Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
5
7
text
stringlengths
21.2k
1.87M
title
stringclasses
1 value
doc_0
"<html>\n<head><title>Miami Vice Script at IMSDb.</title>\n<meta name=\"description\" content=\"Miam(...TRUNCATED)
doc_1
"The Project Gutenberg EBook of The Purple Cloud, by M.P. Shiel\n\nThis eBook is for the use o(...TRUNCATED)
doc_2
"<html>\n<head><title>Basic Instinct Script at IMSDb.</title>\n<meta name=\"description\" content=\"(...TRUNCATED)
doc_3
"<html>\n<head><title>Minority Report Script at IMSDb.</title>\n<meta name=\"description\" content=\(...TRUNCATED)
doc_4
"<html>\n<head><title>Dry White Season, A Script at IMSDb.</title>\n<meta name=\"description\" conte(...TRUNCATED)
doc_5
"The Project Gutenberg EBook of The Story of Miss Moppet, by Beatrix Potter\n\nThis eBook is f(...TRUNCATED)
doc_6
"The Project Gutenberg EBook of Fanshawe, by Nathaniel Hawthorne\n\nThis eBook is for the use (...TRUNCATED)
doc_7
"<html>\n<head><title>Wild Things: Diamonds in the Rough Script at IMSDb.</title>\n<meta name=\"desc(...TRUNCATED)
doc_8
"<html>\n<head><title>Cinema Paradiso Script at IMSDb.</title>\n<meta name=\"description\" content=\(...TRUNCATED)
doc_9
"The Project Gutenberg eBook, The Last Chronicle of Barset, by Anthony\nTrollope\n\n\nThis eBo(...TRUNCATED)
End of preview. Expand in Data Studio

LEMBNarrativeQARetrieval

An MTEB dataset
Massive Text Embedding Benchmark

narrativeqa subset of dwzhu/LongEmbed dataset.

Task category t2t
Domains Fiction, Non-fiction, Written
Reference https://huggingface.co/datasets/dwzhu/LongEmbed

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["LEMBNarrativeQARetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{kocisky-etal-2018-narrativeqa,
  abstract = {},
  address = {Cambridge, MA},
  author = {Ko{\v{c}}isk{\'y}, Tom{\'a}{\v{s}}  and
Schwarz, Jonathan  and
Blunsom, Phil  and
Dyer, Chris  and
Hermann, Karl Moritz  and
Melis, G{\'a}bor  and
Grefenstette, Edward},
  doi = {10.1162/tacl_a_00023},
  editor = {Lee, Lillian  and
Johnson, Mark  and
Toutanova, Kristina  and
Roark, Brian},
  journal = {Transactions of the Association for Computational Linguistics},
  pages = {317--328},
  publisher = {MIT Press},
  title = {The {N}arrative{QA} Reading Comprehension Challenge},
  url = {https://aclanthology.org/Q18-1023},
  volume = {6},
  year = {2018},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("LEMBNarrativeQARetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 10804,
        "number_of_characters": 116497954,
        "num_documents": 355,
        "min_document_length": 21216,
        "average_document_length": 326753.5323943662,
        "max_document_length": 1874086,
        "unique_documents": 355,
        "num_queries": 10449,
        "min_query_length": 10,
        "average_query_length": 47.89453536223562,
        "max_query_length": 1220,
        "unique_queries": 10449,
        "none_queries": 0,
        "num_relevant_docs": 10449,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 355,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
38