d2d69c41-3a57-4056-aade-99ab190acab4
9cc351ae-e1c1-4ebb-8bd3-63333923c4cd
1
f4d4779b-6efa-466b-8ca8-dfa891afd494
ab21e8a3-8671-4619-a081-66e02a04e355
1
25be7d4f-7a1c-4070-a05f-f735f32b020f
2e2bfd35-1517-4e50-bcc6-55725dd72f12
1
66db8cc4-8e2a-49f3-9133-6cddcdadf2f6
2b2f9775-2677-41e8-948c-b3eeb522124c
1
a7784028-5164-487e-b652-ea8e3582cfe6
906a5d0a-c2f2-40d2-94d3-8a39aca20334
1
4a095004-0abd-45d0-84ea-f85ecc1111d7
960d2046-3da5-4498-a4b2-e45b13070365
1
d3201847-9c72-4ae6-9341-8b3656439455
b2b04d82-a963-4744-a3ca-114820d23c55
1
1c5814ab-943d-4189-9613-fe20bd5d6cad
6d38128a-96b2-4f13-9a52-47f1e6e703fe
1
5cf244ef-f3f0-4e94-9097-048444b18fd4
84ffd207-87a7-475b-bf17-219c24d47b64
1
5456ff41-5d6f-40ef-a79f-59021dab3e0c
da73d0b8-a1b3-4a4f-8d99-bc7aec93a932
1
d3c49b38-a94d-423d-8c39-959e0abf7d21
41831c22-a675-41e6-a82e-e4f9b581ad0e
1
9c0f7472-698e-46b3-8276-9c4e71e66fcf
74080b4f-1db1-42a8-ab27-68301cd9849a
1
3783bc63-cfc1-4d70-9ebd-942162af6920
912dfc67-273c-4a1d-9b7e-ad58ad8a478c
1
3c99be68-f8cc-41a7-8967-a879329271c3
2aa9937c-d715-45a1-b1bb-697c02e68c8d
1
abd8a6e1-16d1-458e-b509-4a5d932c4235
c673967d-36db-4703-b221-29120b099a68
1
a167f41d-088a-442f-9f67-4b63f2fb58a6
3655663b-b8f4-4a0b-901d-da2fc84dce3b
1
8c894a55-4899-436e-ad81-bfe9fca37109
e05ceb03-540c-47c0-921c-f32fa586205a
1
7eca0435-b4d1-46a1-959d-cb8f67d66afc
a3c8f9f6-32bf-4b7f-9940-a65c359b0c39
1
da3049d9-1672-40bd-ae70-ca1ea9a7463d
90cee960-2396-46ce-9d90-ec4b64668a3a
1
1d994fe5-bb6d-4080-b830-0b814f1d01a9
9e23b380-1073-4002-b2df-dde16dc0be3f
1
172ed1e7-1f85-48ac-af4c-53ae63d4587e
67037b64-52a2-4d8c-8d21-d63dcda3f796
1
1a75c12e-438c-477f-a3f1-1d97a52780a3
16c4270c-a46a-41eb-912d-e205f078ecf9
1
e1540c09-53d9-41d6-8a0f-f0f5d929e951
3e6d2bf7-2e0a-48b7-8614-d07f30e2b3bb
1
287a6fc8-cf7a-4d78-b3da-e7437635f40b
9da9bcc4-9ee4-4986-9e86-dff72b594008
1
d71566a2-dc89-46b7-a51c-e2a9e615ce69
88c9cb9c-8d7c-411d-b764-739a4ce7a690
1
291a5d23-f65b-4fcd-a8c2-8372c7ed08f7
0d84dd8c-42ef-499f-a39e-d584ca654f83
1
42f53864-ae2f-48b5-96be-7c651d899a2c
7492553b-37fc-44a1-b0c1-815ce452b40d
1
2b3f1b89-99ea-438c-ab33-67be93996545
63d38e35-f60d-43a1-9f23-356ad6dd9515
1
End of preview. Expand in Data Studio

MedicalQARetrieval

An MTEB dataset
Massive Text Embedding Benchmark

The dataset consists 2048 medical question and answer pairs.

Task category t2t
Domains Medical, Written
Reference https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MedicalQARetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{BenAbacha-BMC-2019,
  author = {Asma, Ben Abacha and Dina, Demner{-}Fushman},
  journal = {{BMC} Bioinform.},
  number = {1},
  pages = {511:1--511:23},
  title = {A Question-Entailment Approach to Question Answering},
  url = {https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4},
  volume = {20},
  year = {2019},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MedicalQARetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 4096,
        "number_of_characters": 2471858,
        "num_documents": 2048,
        "min_document_length": 7,
        "average_document_length": 1154.482421875,
        "max_document_length": 14442,
        "unique_documents": 2048,
        "num_queries": 2048,
        "min_query_length": 16,
        "average_query_length": 52.4794921875,
        "max_query_length": 191,
        "unique_queries": 2048,
        "none_queries": 0,
        "num_relevant_docs": 2048,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 2048,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
114