Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
1
6
corpus-id
stringlengths
2
98
score
float64
1
1
75397
Fox_Broadcasting_Company
1
75397
Nikolaj_Coster-Waldau
1
150448
Roman_Atwood
1
214861
History_of_art
1
156709
Adrienne_Bailon
1
129629
Prisoners_of_War_(TV_series)
1
129629
Homeland_(TV_series)
1
33078
Boston_Celtics
1
6744
The_Ten_Commandments_(1956_film)
1
226034
Tetris
1
40190
Cyndi_Lauper
1
76253
The_Hunger_Games_(film)
1
188923
Chad
1
188923
Ryan_Gosling
1
138503
Stranger_Things
1
129983
Ryan_Seacrest
1
73170
Puerto_Rico
1
179616
Michael_Giacchino
1
207456
Stranger_than_Fiction_(2006_film)
1
3
Chris_Hemsworth
1
93956
Selena
1
53133
Robert_J._O'Neill_(U.S._Navy_SEAL)
1
228271
The_Silence_of_the_Lambs_(film)
1
15812
Francis_Ford_Coppola
1
15812
Peggy_Sue_Got_Married
1
57330
Andy_Roddick
1
52432
Bed-In
1
214706
Tupac_Shakur
1
172270
The_Jim_Henson_Company
1
64557
Slovenia
1
64557
Eurozone
1
200996
Midwestern_United_States
1
206132
Saratoga_(film)
1
215831
Infant
1
215831
J._Howard_Marshall
1
180769
Grace_Jones
1
170685
Lisbon
1
111602
Willie_Nelson
1
119264
Malcolm_Young
1
77712
Newfoundland_and_Labrador
1
184132
Furia_(film)
1
74400
United_States
1
91253
Sophie_Turner
1
53316
Mother_Teresa
1
189815
The_Smurfs_(film)
1
110847
C._S._Forester
1
36776
Kong:_Skull_Island
1
137323
The_Challenge_(TV_series)
1
113118
Berlin
1
225701
South_Korea
1
162606
Hacksaw_Ridge
1
47549
Michael_Fassbender
1
32126
Red_Headed_Stranger
1
44422
Paul_Bettany
1
33767
Scotland
1
33767
Hebrides
1
79578
Uzbekistan
1
158370
Charles,_Prince_of_Wales
1
30865
Chester_Bennington
1
46639
Vincent_Cassel
1
120501
Pope_John_Paul_II_(miniseries)
1
170078
David_Beckham
1
143348
Indiana_Jones
1
156207
Smile_(The_Beach_Boys_album)
1
156207
Pet_Sounds
1
156207
Brian_Wilson_Presents_Smile
1
156207
Brian_Wilson
1
156207
Eugene_Landy
1
156207
Love_&_Mercy_(film)
1
99976
The_Great_Gatsby
1
93444
Iron_Man_3
1
181753
La_La_Anthony
1
155975
Led_Zeppelin
1
155975
Ahmet_Ertegun_Tribute_Concert
1
155975
Stairway_to_Heaven
1
155975
The_Yardbirds
1
155975
Led_Zeppelin_concerts
1
210782
Richard_Harris
1
23042
The_Fosters_(2013_TV_series)
1
214059
Jonathan_Hensleigh
1
86378
Filmfare
1
140101
Buckingham_Palace
1
213821
Sarah_Paulson
1
187282
David_Harbour
1
193992
Kazakhstan
1
132873
José_María_Chacón
1
15711
Liverpool_F.C.
1
104690
Land_Rover
1
48320
Sully_(film)
1
80232
Monk_(TV_series)
1
80232
Stanley_Tucci
1
60225
Brock_Lesnar
1
50619
Khmer_Empire
1
172885
On_the_Road_(film)
1
89016
Paramore_(album)
1
147532
Sink_or_Swim_(TV_series)
1
147532
Peter_Davison
1
116614
21_Jump_Street_(film)
1
209444
Philadelphia_Museum_of_Art
1
135416
Dustin_Hoffman
1
End of preview. Expand in Data Studio

FEVER

An MTEB dataset
Massive Text Embedding Benchmark

FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from.

Task category t2t
Domains Encyclopaedic, Written
Reference https://fever.ai/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["FEVER"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{thorne-etal-2018-fever,
  abstract = {In this paper we introduce a new publicly available dataset for verification against textual sources, FEVER: Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo by annotators achieving 0.6841 in Fleiss kappa. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. To characterize the challenge of the dataset presented, we develop a pipeline approach and compare it to suitably designed oracles. The best accuracy we achieve on labeling a claim accompanied by the correct evidence is 31.87{\%}, while if we ignore the evidence we achieve 50.91{\%}. Thus we believe that FEVER is a challenging testbed that will help stimulate progress on claim verification against textual sources.},
  address = {New Orleans, Louisiana},
  author = {Thorne, James  and
Vlachos, Andreas  and
Christodoulopoulos, Christos  and
Mittal, Arpit},
  booktitle = {Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)},
  doi = {10.18653/v1/N18-1074},
  editor = {Walker, Marilyn  and
Ji, Heng  and
Stent, Amanda},
  month = jun,
  pages = {809--819},
  publisher = {Association for Computational Linguistics},
  title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VER}ification},
  url = {https://aclanthology.org/N18-1074},
  year = {2018},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("FEVER")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 5423234,
        "number_of_characters": 2921128337,
        "num_documents": 5416568,
        "min_document_length": 2,
        "average_document_length": 539.2340070317589,
        "max_document_length": 374597,
        "unique_documents": 5416568,
        "num_queries": 6666,
        "min_query_length": 14,
        "average_query_length": 49.60546054605461,
        "max_query_length": 189,
        "unique_queries": 6666,
        "none_queries": 0,
        "num_relevant_docs": 7937,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.1906690669066906,
        "max_relevant_docs_per_query": 15,
        "unique_relevant_docs": 1499,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
527