Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
sentence1
stringlengths
2
317
sentence2
stringlengths
2
911
score
float64
0
5
๋น„ํ–‰๊ธฐ๊ฐ€ ์ด๋ฅ™ํ•˜๊ณ  ์žˆ๋‹ค.
๋น„ํ–‰๊ธฐ๊ฐ€ ์ด๋ฅ™ํ•˜๊ณ  ์žˆ๋‹ค.
5
ํ•œ ๋‚จ์ž๊ฐ€ ํฐ ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
3.8
ํ•œ ๋‚จ์ž๊ฐ€ ํ”ผ์ž์— ์น˜์ฆˆ๋ฅผ ๋ฟŒ๋ ค๋†“๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๊ตฌ์šด ํ”ผ์ž์— ์น˜์ฆˆ ์กฐ๊ฐ์„ ๋ฟŒ๋ ค๋†“๊ณ  ์žˆ๋‹ค.
3.8
์„ธ ๋‚จ์ž๊ฐ€ ์ฒด์Šค๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค.
๋‘ ๋‚จ์ž๊ฐ€ ์ฒด์Šค๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค.
2.6
ํ•œ ๋‚จ์ž๊ฐ€ ์ฒผ๋กœ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
์ž๋ฆฌ์— ์•‰์€ ๋‚จ์ž๊ฐ€ ์ฒผ๋กœ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
4.25
๋ช‡๋ช‡ ๋‚จ์ž๋“ค์ด ์‹ธ์šฐ๊ณ  ์žˆ๋‹ค.
๋‘ ๋‚จ์ž๊ฐ€ ์‹ธ์šฐ๊ณ  ์žˆ๋‹ค.
4.25
๋‚จ์ž๊ฐ€ ๋‹ด๋ฐฐ๋ฅผ ํ”ผ์šฐ๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์Šค์ผ€์ดํŠธ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
0.5
๋‚จ์ž๊ฐ€ ํ”ผ์•„๋…ธ๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
1.6
ํ•œ ๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ๋…ธ๋ž˜๋ฅผ ๋ถ€๋ฅด๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ์–ด์ฟ ์Šคํ‹ฑ ๊ธฐํƒ€๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ๋…ธ๋ž˜๋ฅผ ๋ถ€๋ฅด๊ณ  ์žˆ๋‹ค.
2.2
์‚ฌ๋žŒ์ด ๊ณ ์–‘์ด๋ฅผ ์ฒœ์žฅ์— ๋˜์ง€๊ณ  ์žˆ๋‹ค.
์‚ฌ๋žŒ์ด ๊ณ ์–‘์ด๋ฅผ ์ฒœ์žฅ์— ๋˜์ง„๋‹ค.
5
๊ทธ ๋‚จ์ž๋Š” ๋‹ค๋ฅธ ๋‚จ์ž๋ฅผ ๋ง‰๋Œ€๊ธฐ๋กœ ๋•Œ๋ ธ๋‹ค.
๊ทธ ๋‚จ์ž๋Š” ๋‹ค๋ฅธ ๋‚จ์ž๋ฅผ ๋ง‰๋Œ€๊ธฐ๋กœ ๋•Œ๋ ธ๋‹ค.
4.2
ํ•œ ์—ฌ์„ฑ์ด ์•„๊ธฐ๋ฅผ ์•ˆ์•„์„œ ์บฅ๊ฑฐ๋ฃจ๋ฅผ ์•ˆ๋Š”๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ์•„๊ธฐ๋ฅผ ์•ˆ์•„์„œ ํŒ”์— ์บฅ๊ฑฐ๋ฃจ๋ฅผ ์•ˆ๋Š”๋‹ค.
4.6
๋‚จ์ž๊ฐ€ ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋Œ€๋‚˜๋ฌด ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
3.867
์‚ฌ๋žŒ์ด ์ข…์ด ํ•œ ์žฅ์„ ์ ‘๊ณ  ์žˆ๋‹ค.
๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ์ข…์ด๋ฅผ ์ ‘๊ณ  ์žˆ๋‹ค.
4.667
ํ•œ ๋‚จ์ž๊ฐ€ ๋„๋กœ๋ฅผ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.
ํŒ๋‹ค ๊ฐœ๊ฐ€ ๋„๋กœ์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.
1.667
๊ฐœ๊ฐ€ ๋ฒ ์ด์ปจ์„ ๋“ฑ์—์„œ ๋–ผ๋ ค๊ณ  ํ•˜๊ณ  ์žˆ๋‹ค.
๊ฐœ๊ฐ€ ๋“ฑ์— ์žˆ๋Š” ๋ฒ ์ด์ปจ์„ ๋จน์œผ๋ ค๊ณ  ํ•˜๊ณ  ์žˆ๋‹ค.
3.75
๋ถ๊ทน๊ณฐ์ด ๋ˆˆ ์œ„์—์„œ ๋ฏธ๋„๋Ÿฌ์ง€๊ณ  ์žˆ๋‹ค.
๋ถ๊ทน๊ณฐ์ด ๋ˆˆ ์œ„๋กœ ๋ฏธ๋„๋Ÿฌ์ ธ ๊ฐ€๊ณ  ์žˆ๋‹ค.
5
์—ฌ์ž๊ฐ€ ๊ธ€์„ ์“ฐ๊ณ  ์žˆ๋‹ค.
์—ฌ์ž๊ฐ€ ์ˆ˜์˜์„ ํ•˜๊ณ  ์žˆ๋‹ค.
0.5
๊ณ ์–‘์ด๊ฐ€ ์•„๊ธฐ์˜ ์–ผ๊ตด์„ ๋ฌธ์ง€๋ฅด๊ณ  ์žˆ๋‹ค.
๊ณ ์–‘์ด๊ฐ€ ์•„๊ธฐ์—๊ฒŒ ๋ฌธ์ง€๋ฅด๊ณ  ์žˆ๋‹ค.
3.8
๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
5
ํ•œ ๋‚จ์ž๊ฐ€ ๋ƒ„๋น„์— ๊ธฐ๋ฆ„์„ ๋ถ€์–ด ๋„ฃ๋Š”๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๋ƒ„๋น„์— ์™€์ธ์„ ๋ถ“๋Š”๋‹ค.
3.2
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์†Œ๋…€๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
2.8
ํŒ๋‹ค๊ฐ€ ์Šฌ๋ผ์ด๋“œ ์•„๋ž˜๋กœ ๋ฏธ๋„๋Ÿฌ์ ธ ๋‚ด๋ ค๊ฐ„๋‹ค.
ํŒ๋‹ค๊ฐ€ ์Šฌ๋ผ์ด๋“œ ์•„๋ž˜๋กœ ๋ฏธ๋„๋Ÿฌ์ง„๋‹ค.
4.6
์—ฌ์ž๊ฐ€ ๋ญ”๊ฐ€๋ฅผ ๋จน๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๊ณ ๊ธฐ๋ฅผ ๋จน๊ณ  ์žˆ๋‹ค.
3
ํ•œ ์—ฌ์ž๊ฐ€ ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ธด๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
5
๊ทธ ์†Œ๋…„์€ ์ž์ „๊ฑฐ์—์„œ ๋–จ์–ด์กŒ๋‹ค.
ํ•œ ์†Œ๋…„์ด ์ž์ „๊ฑฐ์—์„œ ๋–จ์–ด์ง„๋‹ค.
4.8
์—ฌ์ž๊ฐ€ ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
5
ํ† ๋ผ๊ฐ€ ๋…์ˆ˜๋ฆฌ์—๊ฒŒ์„œ ๋›ฐ๊ณ  ์žˆ๋‹ค.
ํ† ๋ผ๊ฐ€ ๋…์ˆ˜๋ฆฌ์—๊ฒŒ์„œ ๋„๋ง์น˜๊ณ  ์žˆ๋‹ค.
4.2
์—ฌ์ž๊ฐ€ ๋นต์„ ๊ณ๋“ค์ธ ๋ผ์ง€๊ณ ๊ธฐ๋ฅผ ํŠ€๊ธฐ๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๋นต์„ ๊ณ๋“ค์ธ ๋ผ์ง€๊ณ ๊ธฐ๋ฅผ ์š”๋ฆฌํ•˜๊ณ  ์žˆ๋‹ค.
4.2
ํ•œ ์†Œ๋…€๊ฐ€ ์—ฐ์„ ๋‚ ๋ฆฌ๊ณ  ์žˆ๋‹ค.
๋‹ฌ๋ฆฌ๋Š” ์†Œ๋…€๊ฐ€ ์—ฐ์„ ๋‚ ๋ฆฌ๊ณ  ์žˆ๋‹ค.
4
ํ•œ ๋‚จ์ž๊ฐ€ ๊ธฐ๊ณ„์‹ ํ™ฉ์†Œ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๊ธฐ๊ณ„์‹ ํ™ฉ์†Œ๋ฅผ ํƒ”๋‹ค.
4
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
4.909
ํ•œ ์—ฌ์„ฑ์ด ๋‹ค๋ฅธ ์—ฌ์„ฑ๋“ค๊ณผ ์ถค์ถ”๊ณ  ๋…ธ๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๋น—์†์—์„œ ์ถค์ถ”๊ณ  ๋…ธ๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค.
3
๋‚จ์ž๊ฐ€ ๋นต์„ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
2.4
๋‚จ์ž๊ฐ€ ํŒฌ์— ๊ธฐ๋ฆ„์„ ๋ถ€์–ด ๋„ฃ๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ํ”„๋ผ์ดํŒฌ์— ๊ธฐ๋ฆ„์„ ๋ถ€์–ด ๋„ฃ๊ณ  ์žˆ๋‹ค.
4.2
์‚ฌ์ž๊ฐ€ ์‚ฌ๋žŒ๋“ค๊ณผ ๋†€๊ณ  ์žˆ๋‹ค.
์‚ฌ์ž๊ฐ€ ๋‘ ๋‚จ์ž์™€ ๋†€๊ณ  ์žˆ๋‹ค.
3.4
๊ฐœ๊ฐ€ ์Šค์ผ€์ดํŠธ๋ณด๋“œ๋ฅผ ํƒ„๋‹ค.
๊ฐœ๊ฐ€ ์Šค์ผ€์ดํŠธ๋ณด๋“œ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
5
๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋™์ƒ์„ ์กฐ๊ฐํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ์กฐ๊ฐ์ƒ์„ ์กฐ๊ฐํ•˜๊ณ  ์žˆ๋‹ค.
3.75
ํ•œ ์—ฌ์„ฑ์ด ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
2.75
์—ฌ์ž๋Š” ์ƒˆ์šฐ ๊ป์งˆ์„ ๋ฒ—๊ธด๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ์ƒˆ์šฐ ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
5
ํ•œ ์—ฌ์„ฑ์ด ์ƒ์„  ํŠ€๊น€์„ ํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ์ƒ์„ ์„ ์š”๋ฆฌํ•˜๊ณ  ์žˆ๋‹ค.
4
ํ•œ ์—ฌ์„ฑ์ด ์ผ๋ ‰ํŠธ๋ฆญ ๊ธฐํƒ€๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
3.6
์ƒˆ๋ผ ํ˜ธ๋ž‘์ด๊ฐ€ ๊ณต์„ ๊ฐ€์ง€๊ณ  ๋†€๊ณ  ์žˆ๋‹ค.
์•„๊ธฐ๊ฐ€ ์ธํ˜•์„ ๊ฐ€์ง€๊ณ  ๋†€๊ณ  ์žˆ๋‹ค.
1.6
์‚ฌ๋žŒ์ด ํ† ๋งˆํ† ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
์‚ฌ๋žŒ์ด ๊ณ ๊ธฐ๋ฅผ ์ฐ๊ณ  ์žˆ๋‹ค.
1.75
์‚ฌ๋žŒ์ด ์–‘ํŒŒ๋ฅผ ์ž˜๋ž๋‹ค.
์‚ฌ๋žŒ์ด ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
5
ํ•œ ๋‚จ์ž๊ฐ€ ํ”ผ์•„๋…ธ๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
1
ํ•œ ์—ฌ์„ฑ์ด ํ”Œ๋ฃจํŠธ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
1
๋‚จ์ž๊ฐ€ ๊ฐ์ž๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋‹น๊ทผ์„ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
2.375
ํ•œ ์•„์ด๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์†Œ๋…„์ด ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
3.8
ํ•œ ์†Œ๋…„์ด ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
3.2
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์†Œ๋…„์ด ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
3.2
์–ด๋ฆฐ ์†Œ๋…„์ด ํ‚ค๋ณด๋“œ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์†Œ๋…„์ด ํ‚ค๋ณด๋“œ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค.
4.4
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ์ผ๋ ‰ํŠธ๋ฆญ ๊ธฐํƒ€๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
3.75
๊ฐœ๊ฐ€ ์•„๊ธฐ๋ฅผ ํ•ฅ๋Š”๋‹ค.
๊ฐœ๊ฐ€ ์•„๊ธฐ๋ฅผ ํ•ฅ๊ณ  ์žˆ๋‹ค.
4.75
ํ•œ ์—ฌ์„ฑ์ด ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
3.2
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋“œ๋Ÿผ์„ ์น˜๊ณ  ์žˆ๋‹ค.
1.556
์—ฌ์ž๊ฐ€ ํ›„์ถ”๋ฅผ ์ฐ๊ณ  ์žˆ๋‹ค.
์—ฌ์ž๊ฐ€ ๊ณ ์ถ”๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
3.938
๋‚จ์ž๊ฐ€ ๋“œ๋Ÿผ์„ ์น˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.
5
์—ฌ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.
์—ฌ์ž๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
5
๋‚จ์ž๊ฐ€ ๋‚˜๋ฌด ์˜†์—์„œ ๋ฐ”๋‚˜๋‚˜๋ฅผ ๋จน๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๋ฐ”๋‚˜๋‚˜๋ฅผ ๋จน๊ณ  ์žˆ๋‹ค.
4
๊ณ ์–‘์ด๊ฐ€ ํ‚ค๋ณด๋“œ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๋‘ ๊ฐœ์˜ ํ‚ค๋ณด๋“œ๋ฅผ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
1.6
ํ•œ ๋‚จ์ž๊ฐ€ ๋„๋ผ๋กœ ๋‚˜๋ฌด๋ฅผ ๋ฒ ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๋„๋ผ๋กœ ๋‚˜๋ฌด๋ฅผ ๋ฒ ์—ˆ๋‹ค.
4.75
ํ•œ ์•„์ด๊ฐ€ ์žฅ๋‚œ๊ฐ ์ „ํ™”๊ธฐ๋กœ ๋†€๊ณ  ์žˆ๋‹ค.
ํ•œ ์–ด๋ฆฐ ์†Œ๋…„์ด ์žฅ๋‚œ๊ฐ ์ „ํ™”๊ธฐ๋กœ ๋†€๊ณ  ์žˆ๋‹ค.
3.5
ํ•œ ๋‚จ์ž๊ฐ€ ์˜คํ† ๋ฐ”์ด๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
1.4
ํ•œ ๋‚จ์ž๊ฐ€ ์˜คํ† ๋ฐ”์ด๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
1.4
๋‹ค๋žŒ์ฅ๊ฐ€ ์›์„ ๊ทธ๋ฆฌ๋ฉฐ ๋น™๋น™ ๋Œ๊ณ  ์žˆ๋‹ค.
๋‹ค๋žŒ์ฅ๊ฐ€ ์›์„ ๊ทธ๋ฆฌ๋ฉฐ ๋Œ๊ณ  ์žˆ๋‹ค.
4
๋‚จ์ž์™€ ์—ฌ์ž๊ฐ€ ํ‚ค์Šคํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž์™€ ์—ฌ์ž์˜ ํ‚ค์Šค...
5
ํ•œ ๋‚จ์ž๊ฐ€ ์ฐจ์— ํƒ€๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ์ฐจ๊ณ ์—์„œ ์ฐจ์— ํƒ€๊ณ  ์žˆ๋‹ค.
3.833
๋‚จ์ž๊ฐ€ ์ถค์„ ์ถ”๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋งํ•˜๊ณ  ์žˆ๋‹ค.
0.6
ํ•œ ๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ๋…ธ๋ž˜๋ฅผ ๋ถ€๋ฅด๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
2.917
์‚ฌ๋žŒ์ด ๋ฒ„์„ฏ์„ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
์‚ฌ๋žŒ์ด ์นผ๋กœ ๋ฒ„์„ฏ์„ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
4.2
ํ˜ธ๋ž‘์ด ์ƒˆ๋ผ๊ฐ€ ์†Œ๋ฆฌ๋ฅผ ๋‚ด๊ณ  ์žˆ๋‹ค.
ํ˜ธ๋ž‘์ด๊ฐ€ ์ฃผ์œ„๋ฅผ ๋Œ์•„๋‹ค๋‹ˆ๊ณ  ์žˆ๋‹ค.
2
์‚ฌ๋žŒ์ด ์–‘ํŒŒ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
์‚ฌ๋žŒ์ด ์–‘ํŒŒ ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
2.6
ํ•œ ๋‚จ์ž๊ฐ€ ํ”ผ์•„๋…ธ๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ํŠธ๋ŸผํŽซ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
1.6
ํ•œ ์—ฌ์„ฑ์ด ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
์—ฌ์ž๊ฐ€ ์‚ฌ๊ณผ ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
2
ํŒ์นด๊ฐ€ ๋Œ€๋‚˜๋ฌด๋ฅผ ๋จน๊ณ  ์žˆ๋‹ค.
ํŒ๋‹ค ๊ณฐ์ด ๋Œ€๋‚˜๋ฌด๋ฅผ ๋จน๊ณ  ์žˆ๋‹ค.
4.2
์‚ฌ๋žŒ์ด ์–‘ํŒŒ ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
์‚ฌ๋žŒ์ด ๊ฐ€์ง€๋ฅผ ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
2
์›์ˆญ์ด๋Š” ๋‹ค๋ฅธ ์›์ˆญ์ด๋ฅผ ๋ฐ€๊ณ  ๊ฐ‘๋‹ˆ๋‹ค.
์›์ˆญ์ด๊ฐ€ ๋‹ค๋ฅธ ์›์ˆญ์ด๋ฅผ ๋ฐ€์—ˆ๋‹ค.
4.8
๋‹ค๋žŒ์ฅ๊ฐ€ ์›์„ ๊ทธ๋ฆฌ๋ฉฐ ๋Œ๊ณ  ์žˆ๋‹ค.
๋‹ค๋žŒ์ฅ๊ฐ€ ์›์„ ๊ทธ๋ฆฌ๋ฉฐ ์›€์ง์ด๊ณ  ์žˆ๋‹ค.
4.4
๋‚จ์ž๊ฐ€ ์‹ ๋ฐœ๋ˆ์„ ๋ฌถ๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์‹ ๋ฐœ ๋ˆ์„ ๋ฌถ๋Š”๋‹ค.
5
ํ•œ ์†Œ๋…„์ด ๋…ธ๋ž˜๋ฅผ ๋ถ€๋ฅด๊ณ  ํ”ผ์•„๋…ธ๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ์†Œ๋…„์ด ํ”ผ์•„๋…ธ๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
3
๊ฐœ๊ฐ€ ๋ฌผ ๋ฉœ๋ก ์„ ๋จน๊ณ  ์žˆ๋‹ค.
๊ฐœ๊ฐ€ ์ˆ˜๋ฐ• ํ•œ ์กฐ๊ฐ์„ ๋จน๊ณ  ์žˆ๋‹ค.
4.25
ํ•œ ์—ฌ์„ฑ์ด ๋ธŒ๋กœ์ฝœ๋ฆฌ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ์นผ๋กœ ๋ธŒ๋กœ์ฝœ๋ฆฌ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
4.25
๋‚จ์ž๊ฐ€ ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ฒผ๋‹ค.
3.8
ํ•œ ์—ฌ์„ฑ์ด ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์—ฐ์ฃผํ•œ๋‹ค.
2.4
ํ•œ ์—ฌ์„ฑ์ด ํ† ๋งˆํ† ๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์–‘ํŒŒ๋ฅผ ์ฐ๊ณ  ์žˆ๋‹ค.
1.6
ํ•œ ๋‚จ์ž๊ฐ€ ์ˆ˜์ค‘์—์„œ ์ˆ˜์˜์„ ํ•œ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๋ฌผ์†์—์„œ ์ˆ˜์˜ํ•˜๊ณ  ์žˆ๋‹ค.
2
๋‚จ์ž์™€ ์—ฌ์ž๊ฐ€ ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž์™€ ์—ฌ์ž๊ฐ€ ๋จน๊ณ  ์žˆ๋‹ค.
1.6
์ž‘์€ ๊ฐœ๊ฐ€ ์š”๊ฐ€๊ณต์„ ์ซ“๊ณ  ์žˆ๋‹ค.
๊ฐœ๊ฐ€ ๊ณต์„ ์ซ“๊ณ  ์žˆ๋‹ค.
4
๋‚จ์ž๋“ค์ด ํฌ๋ฆฌ์ผ“์„ ํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๋“ค์ด ๋†๊ตฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค.
2.2
ํ•œ ๋‚จ์ž๊ฐ€ ์˜คํ† ๋ฐ”์ด๋ฅผ ํƒ€๊ณ  ๋– ๋‚œ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ์˜คํ† ๋ฐ”์ด๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
4.4
๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.
ํ•œ ๋‚จ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ๋ถ€๋ฅด๊ณ  ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.
3.6
๊ทธ ๋‚จ์ž๋Š” ์ „ํ™”๋กœ ๋งํ–ˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์ „ํ™”๋กœ ๋งํ•˜๊ณ  ์žˆ๋‹ค.
3.6
๋‚จ์ž๊ฐ€ ๋‚š์‹œ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ์šด๋™์„ ํ•˜๊ณ  ์žˆ๋‹ค.
0.5
๋‚จ์ž๊ฐ€ ๊ณต์ค‘ ๋ถ€์–‘ํ•˜๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๋งํ•˜๊ณ  ์žˆ๋‹ค.
0.8
๋‘ ์†Œ๋…„์ด ์šด์ „์„ ํ•˜๊ณ  ์žˆ๋‹ค.
๋‘ ๊ฐœ์˜ ๋งŒ์ด ์ถค์ถ”๊ณ  ์žˆ๋‹ค.
0.6
๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
ํ•œ ์†Œ๋…€๊ฐ€ ๋ง์„ ํƒ€๊ณ  ์žˆ๋‹ค.
2.6
ํ•œ ๋‚จ์ž๊ฐ€ ์ž์ „๊ฑฐ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
์›์ˆญ์ด๊ฐ€ ์ž์ „๊ฑฐ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.
2
ํ•œ ๋‚จ์ž๊ฐ€ ๊ฐ์ž๋ฅผ ์ฐ๊ณ  ์žˆ๋‹ค.
ํ•œ ์—ฌ์„ฑ์ด ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
2.2
ํ•œ ์—ฌ์„ฑ์ด ๊ฐ์ž ๊ป์งˆ์„ ๋ฒ—๊ธฐ๊ณ  ์žˆ๋‹ค.
๋‚จ์ž๊ฐ€ ๊ฐ์ž๋ฅผ ์ž๋ฅด๊ณ  ์žˆ๋‹ค.
2.4
End of preview. Expand in Data Studio

KorSTS

An MTEB dataset
Massive Text Embedding Benchmark

Benchmark dataset for STS in Korean. Created by machine translation and human post editing of the STS-B dataset.

Task category t2t
Domains News, Web
Reference https://arxiv.org/abs/2004.03289

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["KorSTS"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{ham2020kornli,
  author = {Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
  journal = {arXiv preprint arXiv:2004.03289},
  title = {KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Mรกrton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiล„ski and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrรธm and Roman Solomatin and ร–mer ร‡aฤŸatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafaล‚ Poล›wiata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Bjรถrn Plรผster and Jan Philipp Harries and Loรฏc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek ล uppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Gรผnther and Mengzhou Xia and Weijia Shi and Xing Han Lรน and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("KorSTS")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 1376,
        "number_of_characters": 80577,
        "unique_pairs": 1374,
        "min_sentence1_length": 6,
        "average_sentence1_len": 29.38953488372093,
        "max_sentence1_length": 98,
        "unique_sentence1": 1243,
        "min_sentence2_length": 8,
        "average_sentence2_len": 29.169331395348838,
        "max_sentence2_length": 100,
        "unique_sentence2": 1324,
        "min_score": 0.0,
        "avg_score": 2.6053539244186066,
        "max_score": 5.0
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
48