Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
2
6
corpus-id
stringlengths
4
7
score
int64
1
1
440
768359
1
1423
1437403
1
1430
43627
1
2714
157649
1
3997
1672348
1
4384
369652
1
7904
155359
1
8009
1032081
1
8473
805651
1
8877
1616056
1
9502
1744314
1
9572
110532
1
9576
755194
1
10809
1323061
1
11849
812992
1
11864
461286
1
13002
966519
1
14848
1598919
1
16314
1713103
1
16925
1012924
1
17650
300130
1
18317
685590
1
19364
1043165
1
21155
1735595
1
24909
1656474
1
27259
1115380
1
29475
1319338
1
31512
1230255
1
32366
212842
1
32676
801447
1
34545
1286849
1
34685
1614222
1
35271
943662
1
35314
353799
1
35603
159468
1
36040
555826
1
38586
1019144
1
40112
181566
1
40381
1053443
1
40389
1096491
1
40422
736590
1
41126
1231766
1
44258
928255
1
44864
1341579
1
45393
1391743
1
46941
691395
1
47063
871305
1
47306
779501
1
47490
1453614
1
49140
229851
1
49904
1290025
1
50867
685260
1
50975
846443
1
51589
1725936
1
51901
285284
1
56225
283131
1
59537
927662
1
61324
476923
1
62882
1045152
1
63159
59291
1
63615
1651981
1
65591
810437
1
67196
104403
1
68693
1408046
1
70317
410448
1
72041
256859
1
72756
1589468
1
73023
624683
1
73075
725838
1
73264
996999
1
74732
470593
1
74970
156066
1
75064
1682304
1
75399
1416399
1
75629
1189884
1
76355
371665
1
76721
252242
1
76908
1416223
1
78590
10356
1
83751
130535
1
83821
753292
1
89090
659110
1
90170
151750
1
90351
1630598
1
91666
1315233
1
92911
233770
1
93282
290637
1
99990
606238
1
101098
836258
1
103898
1215494
1
105147
375046
1
105985
160863
1
106018
830098
1
107510
997090
1
108398
6910
1
109976
1464719
1
110620
1190349
1
110765
936701
1
111719
1015364
1
114243
1302181
1
End of preview. Expand in Data Studio

VideoRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

VideoRetrieval

Task category t2t
Domains None
Reference https://arxiv.org/abs/2203.03367

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["VideoRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{long2022multicprmultidomainchinese,
  archiveprefix = {arXiv},
  author = {Dingkun Long and Qiong Gao and Kuan Zou and Guangwei Xu and Pengjun Xie and Ruijie Guo and Jian Xu and Guanjun Jiang and Luxi Xing and Ping Yang},
  eprint = {2203.03367},
  primaryclass = {cs.IR},
  title = {Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval},
  url = {https://arxiv.org/abs/2203.03367},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("VideoRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 101930,
        "number_of_characters": 3141126,
        "num_documents": 100930,
        "min_document_length": 1,
        "average_document_length": 31.048855642524522,
        "max_document_length": 5869,
        "unique_documents": 100930,
        "num_queries": 1000,
        "min_query_length": 2,
        "average_query_length": 7.365,
        "max_query_length": 19,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 1000,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 1000,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
19