Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
Chinese
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringclasses
159 values
corpus-id
stringlengths
10
10
score
float64
1
1
00000
dql7LIbSPr
1
00000
m4WvPR8LuJ
1
00000
u2LlQMo5RN
1
00000
xydWPoZDwd
1
00000
mYWaWvjZlU
1
00000
iFBaNvKMTx
1
00000
scecgAfOJp
1
00000
x6wADd17Qq
1
00000
yjCYMZWq3S
1
00000
MYJCnMHhrV
1
00000
oqdUPfvH8K
1
00000
8gn8AHkxv7
1
00000
SC2x1sOCmO
1
00000
7kHvqx8cYI
1
00000
hZ3NbagTOm
1
00000
Z7HAk5IK2p
1
00000
fnHx2slZjP
1
00000
fpwFPq9bzC
1
00000
DookJAZSuU
1
00000
Nb8wsIVlBH
1
00000
H7f3VT97eq
1
00000
uViHT5P2oe
1
00000
tLdDkwsFun
1
00000
o4Nlt6n9bs
1
00000
1UyTuCcPk3
1
00000
7AVnVRDpPg
1
00000
97yAcn1iEY
1
00001
efQrSO42uK
1
00001
IXr2hcfFIL
1
00001
iLnGSZLzPb
1
00001
6Y9L2501pA
1
00001
aBfvkSIlA7
1
00001
35WAqTbsW4
1
00001
imzJ4CtSWE
1
00001
5uwfIoehaa
1
00001
YILV2dj89t
1
00001
pYhPq2BTF8
1
00001
nCNjrDcwKt
1
00001
4giT6IBwRb
1
00001
Hoomw6Tx3p
1
00001
IIeCbY9dM0
1
00001
Q4Nwmgr23I
1
00001
PdFxJ834MD
1
00001
UVpgUbph8O
1
00001
ZYbB3jMFst
1
00001
bQknlr2cMp
1
00001
cthqlIctvx
1
00001
Qd0o4mVwZp
1
00002
nAvOArxYc7
1
00002
0bi4Pa8GXf
1
00002
7wu0qVyjW2
1
00002
fNbxIuocGH
1
00003
kgSC2RqbId
1
00003
irp0AUi0P2
1
00003
hxY1U4Isux
1
00003
nPuPXeDtZ9
1
00003
gOyVUTKmuQ
1
00003
qaHh1KK9dT
1
00003
A4dhjkuRv6
1
00003
ePV1AgHR8W
1
00003
yaMdJfZoWo
1
00003
HErRQIMOpu
1
00003
UMVmI5BRh8
1
00003
jcKWo3ziJm
1
00003
a8VUOkQOsC
1
00003
uo4967LUcp
1
00003
l386J292ei
1
00003
hLlJrVSk7n
1
00003
9i144vyISh
1
00003
rfIGUjbXKo
1
00003
VpHBzD0cNZ
1
00003
3WiXVGDcPa
1
00003
s7mJzZjHp4
1
00003
Mu96UTtjCj
1
00003
5Jqzges6X7
1
00003
euLYqkiCh1
1
00003
TIFNdsysZC
1
00003
ud0ctfBtDV
1
00003
8AcDHk4eXD
1
00003
LufZonaZ8r
1
00003
49bWZY1TC7
1
00003
SygT2qmWvr
1
00004
AjaMOfTft6
1
00004
OHbDTsyYVw
1
00004
TJh88ymVWB
1
00004
gpuDSD8cOQ
1
00004
1EicOlsQbZ
1
00004
Q7iLWceWwx
1
00004
HHpvtPIkKs
1
00004
BpAjWZUGmg
1
00004
XZMKueP5vw
1
00005
s9VVRGc6tK
1
00005
rS0xUOt7QE
1
00005
w1XQKrsKVh
1
00005
aeycHhlJEI
1
00005
oY5RfkafiB
1
00005
BNZcZxHnRv
1
00005
DZUgv9oj7W
1
00005
JZiTwihTC1
1
00005
KR1Ajddi2S
1
End of preview. Expand in Data Studio

LeCaRDv2

An MTEB dataset
Massive Text Embedding Benchmark

The task involves identifying and retrieving the case document that best matches or is most relevant to the scenario described in each of the provided queries.

Task category t2t
Domains Legal, Written
Reference https://github.com/THUIR/LeCaRDv2

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["LeCaRDv2"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{li2023lecardv2,
  archiveprefix = {arXiv},
  author = {Haitao Li and Yunqiu Shao and Yueyue Wu and Qingyao Ai and Yixiao Ma and Yiqun Liu},
  eprint = {2310.17609},
  primaryclass = {cs.CL},
  title = {LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("LeCaRDv2")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 3954,
        "number_of_characters": 28129613,
        "num_documents": 3795,
        "min_document_length": 967,
        "average_document_length": 7233.823978919631,
        "max_document_length": 168523,
        "unique_documents": 3795,
        "num_queries": 159,
        "min_query_length": 556,
        "average_query_length": 4259.440251572327,
        "max_query_length": 34790,
        "unique_queries": 159,
        "none_queries": 0,
        "num_relevant_docs": 3896,
        "min_relevant_docs_per_query": 4,
        "average_relevant_docs_per_query": 24.50314465408805,
        "max_relevant_docs_per_query": 30,
        "unique_relevant_docs": 3795,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
51