Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
text
stringlengths
1
302
label
sequencelengths
1
4
์ •์น˜์ ์œผ๋กœ ํŽธํ–ฅ๋œ ํ‰๋ก ํ•œ์€ ๋ถ„์€ ๋ณ„๋กœ...
[ 8 ]
์ ๋‹นํžˆ์ข€ ์ณ๋จน์ง€.๊ทธ๋žฌ๋ƒ??? ์•ˆ๊ทธ๋ž˜๋„ ๋ฌธ์žฌ์ธ ๋•Œ๋ฌธ์— ๋‚˜๋ผ ์—‰๋ง์ง„์ฐฝ์ธ๋ฐ...
[ 2 ]
"์•ˆ์„œ๋Š” ์•„์žฌ๋“ค ํ’€๋ฐœ๊ธฐ ใ…‹ใ„ฒใ…‹"
[ 4 ]
๋ง›๋…€์„ ์ฝฉํŠธ๋ณด๋‹ค ์•ฝํ–ˆ์Œ๋ง›๋…€์„ ์• ์ฒญ์ž๋กœ์จ 70%์‹ค๋ ฅ๋ฐœํœ˜
[ 8 ]
์ด๊ฒŒ์ฃผ๊ฐ„์•„์ด๋Œ์ด๋ž‘๋จธ๊ฐ€๋‹ฌ๋ผ...
[ 8 ]
์•„์˜ค ์Šˆ๋ฐ• ํšŒ์‚ฌ์ƒํ™œ๋„ ์ก‘๊นฅ๊ณ  ๋ˆ๋ฒŒ๊ธฐ ํž˜๋“ค์–ด ์ฃฝ๊ฒ ๊ตฌ๋งŒ ๋ญ” ์ €๋”ด๊ฒƒ๋“ค ์ž๊พธ tv๋‚˜์™€์„œ ์‚ฌ๋žŒ ์งœ์ฆ๋‚˜๊ฒŒํ•˜๋ƒ ์™ธ๊ตญ์„œ ํŽธํžˆ์‚ด๋ ค๋ฉด ์•„๋‹ฅํ•˜๊ณ  ์‚ด์•„๋ผ ๋Œ€ํ•œ๋ฏผ๊ตญ์„œ ์ทจ๋ฏธ๋กœ ๋ˆ๋ฒŒ์–ด๊ฐ€์ง€๋ง๊ณ  ์ข€ ๋„์ง€๋ผ๊ณ !
[ 3 ]
์ด์žฌ์ง„์€ ๊ทธ๊ฒŒ๋ฌธ์ œ๊ฐ€์•„๋‹ˆ์ž๋‚˜ ์ง€๊ธˆ ใ…‹ใ…‹ใ…‹ใ…‹
[ 8 ]
์›์ค‘์”จ........... ์ž˜๊ฐ€์š”........ ์ž˜์‚ด์•„์š”..........
[ 8 ]
์ •์‹ ๋‚˜๊ฐ„๋…„๋“ค ๋‚˜๋ผ ๋Œ์•„๊ฐ€๋Š”๊ฑด 1๋„ ๋ชจ๋ฅด์ง€
[ 3 ]
์•Œ๋ฐ”ํ’€์—ˆ๋‚˜ ๋งŽ์ด๋ณธ๋‰ด์Šค ์ดํ”„๋กœ๊ทธ๋žจ๊ธฐ์‚ฌ ๋Œ“๊ธ€ํ•˜๊ณ  ๋ฐ˜์‘์ด 180๋„ ๋‹ค๋ฅด๋„ค ใ…‹ใ…‹ใ…‹ ์˜๋ฏธ์—†๋Š” ์ฐฌ์–‘์งˆ ์™œ์ผ€๋งŽ๋ƒ ์—ฌ๊ธด
[ 8 ]
๊น€ํƒœ๋ฆฌ.. ๋‚˜ 3๋Œ€์งธ ๋ผ์ง€๋†์žฅ์ฃผ ๊ณ ์„ํ™˜์˜ ์‹ ๋ถ€ํ›„๋ณด 16์œ„.. ํ•˜์ง€๋งŒ ์˜ค๋Š˜ 9์œ„๋กœ ์˜ฌ๋ผ๊ฐ”๋‹ค. ์ข€๋” ๋ถ„๋ฐœํ•ด๋ผ
[ 8 ]
์ง€๊ฐ€ ๊ดœ์ฐฎ๋‹ค๋Š”๋ฐ ๋‹ˆ๋“ค์€ ์ข€ ๋‹ฅโ‚ฉ/โ‚ฉ์น˜๊ณ ์žˆ์–ด๋ผ ๋Œ€๋ฆฌ๋„ ๋ชป๋‹จ ์ƒˆ!.!3!;๋ผ๋“ค์ด ๋ง์€ ์กด/&๋‚˜๊ฒŒ ๋งŽ๋„ค ใ…‹ใ…‹
[ 3 ]
๋‹ค๋“ค ์˜ค์ง€๋ž– ์ข€...๋˜๊ฒŒ ํ•  ์ง“ ์—†์–ด๋ณด์—ฌ์š”
[ 8 ]
๊ฐœ๋‚˜์†Œ๋‚˜ ํŠธ๋กœํŠธ ๊ฐ€์ˆ˜๋ž˜ ๋…ธ๋ž˜ ์กด๋‚˜ ๋ชป๋ถ€๋ฅด๋„ค
[ 3 ]
๋ชฌ์ƒ๊ธด ์—ฌ์ž์ธ๊ฐ„๋“ค์€ ์ฐŒ๊ทธ๋Ÿฌ์ ธ์žˆ์–ด๋ผ ํ™•๊ทธ๋ƒฅ ๋ง‰๊ทธ๋ƒฅ
[ 1, 5 ]
์†ก์ค‘๊ธฐ๋Š” ์‚ฌ์ง„์—๋„ ์—†๊ตฌ๋งŒ..ใ…‹ใ…‹์†กํ˜œ๊ตโ™ก๊ณ ์–‘์ด.ใ…‹ใ…‹ใ…‹
[ 8 ]
์œ ๋ถ€๋‚จ์ด ์ฒ˜๋…€์—๊ฒŒ ๋„ˆ๋ž‘ ๊ฒฐํ˜ผํ•˜๊ณ  ์‹ถ๋‹ค๋ผ๊ณ  ํ–ˆ์œผ๋ฉด ๊ฐœ์š•์ฒ˜๋จน์—ˆ๊ฒ ์ง€ ใ…‹ใ…‹ใ…‹ใ…‹ ๋ฏธ์นœํ—ฌ์กฐ์„ ์—์„œ ํƒœ์–ด๋‚˜ ์˜ค๋Š˜๋„ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค
[ 0 ]
์—ฐ๊ธฐ๋ชปํ•˜๋Š” ๋ฐฉ๊ตฌ์Ÿ์ด๋…„
[ 3 ]
"ํ•˜๋‚˜๋‹˜์€ ๋ณ€ํ•จ์ด ์—†๋Š”๋ฐ ๊ฐœ๋ชฉ์‚ฌ๋“ค์ด ํ•˜๋‚˜๋‹˜์„ ํŒ”์•„์„œ ์ง€๋ฐฐ๋งŒ ๋ถˆ๋ฆฌ์ง€"
[ 0 ]
"๋ชฉ์‚ฌ ์ข‹์•„ํ•˜๋„ค~~ ์ข…๊ตํŒ”์ด ํ•˜์ง€๋งˆ๋ผ ! ๊ฐœ๋ชฉ์‚ฌ ์ฃผ์ œ์—.."
[ 7 ]
"์ด์—ฌ์ธ ๊ด€์ƒ์ž์ฒด๊ฐ€.."
[ 8 ]
์™€..์ง„์งœ ์˜ˆ์˜๋‹ค..
[ 8 ]
๊ณ ์ƒ ํ•˜์…จ์Šต๋‹ˆ๋‹ค. ์ข€๋” ๋ง˜ํŽธํ•œ ์‚ถ์„ ํ–‰๋ณตํ•œ์‚ถ์„ ์‚ด์ˆ˜ ์žˆ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
[ 8 ]
์ง€์šฐ๋ผ๋ฉด ์ง€์›Œ ๋ง ์กด๋‚˜๊ฒŒ๋งŽ๋„ค ์‹ธOOO๋“ค
[ 3 ]
๋‚˜๋„ ๋ˆ๋งŽ์€ ์•„์คŒ๋งˆ๋ž‘ ๊ฒฐํ˜ผํ•˜๊ณ ์‹ถ๋‹ค
[ 8 ]
๋šฑ๋ณด๋ผ๋ฆฐ ๋ญ”๊ฐ€ ์ž˜๋งž๋Š”๊ฒŒ ์žˆ๋‚˜๋ณด๋„ค
[ 1 ]
์™ธ๋ชจ๋งŒ๋ณด๋ฏ„ํ•œ๊ตญํ† ์ข…์‹œ๊ณจ์•„์คŒ๋งˆ์ฃ ์ข€๋ชป์ƒ๊ธด์คŒ๋งˆ. ๋…ธ๋žœ์ž˜ํ•˜์ฃ 
[ 1, 5 ]
๋…ธ๋ž˜ ๋ช‡๋ฒˆ ๋งํ•˜๋”๋‹ˆ ์ด์ œ ํ—๊ทธ๋ฆฌ ์ •์‹ ์ด ์ƒˆ๋กœ ์ƒ๊ธด๋“ฏ....์•„์•„ ์„ธ์›”์ด ์•ผ์†ํ•˜๋„ค. ์˜›๋‚ ์— ์ „์„ฑ๊ธฐ ์‹œ์ ˆ์—” ์ง€๊ธˆ ์ˆ˜์ง€ ์•„์ด์œ  ํ•ฉ์ณ๋†“์€ ๊ธ‰์ด์—ˆ๋Š”๋ฐ.
[ 8 ]
์—ฌ๊ธฐ ์•„์คŒ๋งˆ๋“ค ์‹œ์ƒ˜์ด ์žฅ๋‚œ์•„๋‹ˆ๋„ค์š” ์—ดํญํ• ์‹œ๊ฐ„์— ์• ๊ธฐ๋‚˜๋ณด์„ธ์š”^^
[ 5 ]
์™€!! ๋ชป์ƒ๊ฒจ๋”ฐ
[ 1 ]
๋ฌธ์žฌ์•™ ๋ฎ์œผ๋ ค๊ณ  ์—ฐ์˜ˆ์ธ๋“ค์ด ๊ณ ์ƒํ•˜๋„ค
[ 2 ]
๋‚จ์ž๋„ ์„ฑํ˜•์ด ๋งŽ๋‹ค๋‹ˆ..์„ฑํ˜•๊ณตํ™”๊ตญ๋‹ต๋‹ค
[ 8 ]
๋ง๋”ธ์ดํ•ด๊ฐ€์•ˆ๊ฐ€๊ณ  ๊ฐ€์žฅ์ด๊ธฐ์ ์ธ๋‡ฌ ์•„๋ฒ„์ง€๊ฐ€ํ™ฉํ˜ผ์—์„œ ์ฒซ์‚ฌ๋ž‘๋งŒ๋‚˜ ํ–‰๋ณตํ•˜๊ณ ์‹ถ๋‹ค๋Š”๋ฐ ํ›ผ๋ฐฉ๋†“๋‹ค๋‹ˆ ๋ฌด์ž์‹์ด์ƒํŒ”์ž๋‹ค
[ 3 ]
ํ•ฉ์ฐฝ ๋ฌผํƒ€๊ธฐ ๊ผผ์ˆ˜๊ฐ€ ๋ฐฉ์†ก์„ ํ•ต๋…ธ์žผ ๋งŒ๋“ฆ
[ 8 ]
"์–ด์„œ๋“ค ํ”ผ๊ฒ€์‚ฌ ๋ฐ›์œผ์‹œ๊ธธ~~"
[ 8 ]
๋ˆ„๊ตฌ์‹ ์ง€. . .์กด์žฌ๊ฐ ์—†๋Š”
[ 8 ]
์•”๋งŒ ์—ฐ์˜ˆ์ธ์ด๋ผ๋„ ๋‚จ์ž”๋ฐ ๋ฌด์Šจ ํ™”์žฅ์„ ์ €๋ฆฌ๋„ ๋–ก์น ์„ ํ–ˆ๋ƒ? ๋ฌด์Šจ ๊ฒŒ์ด์ƒค๋ƒ?
[ 5 ]
์–ด์ด๊ตฌ ๋Œ๋ฌธ์žฌ์•™
[ 2 ]
์˜ค๋Š˜ ์ฒซ ๋ผ์—ฌ~
[ 8 ]
์šด๋™์ด ์•„๋‹ˆ๋ผ ํ˜น์‚ฌ์ง€....๊ฑ ๋ฐฅ์ž˜๋จน๊ณ  ์ž˜์ž๊ณ  ์กฐ๊น…๋งŒํ•ด๋„ ๋œ๋‹ค.
[ 8 ]
์ •๋ง๋ฐ”๋ฅด๊ณ  ๋ด๋„๊ด˜์•ˆ์€๊ฒƒ๊ฐ™์€๋ฐ ๋‘๊ณ ๋ด์•ผ์ง€ ์ง€๊ธˆ์€ ๋ฐ˜๋“ฏํ•œ๊ฑฐ๊ฐ™์€๋ฐ ๊ทธ๋ž˜์„œ์ด๋ฝ€
[ 8 ]
์Šน๋ฆฌ๊ณ ํ–ฅ ์ „๋ผ๋„๊ด‘์ฃผใ…‹ใ…‹ใ…‹ใ…‹๋” ์ด์ƒ ๋ฌด์Šจ๋ง์ดํ•„์š”?ใ…‹ใ…‡ใ…‹
[ 8 ]
"๋‹ˆ๋„ค ๊ผด๋ณด๊ธฐ ์‹œ๋Ÿฌ ๋‚˜๋„ ๋™์ฐธํ–ˆ๋‹ค ์ •๋ง ๋А๊ทธ ์กฐ๊ตญ ์ชฝ๋ฐ”๋ฆฌํ•œํ…Œ ๊ฐ€๋ผ"
[ 0 ]
"๋ฌด์‹ํ•œ ํ• ๋ฐฐ๋“ค์˜ ์•ˆ๋ณดํŒ”์ด ์‹์ƒํƒ€. ์ด์   ์ Š์€์ด๋“ค์ด ์‚ด ์„ธ์ƒ์ด๋‹ค"
[ 4 ]
"์ฃผ์‚ฌํŒŒ, ์‚ฌ๋…ธ๋งน, ๋Œ€๊นจ๋ฌธ, ๋‹ฌX, ํ˜ธ๋‚จ์ธ๋“ค์ด ๋ฐœ๊ด‘ํ•˜๋„ค"
[ 0, 2 ]
"์„ฌ๋‚˜๋ผ๋กœ ๊ฐ€๋ผ..."
[ 8 ]
"์ด๋‡ธ์ด ๋˜ฅ์˜ค์ฆ˜ ๋ชป๊ฐ€๋ฆฌ๋„ค"
[ 3 ]
"์ˆ˜๊ผดํ‹€๋”ฑ์‹œํ‚ค๋“ค์ด ๋‹ค ๋””์ ธ์•ผ ๋‚˜๋ผ๊ฐ€ ๋˜‘๋ฐ”๋กœ ๋ ๊ฒƒ๊ฐ™๋‹ค..๋‹ต์ด ์—†๋Š” ์ข…์ž๋“คใ… "
[ 2, 3, 4 ]
"์ด๋Ÿฐ๊ธฐ์‚ฌ๋Š” ํ•ญ์ƒ ๋Œ“๊ธ€ํ†ต์ œ ์”น์žฌ์•™ ใ…‹ใ…‹ใ…‹ ์ข…๋ถ์ƒˆ๋ผ"
[ 2, 3 ]
์ด๋…„ ์ด๊ฑฐ ์ •์‹  ๋ชป์ฐจ๋ ธ๋„ค ์ด๋Ÿฐ๋…„๋“ค์€ ์—ฐ์˜ˆ๊ณ„์—์„œ ํ‡ด์ถœ์•ˆ์‹œํ‚ค๋‚˜?
[ 3, 5 ]
์†ก์ง€ํšจ ๋‚จ์นœ์žˆ์ง€์•œใ…Ž์Œ? ๊ทธ ๋ง์ฃฝ๊ฑฐ๋ฆฌ ๋‚จ์ž ๋งค๋‹ˆ์ €์—ฟ๋˜์• 
[ 8 ]
๊ทผ๋ฐ ๊น€์ฃผํ˜ ์ฐจ๋Ÿ‰์กฐ์‚ฌ๊ฒฐ๊ณผ๋Š” ์•„์ง์•ˆ๋‚˜์˜ด?๊ฒฐํ•จ์•„๋‹Œ๊ฐ€?
[ 8 ]
์žฅํ˜์€ ์ถ”๋…ธ๋กœ ์ •์ ์„ ์ฐ๊ณ  ๋ˆ๊ฝƒ์œผ๋กœ ์ œ2์ „์„ฑ๊ธฐ์„ ๋‹ค์‹œ ์—ฌ๋‚ด ์žฅํ˜์ด ์ตœ์šฐ์ˆ˜์ƒ์ผ๋Œ€ ์–ผํƒฑ์ด๊ฐ€ ์—†์—‡๊ณ  ๊น€์ƒ์ค‘์ด ๋Œ€์ƒ์ด๋ผ๊ณ  ๋‚˜์˜ฌ๋Œ€ ํ‹ฐ๋น„ ๊ป๋‹ค
[ 8 ]
Jtbc ๋ฌธ์žฌ์•™์ด๊ฐ€ ๋Œ€ํ†ต๋ น๋˜๋‹ˆ๊น ๋ตˆ๋Š”๊ฒŒ ์—†๊ตฐ..
[ 2 ]
"์‹ ์ฒœ์ง€ ์‹ ๋„ ์™ธ์— ๋‹ค ์•„๋Š” ์‚ฌ์‹ค์ธ๋ฐ ใ…‹ใ…‹"
[ 8 ]
"์ดใ……ใ„ฒ๋“ค์€ ๋‚จ์žใ……ใ„ฒ๋“ค์ด ์ง€๋“ค ์‚ด์•„๋ณด๊ฒ ๋‹ค๊ณ  ์ž…๋งŒ์—ด๋ฉด ๋‹ค ๊ตฌ๋ผ๋„ผใ…‹ใ…‹"
[ 3 ]
"๊ด‘๋ณต์ ˆ์— ๋งž์ถฐ ํœด๊ฐ€ ๊ฐ€๋ฒ„๋ฆฌ๋Š” ์นœ์ผ ๊ผดํ†ต ๊ทธ๋ž˜๋„ ๋Œ€ํ†ต์€ ์”น์–ด์•ผ์ง€ ใ…‹"
[ 2 ]
๊ณ ํ˜„์ •ํญํ–‰ํญ์–ธ ๋™์˜์ƒ ๊ณต๊ฐœํ•˜๋ฉด๊ณ ๋ฐฐ์šฐ๋‹˜์ด ์˜ค์ฃฝํ™”๋‚ฌ์œผ๋ฉด ๊ทธ๋žฌ๊ฒ ๋ƒ๋ฉฐ์‰ด๋“œ์ณ์ค„๋“ฏ. ๋ฐฐ์šฐ๊ฐ€ ๋Œ€๋ณธ๋ชป์™ธ์šด๊ฑด ์ชฝ๋Œ€๋ณธํƒ“์ด๊ณ , ํ”ผ๋””๋ž‘๋ชธ์‹ธ์›€ํ•˜๊ณ  ๋“œ๋ผ๋งˆํ•˜์ฐจํ•œ๊ฑด ํ”ผ๋””๊ฐ‘์งˆ๋•Œ๋ฌธ์ด๊ณ ์Šคํƒญ์ฆ์–ธ๋“ค์€๊ณ ํ˜„์ • ๋งค์žฅ์‹œํ‚ฌ๋ ค๋Š” sbs๊ฐ‘์งˆ์ด๋ž˜ใ…‹ใ…‹ใ…‹
[ 8 ]
"๋Œ€๊ตฌ๊ฒฝ๋ถ์„ ์˜์›ํžˆ ํ์‡„ํ•˜๋ผ! ์ง€๋“ค๋ผ๋ฆฌ ์‹ธ์šฐ๋‹ค ๋””์ ธ๋ฒ„๋ฆฌ๊ฒŒ~~~"
[ 0 ]
์ •๋ง ์‹ค์ˆ˜๋กœ ๋ˆŒ๋ €์–ด๋„ ์š• ์˜ค์ง€๊ฒŒ ํ•  ๋ฏผ์กฑ์ž„ ์šฐ๋ฆฌ๋‚˜๋ผ๋Š” ์‚ฌ์Šค๊ฐ€ ์˜ค์ง€๋Š” ๊ตญ๋ฏผ์„ฑ ์–ด๋ ค์„œ๋ถ€ํ„ฐ ๋ฏธ๊ตญ์—์„œ ์ž๋ž์œผ๋ฉด ์ž˜๋ชจ๋ฅผ์ˆ˜๋„ ์žˆ๋Š”๊ฑฐ์ง€ ํ•˜์—ฌ๊ฐ„ ์šฐ๋ฆฌ๋‚˜๋ผ๋Š” ์ผ๋ณธ ์„ ๋– ๋‚˜์„œ ์—ญ์‚ฌ๊ด€๋ จ๋งŒ ๋‚˜์˜ค๋ฉด ์™œ์ผ€ ๋ฐœ๊ด‘ํ•˜๋Š”๊ฑฐ์ž„?? ์ •์ž‘ ์˜จ๋ผ์ธ์—์„œ๋งŒ?? ์‹ค์ œ๋กœ ์—ญ์‚ฌ ์ž˜๋ชจ๋ฅด๋Š” ์ƒˆ๊ธฐ๋“ค ์ƒˆ๊ณ ์ƒ›๋Š”๋ฐ ์ธํ„ฐ๋„ท ์—ญ์‚ฌ๊ฐ€๋“ค ์˜ค์ง€๊ฒŒ๋งŽ๋„ค ์ง„์งœ ์ž์‹ ํ•œํ…Œ ๊ด€๋Œ€ํ•œ๊ฒƒ์ฒ˜๋Ÿผ ๋‚จํ•œํ…Œ ๊ทธ๊ฑฐ๋ฐ˜๋งŒ ํ•ด๋ด๋ผ ๋‚จ์˜ ์ž˜๋ชป์€ ์–ด๋–ป๊ฒŒ๋“  ์š• ๋ชปํ•ด ์•ˆ๋‹ฌ์ธ ์‚ฌ์Šค๊ฐ€ ๋‚ด๋กœ๋‚จ๋ถˆ ๋นŒ๋Ÿฐ๋“ค ์–ดํœด
[ 3 ]
์ œ ์ž…์žฅ์—์„  ์˜ค์ง•์–ด๋ฅผ ๋ฌธ์–ด๋ผ๊ณ  ์†์ด๊ณ  ์ฃผ๋ฐฉ์— ์–ผ๊ตด์— ๋ญ ๋ฐ”๋ฅด๊ณ  ์ถœ๊ทผํ•œ๊ฑฐ๋ถ€ํ„ฐ ์šฉ๋‚ฉ์ด ์•ˆ๋ฉ๋‹ˆ๋‹ค
[ 8 ]
"์ด ๋ƒฅ๋ฐ˜ ๊ณง ์˜ท ๋ฒ—๊ฒ ๋„ค."
[ 8 ]
"์ ์‹ฌ์„ ์‹ค์ปท ์ณ๋จน๊ณ ๋‚˜์„œ?"
[ 8 ]
์ด์„ธ์˜ ๋‹ฎ์•˜๋„ค
[ 8 ]
๋Œ“๊ธ€ ์„ฑ๋น„๋ดใ„ทใ„ทใ„ทใ„ทใ„ท๋ƒ„์ƒˆ๋‚˜๋„คใ…‹
[ 5 ]
๊ทผ๋ฐ ์• ๊ธฐ ๋น„์ฅฌ์–ผ์€ ์ฉ”๊ฒ ๋‹น ,,
[ 8 ]
์€ํ‡ดํ•œ ์˜›๋‚ ์—ฐ์˜ˆ์ธ ๋ถ€์ž์ง‘ ์‚ฌ๋ชจ๋‹˜ ๋ฐฅ์ƒ๊นŒ์ง€ ๊ธฐ์‚ฌ๋กœ ๋ด์•ผ๋˜๋‚˜? ์•„ ๋ฅ๋‹ค
[ 8 ]
๊ทœ๋ฏผ์ด ์–‘์•„์น˜์ƒˆ๋ผ
[ 3 ]
์•„์คŒ๋งˆ๋“ค ๋ฐฐ์•„ํ”„๋‚˜ ๋ณด๋„ค ใ…‹ใ…‹ใ…‹ใ…‹
[ 8 ]
์กฐ์„ ๋„˜๋“ค์ข…ํŠน์ด ๋ฐ”๋กœ ๋‚˜์˜ค๋Š”๊ตฌ๋งŒ
[ 0 ]
์†Œ์žฌ๋ถ€ํ„ฐ๊ฐ€ ๋ญ”๊ฐ€ ๋ถˆ๊ธธํ•ด,,,,์š”๊ดด๋“ค์ด ์‚ฌ๋žŒ ๋ชฉ์ˆจ ๊ฐ–๊ณ  ์žฅ๋‚œ์น˜๋Š” ๋“ฏ,,,
[ 8 ]
๋‚ด๊ฐ€ ๋„˜ ๊ธฐ๋Œ€ํ•œ๊ฑด๊ฐ€? ์ œ๋ชฉ์— ๊ฑธ๋งž๋Š” ์‚ฌ๋ถ€๊ฐ€ ๋‚˜์˜ค๊ธธ..
[ 8 ]
์ž์—ฐ๋ฏธ์ธ์ด๋ผ ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์šด๋А๋‚Œ์—†์ด ์šฐ์•„ ์ฐ์œผ๋กœ ์˜ˆ์˜๋„ค
[ 8 ]
"๊ณต์‚ฐ๋‹น ํ•˜์ˆ˜์ธ ๋ฌธ์žฌ์•™์ด ์‹œ์ง„ํ•‘ ๋˜ฅ๊ตฌ๋ฉ ๋นจ๋‹ค๊ฐ€ ๊ฒฐ๊ตญ ๋‚˜๋ผ๋ฅผ ์žฌ์•™์œผ๋กœ ๋ชฐ์•˜๊ตฌ๋‚˜"
[ 2 ]
"์ž˜ ์ƒ๊ธด ๋‚จ์ž ๋ฐฐ์šฐ ๋น„์ค‘์€ ์•ˆ ์ค„์ž„? ใ…‹ใ…‹ ํ‚ด์น˜๋…€๋“ค ๋‹ˆ๋“ค ๋Œ์•˜์ง€? ใ…‹ใ…‹ใ…‹"
[ 0, 5 ]
"์ €๋Ÿฐ๊ฒƒ๋“ค ๋ˆˆ์น˜๋ณด๋А๋ผ ์ค‘๊ตญ์ธ ์ž…๊ตญ์ œํ•œ๋„ ๋ชป์‹œ๋”๋‹ˆ ใ…‰ใ…‰ใ…‰"
[ 8 ]
๋ฐฉ์†ก์—์„œ ์ง€ํ˜œ๋กœ์šด์ฒ™ ๋ณด์‚ด์ธ์ฒ™ ํ•˜๋ฉด ์ฐฉํ•œ์ค„์•Œ๊ณ  ๋˜ฅ๊ผฌ๊นŒ์ง€ ์ณ๋น ๋Š” ๋ฏธ๊ฐœํ•œ ๊ฐ์ •์ ์ธ ์ขŒ์ข€๋…„๋“ค
[ 2, 3 ]
๋‹ˆ๋ฏธ ๋ฐฑ๋…„์ „๊บผ๋„ ๊บผ๋‚ด๋ด๋ผ
[ 8 ]
์ง ๋‚ดํˆฌ์–ด์—์„œ ๋งจ๋‚  ํ•˜๋Š”๊ฒŒ ๊ผฐ๋Œ€์ง“์ธ๋ฐ...
[ 8 ]
"๋ง๋งŒ ์•ž์„ธ์šฐ์ง€ ๋ง๊ณ  ๊ฐ€ํƒ์ˆ˜์ƒ‰ ํ•˜๋ผ.."
[ 8 ]
20๋Œ€๋Š” ๊ทธ๋Ÿฌ๋ ค๋‹ˆ ํ•˜๋Š”๋ฐ ๋‚˜์ด 40๋จน๊ณ  ๋Œ“๊ธ€์“ฐ๋Š”์• ๋“ค์€ ๋ญ์ž„?
[ 4 ]
์ž„์žฌ๋ฒ”๊นŒ์ง€ ํŠน๋ณ„์ถœ์—ฐํ•˜๋ฉด ๊ฐœ๊ฟ€์žผ์ผ๋“ฏใ…‹ใ…‹ใ…‹ใ…‹ใ…‹ใ…‹
[ 8 ]
๋„ค์ด๋ฒ„๋„ ํŽ˜๋ฏธ์žก๊ฒƒ๋“ค์ด ์ ๋ น์„ํ–ˆ๊ตฐ์š” ์•ž์œผ๋กœ ๋‚จ์ž๋“ค๋„ ์–ด๋–ค์‹ ์ฒด์ ‘์ด‰๋„ ์ „๋ถ€ ๊ณ ์†Œํ•ฉ์‹œ๋‹ค
[ 5 ]
"๋ฌผ๋ฝ•๋ณด๋‹ค ๋ฌด์„œ์šด ๋ถ๋ฝ•"
[ 8 ]
"์ •๊ถŒ ๋นจ์•„์ฃผ๋Š” ์ „๋ผ๋‚จ๋„์— ์ˆ˜์šฉํ•ด๋ผ ์™œ ์ถฉ์ฒญ๋„์™€์„œ ํ—›์ง“๊ฑฐ๋ฆฌํ•˜๋ƒ"
[ 8 ]
์ง„์งœ ์”น์„ ๋น„๋“ค ์กด๋‚˜ ๋งŽ๋‹คใ…‹ใ…‹ ์—ฝ๊ธฐ์ ์ธ๊ฑธ ์ปจํ…์ธ ๋กœ ๋ฐ›์ง€ ๋ชปํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑ์ด๋‹ˆ ์ง€๋ž„์ด๋‹ˆใ…‹ใ…‹ ์˜ํ™” ์žญ์• ์Šค๋‚˜ ๋ด๋ผ
[ 3 ]
"๊ณผ์—ฐ ํ‹€๋”ฑ์ผ๊นŒ ๋งŒ๋‚˜์ž OOO"
[ 8 ]
"์กฐ์„ผ์ผ๋ณด, ์กฐ๋–ผ ๋“ฑ๋“ฑ๋„ ๋ถˆ๋งคํ•ด์•ผ์ ธ."
[ 8 ]
"์•ˆ๊ทธ๋ž˜๋„ ์™€๊พธ ๋นป์€์• ๋“ค์ด ํ’ˆํ‰ํšŒ ํ•˜๊ณ  ๊ด€์Œ์ง“ ํ•œ๊ฑฐ๋‹ˆ๊นŒ ใ…‡ใ…‡"
[ 1 ]
๋‘˜์ด ์‚ฌ๊ท?
[ 8 ]
"๊ทธ ์ž…๋Œ•์ด ์กฐ์‹ฌํ˜€๋ผ ํ•˜๋Š˜์—์„œ ๋ฒŒ๋‚ด๋ฆฌ๊ธฐ ์ „์—"
[ 8 ]
"์ขŒํŒŒ๊ฐ€ ์•ฝ์†์ง€ํ‚ค๋Š” ๊ฒƒ์€ ๊ธˆ๋ถ•์–ด๊ฐ€ ๋ฌผ๋ฐ–์—์„œ ์‚ฌ๋Š”๊ฒƒ๊ณผ ๊ฐ™์ด ๋ถˆ๊ฐ€๋Šฅํ•œ๊ฑฐ๋‹ค."
[ 2 ]
๋งˆ์ง€๋ง‰ ๋ฐฉ์†ก์—์„œ ๋ˆˆ๋ฌผ ์งœ๋ฉด์„œ ๊ฐ์„ฑํŒ”์ด ํ•˜์ง€๋ง๊ณ ..์›ƒ์œผ๋ฉด์„œ ๋๋ƒˆ์œผ๋ฉด ์ข‹๊ฒ ์Šต๋‹ˆ๋‹ค.
[ 8 ]
"ํ‹€๋”ฑ ์•Œ๋ฐ”๋“ค ์™€์ด๋ฆฌ๋งŽ๋…ธ ๊ฐœ์›ƒ๊ธฐ๋„คใ…‹"
[ 4 ]
"์ผ๋ณธ๋†ˆ๋“ค์ด ์†๋ฐœ์ด ๋‹ณ๋„๋ก ๋นŒ์—ˆ๋‚˜ ๋ณด๋„ค..."
[ 0 ]
์•ค ๋„๋Œ€์ฒด๋ˆ„๊ตฌ์•ผ ์ด๋ฆ„๋„ ์š”์ƒํ•˜๋„ค
[ 8 ]
์„ฑํ˜•์ด ์ฃ„๋Š” ์ง„์งœ ์•„๋‹Œ๋ฐ.. ๋Œ€๋†“๊ณ  ์„ฑํ˜• ์–˜๊ธฐํ•˜๋Š”๊ฑด ๋ณ„๋กœ..
[ 8 ]
์†”๊นŒ ๋Œ€๊ตฌ ๋‚ ๋ผ๋ฆฌ๊ฐ€ ํŽ˜๋ฏธ๊ฐ€ ๋ญ”์ง€๋‚˜ ์•Œ๊นŒ? ใ…‹ใ…‹ใ…‹
[ 0, 5 ]
"์ด๋Ÿฐ ์‚ฌ์ด๋น„ ์ข…๊ต๋Š” ๊ตญ๊ฐ€์— ๋‘๊ณ  ๋‘๊ณ  ํ•ด๊ฐ€๋œ๋‹ค .. ๊ฐ•์ œ๋กœ ์ฒ ๊ฑฐ ์‹œ์ผœ์•ผ ํ•œ๋‹ค."
[ 7 ]
"ํ‹€๋”ฑ ์ผ๋ฒ  ํ† ์ฐฉ์™œ๊ตฌ ๋„ค์ด๋ฒ„ ์ด์ง‘๊ฒฐํ•ด์„œ ๋ฐœ์•…ํ•˜๋ฉด์„œ ๋Œ“๊ธ€ ๋‹ค๋„ค"
[ 2, 4 ]
End of preview. Expand in Data Studio

KorHateSpeechMLClassification

An MTEB dataset
Massive Text Embedding Benchmark
    The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utterances from Korean online news comments,
    labelled with 8 fine-grained hate speech classes (labels: Politics, Origin, Physical, Age, Gender, Religion, Race, Profanity)
    or Not Hate Speech class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively.
    For more details, please refer to the paper about K-MHaS, published at COLING 2022.
    This dataset is based on the Korean online news comments available on Kaggle and Github.
    The unlabeled raw data was collected between January 2018 and June 2020.
    The language producers are users who left the comments on the Korean online news platform between 2018 and 2020.
    
Task category t2c
Domains Social, Written
Reference https://paperswithcode.com/dataset/korean-multi-label-hate-speech-dataset

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["KorHateSpeechMLClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{lee-etal-2022-k,
  address = {Gyeongju, Republic of Korea},
  author = {Lee, Jean  and
Lim, Taejun  and
Lee, Heejun  and
Jo, Bogeun  and
Kim, Yangsok  and
Yoon, Heegeun  and
Han, Soyeon Caren},
  booktitle = {Proceedings of the 29th International Conference on Computational Linguistics},
  month = oct,
  pages = {3530--3538},
  publisher = {International Committee on Computational Linguistics},
  title = {K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment},
  url = {https://aclanthology.org/2022.coling-1.311},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Mรกrton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiล„ski and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrรธm and Roman Solomatin and ร–mer ร‡aฤŸatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafaล‚ Poล›wiata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Bjรถrn Plรผster and Jan Philipp Harries and Loรฏc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek ล uppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Gรผnther and Mengzhou Xia and Weijia Shi and Xing Han Lรน and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("KorHateSpeechMLClassification")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 2037,
        "number_of_characters": 70625,
        "number_texts_intersect_with_train": 2,
        "min_text_length": 1,
        "average_text_length": 34.67108492881689,
        "max_text_length": 300,
        "unique_texts": 2037,
        "min_labels_per_text": 1,
        "average_label_per_text": 1.1467844869906725,
        "max_labels_per_text": 3,
        "unique_labels": 9,
        "labels": {
            "8": {
                "count": 1103
            },
            "0": {
                "count": 202
            },
            "5": {
                "count": 148
            },
            "1": {
                "count": 163
            },
            "2": {
                "count": 229
            },
            "4": {
                "count": 139
            },
            "7": {
                "count": 46
            },
            "3": {
                "count": 301
            },
            "6": {
                "count": 5
            }
        }
    },
    "train": {
        "num_samples": 8200,
        "number_of_characters": 276145,
        "number_texts_intersect_with_train": null,
        "min_text_length": 1,
        "average_text_length": 33.676219512195125,
        "max_text_length": 302,
        "unique_texts": 8192,
        "min_labels_per_text": 1,
        "average_label_per_text": 1.138170731707317,
        "max_labels_per_text": 4,
        "unique_labels": 9,
        "labels": {
            "8": {
                "count": 4451
            },
            "2": {
                "count": 886
            },
            "4": {
                "count": 553
            },
            "3": {
                "count": 1223
            },
            "1": {
                "count": 658
            },
            "5": {
                "count": 602
            },
            "0": {
                "count": 754
            },
            "7": {
                "count": 181
            },
            "6": {
                "count": 25
            }
        }
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
42