Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Polish
ArXiv:
Libraries:
Datasets
pandas
License:
PAC / README.md
Samoed's picture
Add dataset card
d09e1c9 verified
metadata
language:
  - pol
license: cc-by-nc-sa-4.0
multilinguality: monolingual
task_categories:
  - text-classification
task_ids: []
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: int64
  splits:
    - name: train
      num_bytes: 884342
      num_examples: 4284
    - name: test
      num_bytes: 712862
      num_examples: 3453
    - name: validation
      num_bytes: 427813
      num_examples: 1519
  download_size: 1107199
  dataset_size: 2025017
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
      - split: validation
        path: data/validation-*
tags:
  - mteb
  - text

PAC

An MTEB dataset
Massive Text Embedding Benchmark

Polish Paraphrase Corpus

Task category t2c
Domains Legal, Written
Reference https://arxiv.org/pdf/2211.13112.pdf

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["PAC"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{augustyniak2022waydesigningcompilinglepiszcze,
  archiveprefix = {arXiv},
  author = {Łukasz Augustyniak and Kamil Tagowski and Albert Sawczyn and Denis Janiak and Roman Bartusiak and Adrian Szymczak and Marcin Wątroba and Arkadiusz Janz and Piotr Szymański and Mikołaj Morzy and Tomasz Kajdanowicz and Maciej Piasecki},
  eprint = {2211.13112},
  primaryclass = {cs.CL},
  title = {This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish},
  url = {https://arxiv.org/abs/2211.13112},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("PAC")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 3453,
        "number_of_characters": 639765,
        "number_texts_intersect_with_train": 0,
        "min_text_length": 10,
        "average_text_length": 185.27801911381408,
        "max_text_length": 1189,
        "unique_text": 3452,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 1120
            },
            "1": {
                "count": 2333
            }
        }
    },
    "train": {
        "num_samples": 4284,
        "number_of_characters": 793748,
        "number_texts_intersect_with_train": null,
        "min_text_length": 11,
        "average_text_length": 185.28197945845005,
        "max_text_length": 1325,
        "unique_text": 4282,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 1946
            },
            "1": {
                "count": 2338
            }
        }
    }
}

This dataset card was automatically generated using MTEB