Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
1
7
corpus-id
stringlengths
4
7
score
int64
1
1
300674
7067032
1
125705
7067056
1
94798
7067181
1
9083
7067274
1
174249
7067348
1
320792
7067677
1
1090270
7067796
1
1101279
7067891
1
201376
7068066
1
54544
7068203
1
118457
7068493
1
178627
7068519
1
178627
7068520
1
1101278
7068907
1
68095
7069266
1
87892
7069601
1
257309
4959637
1
1090242
7070556
1
211691
7070643
1
165002
7070877
1
1101276
7070950
1
264827
7071066
1
342285
7071436
1
372586
7071494
1
89786
7071501
1
118448
7071642
1
92542
7072003
1
206117
7072155
1
206117
7072156
1
206117
7072160
1
141472
7072290
1
293992
2790193
1
196232
7072326
1
352818
7072358
1
45924
5167800
1
45924
7072691
1
208145
7072838
1
208145
7072843
1
79891
7073211
1
208494
7073272
1
319564
7073381
1
155234
502713
1
14151
7073772
1
67802
7074071
1
1090184
7074235
1
323382
4778293
1
323998
7074377
1
91711
1956185
1
125898
7074710
1
289812
262205
1
333486
7075218
1
1090171
7075317
1
73257
7075398
1
1090170
7075411
1
237373
7075449
1
127876
7075540
1
85095
430598
1
1090165
7075801
1
259417
7075870
1
1101271
7075989
1
281930
7076058
1
205107
3489272
1
205107
7076253
1
307118
7076536
1
87019
7076754
1
335710
7076765
1
127984
7076927
1
1090151
3624309
1
46711
7077382
1
1090146
7077624
1
1090132
7078051
1
1090115
7078204
1
1090110
7078250
1
1090107
7078279
1
1090102
7078336
1
1090100
7078350
1
1090086
7078525
1
1090077
7078615
1
1090072
7078672
1
1090063
7078754
1
1090054
7078842
1
1090043
7078956
1
1101259
7078991
1
1090029
7079065
1
1090029
7079067
1
1089983
7079501
1
1089966
7079658
1
1089964
7079676
1
1089945
7079883
1
1089940
7079948
1
1089925
7080091
1
1089906
7080202
1
1089896
7080300
1
1101236
7080466
1
1089868
7080589
1
1089846
7080803
1
1089832
7080937
1
1089810
7081127
1
1101228
7081141
1
1089805
7081193
1
End of preview. Expand in Data Studio

MMarcoRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

MMarcoRetrieval

Task category t2t
Domains None
Reference https://arxiv.org/abs/2309.07597

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MMarcoRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{xiao2024cpack,
  archiveprefix = {arXiv},
  author = {Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff and Defu Lian and Jian-Yun Nie},
  eprint = {2309.07597},
  primaryclass = {cs.CL},
  title = {C-Pack: Packaged Resources To Advance General Chinese Embedding},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MMarcoRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 113793,
        "number_of_characters": 12294685,
        "num_documents": 106813,
        "min_document_length": 13,
        "average_document_length": 114.41787048392986,
        "max_document_length": 1709,
        "unique_documents": 106813,
        "num_queries": 6980,
        "min_query_length": 2,
        "average_query_length": 10.51131805157593,
        "max_query_length": 61,
        "unique_queries": 6980,
        "none_queries": 0,
        "num_relevant_docs": 7437,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0654727793696275,
        "max_relevant_docs_per_query": 4,
        "unique_relevant_docs": 7433,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
30