Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
NusaXBitextMining / README.md
Samoed's picture
Add dataset card
6db681b verified
|
raw
history blame
9.68 kB
metadata
annotations_creators:
  - human-annotated
language:
  - ace
  - ban
  - bbc
  - bjn
  - bug
  - eng
  - ind
  - jav
  - mad
  - min
  - nij
  - sun
license: cc-by-sa-4.0
multilinguality: multilingual
task_categories:
  - translation
task_ids: []
dataset_info:
  - config_name: eng-ace
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 158722
        num_examples: 500
    download_size: 104175
    dataset_size: 158722
  - config_name: eng-ban
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 161380
        num_examples: 500
    download_size: 106223
    dataset_size: 161380
  - config_name: eng-bbc
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 163184
        num_examples: 500
    download_size: 106140
    dataset_size: 163184
  - config_name: eng-bjn
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 161328
        num_examples: 500
    download_size: 104640
    dataset_size: 161328
  - config_name: eng-bug
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 165552
        num_examples: 500
    download_size: 107833
    dataset_size: 165552
  - config_name: eng-ind
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 161480
        num_examples: 500
    download_size: 104291
    dataset_size: 161480
  - config_name: eng-jav
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 159271
        num_examples: 500
    download_size: 104827
    dataset_size: 159271
  - config_name: eng-mad
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 161942
        num_examples: 500
    download_size: 106027
    dataset_size: 161942
  - config_name: eng-min
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 158912
        num_examples: 500
    download_size: 104487
    dataset_size: 158912
  - config_name: eng-nij
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 159800
        num_examples: 500
    download_size: 103637
    dataset_size: 159800
  - config_name: eng-sun
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 161025
        num_examples: 500
    download_size: 105046
    dataset_size: 161025
configs:
  - config_name: eng-ace
    data_files:
      - split: train
        path: eng-ace/train-*
  - config_name: eng-ban
    data_files:
      - split: train
        path: eng-ban/train-*
  - config_name: eng-bbc
    data_files:
      - split: train
        path: eng-bbc/train-*
  - config_name: eng-bjn
    data_files:
      - split: train
        path: eng-bjn/train-*
  - config_name: eng-bug
    data_files:
      - split: train
        path: eng-bug/train-*
  - config_name: eng-ind
    data_files:
      - split: train
        path: eng-ind/train-*
  - config_name: eng-jav
    data_files:
      - split: train
        path: eng-jav/train-*
  - config_name: eng-mad
    data_files:
      - split: train
        path: eng-mad/train-*
  - config_name: eng-min
    data_files:
      - split: train
        path: eng-min/train-*
  - config_name: eng-nij
    data_files:
      - split: train
        path: eng-nij/train-*
  - config_name: eng-sun
    data_files:
      - split: train
        path: eng-sun/train-*
tags:
  - mteb
  - text

NusaXBitextMining

An MTEB dataset
Massive Text Embedding Benchmark

NusaX is a parallel dataset for machine translation and sentiment analysis on 11 Indonesia languages and English.

Task category t2t
Domains Reviews, Written
Reference https://huggingface.co/datasets/indonlp/NusaX-senti/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["NusaXBitextMining"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{winata2023nusax,
  author = {Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya, Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony, Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo, Radityo Eko and Fung, Pascale and others},
  booktitle = {Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics},
  pages = {815--834},
  title = {NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages},
  year = {2023},
}

@misc{winata2024miners,
  archiveprefix = {arXiv},
  author = {Genta Indra Winata and Ruochen Zhang and David Ifeoluwa Adelani},
  eprint = {2406.07424},
  primaryclass = {cs.CL},
  title = {MINERS: Multilingual Language Models as Semantic Retrievers},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("NusaXBitextMining")

desc_stats = task.metadata.descriptive_stats
{
    "train": {
        "num_samples": 5500,
        "number_of_characters": 1728596,
        "unique_pairs": 5499,
        "min_sentence1_length": 18,
        "average_sentence1_length": 161.66,
        "max_sentence1_length": 562,
        "unique_sentence1": 500,
        "min_sentence2_length": 7,
        "average_sentence2_length": 152.63018181818182,
        "max_sentence2_length": 550,
        "unique_sentence2": 5498
    }
}

This dataset card was automatically generated using MTEB