Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
5
corpus-id
stringlengths
10
10
score
float64
1
1
00000
riLRc3uoU5
1
00001
OZM4OtBJTf
1
00002
byVfqjO2tp
1
00003
SMjzQ1fgUK
1
00004
mRtv5XqhPx
1
00005
NmMsvP8O7F
1
00006
18Y2bTu5X1
1
00007
SstzyshA6P
1
00008
LVOkVEUVB5
1
00009
RcoreogrNw
1
00010
XRvj7uff0L
1
00011
kxTH3fKMDb
1
00012
zgEz6cwB61
1
00013
HkOwOZGx4G
1
00014
HfnnuwnUG9
1
00015
5QHXw3HNfV
1
00016
uJJEvQdgWC
1
00017
OwOc8QyU7A
1
00018
A4dhjkuRv6
1
00019
MbyIbNiCdx
1
00020
RBT7qYHDBT
1
00021
QR6FEecAtp
1
00022
JXke1Mo4iC
1
00023
ndZ4szi6sE
1
00024
L2lVSID1u7
1
00025
blZZpC4RqZ
1
00026
7nJ6iUo8k2
1
00027
AwFv0Yg7NZ
1
00028
ekoZy3uUi9
1
00029
Q0OsGFUsd3
1
00030
iVUi9iGaOB
1
00031
NQLlpIn8sr
1
00032
3UDqpNVGMr
1
00033
aqFGJJByVK
1
00034
fRN2Bqpepg
1
00035
CmDDBRtsYh
1
00036
q0Zf2pCLxb
1
00037
8dnNzoCXB1
1
00038
4efLerNHu9
1
00039
YkBzPoBrUB
1
00040
puSjjud5MP
1
00041
pmO50fSlqP
1
00042
WJhaOQtwjO
1
00043
SmNqE40fAr
1
00044
CizRUsR1S6
1
00045
k3UQrxkJ71
1
00046
ePV1AgHR8W
1
00047
8gOqY4d9n0
1
00048
FyQk8RCQan
1
00049
ov026aO0Tg
1
00050
CgkcsXtTfV
1
00051
PET3xrNikY
1
00052
zJ9oQ0O1Vf
1
00053
AEeppMKmgs
1
00054
7iP4XTx6II
1
00055
BaepZITGgr
1
00056
TKkwOc2pHd
1
00057
AsoaxzIykT
1
00058
8EE5GXTeLY
1
00059
YRsMfihslQ
1
00060
8GrgmolaHr
1
00061
axT82ExHgD
1
00062
RNsPPqLiZg
1
00063
hPInRVkLUh
1
00064
xavU07zUHL
1
00065
gAk7Gdp0CX
1
00066
aIaGr8bYPX
1
00067
O6UjCufdXI
1
00068
hDiLZ3WOGw
1
00069
ijULzIDHPn
1
00070
tUeC99enq5
1
00071
xG7YXipN2I
1
00072
NkNaqVkVEV
1
00073
uQO001xtSV
1
00074
bvfLuxsyf3
1
00075
I0YzH1D2De
1
00076
DCc8uRGZZq
1
00077
5Jqzges6X7
1
00078
QsKDGAUuRq
1
00079
YMkFBl6O7T
1
00080
FEQz0EfbVs
1
00081
QMgV0Lh8Wv
1
00082
aSQHqNgAC7
1
00083
CplTXJUk13
1
00084
qtRQVJJ8Pu
1
00085
piAMozPf8e
1
00086
GCLgR0OVSn
1
00087
P9K63LSFZH
1
00088
FJjuGhmKfF
1
00089
gatwqilBIz
1
00090
7CRBsQYXzE
1
00091
p44eyyurC2
1
00092
Cr0uIamIsM
1
00093
xNNKqYbd3B
1
00088
E4rXLvNMQS
1
00094
IMDOShVnvZ
1
00095
BGjxrzuLWO
1
00096
DO4lKNEfvu
1
00097
MrtFmYHyNZ
1
00098
S87XwXaHCP
1
End of preview. Expand in Data Studio

LegalSummarization

An MTEB dataset
Massive Text Embedding Benchmark

The dataset consistes of 439 pairs of contracts and their summarizations from https://tldrlegal.com and https://tosdr.org/.

Task category t2t
Domains Legal, Written
Reference https://github.com/lauramanor/legal_summarization

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["LegalSummarization"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{manor-li-2019-plain,
  address = {Minneapolis, Minnesota},
  author = {Manor, Laura  and
Li, Junyi Jessy},
  booktitle = {Proceedings of the Natural Legal Language Processing Workshop 2019},
  month = jun,
  pages = {1--11},
  publisher = {Association for Computational Linguistics},
  title = {Plain {E}nglish Summarization of Contracts},
  url = {https://www.aclweb.org/anthology/W19-2201},
  year = {2019},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("LegalSummarization")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 722,
        "number_of_characters": 295244,
        "num_documents": 438,
        "min_document_length": 45,
        "average_document_length": 607.1643835616438,
        "max_document_length": 6497,
        "unique_documents": 438,
        "num_queries": 284,
        "min_query_length": 17,
        "average_query_length": 103.19014084507042,
        "max_query_length": 466,
        "unique_queries": 284,
        "none_queries": 0,
        "num_relevant_docs": 439,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.545774647887324,
        "max_relevant_docs_per_query": 11,
        "unique_relevant_docs": 438,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
118