Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
text
stringlengths
4
44
label
stringclasses
7 values
์œ ํŠœ๋ธŒ ๋‚ด๋‹ฌ 2์ผ๊นŒ์ง€ ํฌ๋ฆฌ์—์ดํ„ฐ ์ง€์› ๊ณต๊ฐ„ ์šด์˜
์ƒํ™œ๋ฌธํ™”
์–ด๋ฒ„์ด๋‚  ๋ง‘๋‹ค๊ฐ€ ํ๋ ค์ ธโ€ฆ๋‚จ๋ถ€์ง€๋ฐฉ ์˜…์€ ํ™ฉ์‚ฌ
์ƒํ™œ๋ฌธํ™”
๋‚ด๋…„๋ถ€ํ„ฐ ๊ตญ๊ฐ€RD ํ‰๊ฐ€ ๋•Œ ๋…ผ๋ฌธ๊ฑด์ˆ˜๋Š” ๋ฐ˜์˜ ์•Š๋Š”๋‹ค
์‚ฌํšŒ
๊น€๋ช…์ž ์‹ ์ž„ ๊ณผ์ด ํšŒ์žฅ ์›๋กœ์™€ ์ Š์€ ๊ณผํ•™์ž ์ง€ํ˜œ ๋ชจ์„ ๊ฒƒ
์‚ฌํšŒ
ํšŒ์ƒ‰์ธ๊ฐ„ ์ž‘๊ฐ€ ๊น€๋™์‹ ์–‘์‹ฌ๊ณ ๋ฐฑ ๋“ฑ ์ƒˆ ์†Œ์„ค์ง‘ 2๊ถŒ ์ถœ๊ฐ„
์ƒํ™œ๋ฌธํ™”
์•ผ์™ธ์„œ ์ƒ๋ฐฉ์†ก ํ•˜์„ธ์š”โ€ฆ์•ก์…˜์บ  ์ „์šฉ ์š”๊ธˆ์ œ ์ž‡๋”ฐ๋ผ
IT๊ณผํ•™
์›”๋“œ์ปต ํƒœ๊ทน์ „์‚ฌ 16๊ฐ• ์ „์ดˆ๊ธฐ์ง€ ๋ ˆ์˜ค๊ฐ• ์ž…์„ฑ์ข…ํ•ฉ
์Šคํฌ์ธ 
๋ฏธ์„ธ๋จผ์ง€ ์† ์ถœ๊ทผ๊ธธ
์ƒํ™œ๋ฌธํ™”
์™“์ธ ์•ฑ็จ… 230์›์— ์„ฑ๋‚œ ๋ ˆ๋ฐ”๋…ผ ๋ฏผ์‹ฌโ€ฆ์ด๋ฆฌ์‚ฌํ‡ด๋กœ ์ด์–ด์ ธ์ข…ํ•ฉ2๋ณด
์„ธ๊ณ„
๋ฒ ํŠธ๋‚จ ๊ฒฝ์ œ ๊ณ ์„ฑ์žฅ ์ง€์†โ€ฆ2๋ถ„๊ธฐ GDP 6.71% ์„ฑ์žฅ
์„ธ๊ณ„
๊ทธ๋ฆฌ์Šค์„œ ํ•œ๊ตญ์ „ ์ฐธ์ „ ๊ธฐ๋…์‹โ€ฆ์ฐธ์ „์šฉ์‚ฌ ํ•œ๋ฐ˜๋„ ํ‰ํ™” ๊ธฐ์›
์„ธ๊ณ„
์ •์ง„์„ ์ด์ •ํ˜„ ๋‹นํ˜„์‹ค ๋ƒ‰์ •ํ•˜๊ฒŒ ๋ด์•ผโ€ฆ๋ฌผ๋Ÿฌ๋‚˜๋Š”๊ฒŒ ์ข‹๋‹ค์ข…ํ•ฉ
์ •์น˜
็พŽ ๋ฒ ๋„ค์ˆ˜์—˜๋ผ ๊ตฌํ˜ธํ’ˆ ๋ฐ˜์ž… ์ด‰๊ตฌ ์•ˆ๋ณด๋ฆฌ ๊ฒฐ์˜ ์ถ”์ง„
์„ธ๊ณ„
ํ™ฉ์žฌ๊ท  ์๊ธฐํƒ€โ€ฆkt ๊ฐˆ ๊ธธ ๋ฐ”์œ ์‚ผ์„ฑ์— ๊ณ ์ถง๊ฐ€๋ฃจ
์Šคํฌ์ธ 
์ •์ƒํšŒ๋‹ด D1 ๆ–‡๋Œ€ํ†ต๋ น ์ทจ์ž„ ํ›„ ๋‚จ๋ถ๊ด€๊ณ„ ์ฃผ์š” ์ผ์ง€
์ •์น˜
LGU๏ผ‹ 1๋ถ„๊ธฐ ์˜์—…์ต 1์ฒœ706์–ต์›โ€ฆ๋งˆ์ผ€ํŒ… ๋น„์šฉ ๊ฐ์†Œ์ข…ํ•ฉ
๊ฒฝ์ œ
๋ฐ•์›์ˆœ ์‹œ์žฅ ์•„๋ถ€๋‹ค๋น„ ๋ฃจ๋ธŒ๋ฅด ๋ฐ•๋ฌผ๊ด€ ๋ฐฉ๋ฌธ
์ •์น˜
๋ฐฉ์‹ฌ์œ„ ๊ฐ•๋ฆ‰์„œ ๊ณ ์„ฑ ์‚ฐ๋ถˆํ˜„์žฅ์ฒ˜๋Ÿผ ๋ณด๋„ํ•œ KBS ๊ด€๊ณ„์ž ์ง•๊ณ„
์‚ฌํšŒ
ํŒŒํ‚ค์Šคํƒ„ ๊ฒฝ์ œ๋‚œ ์† ์นดํƒ€๋ฅด์„œ 30์–ต ๋‹ฌ๋Ÿฌ ํˆฌ์ž ์œ ์น˜
์„ธ๊ณ„
์ผ๋ณธ ์˜ˆ์‚ฐํŒฝ์ฐฝ์— ์žฌ์ •๊ฑด์ „์„ฑ ์šฐ๋ คโ€ฆ๋‚ด๋…„์— ์žฅ๊ธฐ์ฑ„๋ฌด GDP 2๋ฐฐ
์„ธ๊ณ„
์น ๋ ˆ ๋ฏผ์ค‘๊ฐ€์ˆ˜ ์‚ดํ•ดํ•˜๊ณ  ๋ฏธ๊ตญ ๋„ํ”ผ ์ „ ๊ตฐ์ธ ๋ฒ•์ •์— ์„ ๋‹ค
์„ธ๊ณ„
ๆ—ฅ ์˜จ๋ผ์ธ์œผ๋กœ ์ค‘๊ตญ์ธ ๋น„์ž์‹ ์ฒญ ๋ฐ›๋Š”๋‹ค
์„ธ๊ณ„
๋ฏธ ๋™๋ถ€ ๋งˆ๋น„์‹œํ‚จ ์•…์„ฑ ํŒŒ์ผ ๊ตญ๋‚ด์„œ๋„ ๋ฐœ๊ฒฌ
์„ธ๊ณ„
๊ตญ๋‚ด ๋ฐœ๊ฐ„ ๋‚˜๋…ธ๋ถ„์•ผ ํ•™์ˆ ์ง€ ๋‚˜๋…ธ ์ปจ๋ฒ„์ „์Šค SCIE ๋“ฑ์žฌ
IT๊ณผํ•™
5G ์ƒ์šฉํ™” ํ–‰์ •์ ˆ์ฐจ ์™„๋ฃŒโ€ฆ์ดํ†ต3์‚ฌ ๋‚ด์ผ ๋™์‹œ ์ „ํŒŒ ๋ฐœ์‚ฌ
IT๊ณผํ•™
์˜ˆ์Šค24 ๋…์ž๋“ค์ด ์„ ์ •ํ•œ ์˜ฌํ•ด์˜ ์ฑ… ์—ฌํ–‰์˜ ์ด์œ 
์ƒํ™œ๋ฌธํ™”
์ดํ•ด์ฐฌ ์ •๊ฒฝ๋‘์— ์•ˆ๋ณด์ง€์›์‚ฌ ๊ธฐ๋ฌด์‚ฌ ๊ฐ™์€ ์ผ ์—†๋„๋ก ํ•ด์•ผ
์‚ฌํšŒ
๋ฏธ๋ž˜๋ถ€ 17๊ฐœ ๋ถ€์ฒ˜๋ณ„ ์—ฐ๊ตฌ๋น„๊ด€๋ฆฌ์‹œ์Šคํ…œ 2๊ฐœ๋กœ ํ†ตํ•ฉํ•œ๋‹ค
์‚ฌํšŒ
์†ํฅ๋ฏผ ๋” ์Šน๋ถ€์š• ๊ฐ–๊ณ  ๊ฑฐ์น ๊ฒŒ ํ•ด์•ผโ€ฆ๋‚˜๋ถ€ํ„ฐ ๋ฐ˜์„ฑ
์Šคํฌ์ธ 
SKํ…”๋ ˆ์ฝค์•ˆ์–‘์‹œ ๋ชจ๋นŒ๋ฆฌํ‹ฐยท์Šค๋งˆํŠธ์‹œํ‹ฐ ์กฐ์„ฑ ์—…๋ฌดํ˜‘์•ฝ
์‚ฌํšŒ
์šธ์‚ฐ ์˜คํ›„ 4์‹œ ๊ฑด์กฐ์ฃผ์˜๋ณด
์ƒํ™œ๋ฌธํ™”
๊ธฐ์—…๋“ค ๆ—ฅ๊ทœ์ œ ์ง์ ‘ ํ”ผํ•ด๋ณด๋‹ค ์ˆ˜์ž… ๋ถˆํ™•์‹ค์„ฑ์ด ๋” ๋ฌธ์ œ
๊ฒฝ์ œ
ๆ—ฅ๊ฒฝ์ œ์‚ฐ์—…์ƒ ๊ฒฝ์ œ๋ณด๋ณต ๋น„ํŒ์—ฌ๋ก ์— ์–ธ๋ก ์ด ์ œ๋Œ€๋กœ ์ดํ•ด๋ชปํ•ด
์„ธ๊ณ„
๋‹ค์‹œ ํฌํšจํ•œ ํ™ฉ์˜์กฐ 3๋…„ ๋งŒ์˜ A๋งค์น˜ ๊ณจ ์ง‘์ค‘๋ ฅ ์œ ์ง€ํ•œ...
์Šคํฌ์ธ 
์ตœ๊ทผ 5๋…„๊ฐ„ ๊ณต๋ฌด์›์‹œํ—˜ ์‘์‹œ 127๋งŒ๋ช…โ€ฆ๊ฒฝ์ œ๋น„์šฉ ์ˆ˜์กฐ์›
์‚ฌํšŒ
ํŠธ๋Ÿผํ”„ ์˜ํšŒ์„œ ์žฅ๋ฒฝ์˜ˆ์‚ฐ ํ•ฉ์˜ํ•  ๊ฐ€๋Šฅ์„ฑ 50% ์ดํ•˜
์„ธ๊ณ„
ํ”„๋ฆฌ๋ฏธ์–ด12 ๋ณด๋Ÿฌ ์˜จ MLB ์ตœ์ง€๋งŒ ์ €๋„ ๋›ฐ๊ณ  ์‹ถ์—ˆ์ง€๋งŒ
์Šคํฌ์ธ 
๋ฒ ๋„ค์ˆ˜์—˜๋ผ ๋Œ€ํ†ต๋ น ๋ฏธ๊ตญ๊ณผ ๊ด€๊ณ„ ๋ณต์› ๋Œ€ํ™” ์žฌ๊ฐœ ํ•ฉ์˜
์„ธ๊ณ„
ๆœด๋Œ€ํ†ต๋ น ์šธ์‚ฐ ์‹ญ๋ฆฌ๋Œ€์ˆฒยท์žฌ๋ž˜์‹œ์žฅ ๋ฐฉ๋ฌธโ€ฆํœด๊ฐ€ ์ค‘ ๋ฏผ์ƒ ํ–‰๋ณด
์ •์น˜
์–ด๋น™ NBA ํ†ต์‚ฐ 1๋งŒ ์ โ€ฆ๋ณด์Šคํ„ด ๋™๋ถ€ 1์œ„ ํ† ๋ก ํ†  ์ œ์••...
์Šคํฌ์ธ 
์›”๋“œ์ปต ํ•˜๋‚˜์€ํ–‰ ๋Œ€ํ‘œํŒ€์— ํ–‰์šด์˜ 2๋‹ฌ๋Ÿฌ 200์žฅ ์„ ๋ฌผ
์Šคํฌ์ธ 
๋ผ๋ฐ”๋ฆฌ๋‹ˆํ˜ธ ์•„๋ฅดํ—จ์— ์„ค์š•ํ• ๊นŒโ€ฆ์ด์žฌ์˜ ๋™๋ฃŒ ํ”„๋ ˆ์Šค์ฝ” ๊ฒฝ๊ณ„๋ น
์Šคํฌ์ธ 
์ œ์ž„์Šค ๋– ๋‚œ NBA ํด๋ฆฌ๋ธ”๋žœ๋“œ 1์Šน 10ํŒจโ€ฆ์ „์ฒด ๊ผด์ฐŒ
์„ธ๊ณ„
๋””์ž์ธ ์—ญ์‚ฌ์˜ ๊ธฐ๋‘ฅ 100๊ถŒ์˜ ์žก์ง€๋ฅผ ๋Œ์•„๋ณด๋‹ค
์ƒํ™œ๋ฌธํ™”
๊ฒŒ์‹œํŒ ์œŒ๋ฆผ SKT ๋ˆ„๊ตฌ ํ”Œ๋ ˆ์ด ๊ฐœ๋ฐœ ๊ณต๋ชจ์ „์„œ ์ตœ์šฐ์ˆ˜์ƒ
IT๊ณผํ•™
์ •์„ฑํ›ˆ 15๋…„ ๋งŒ์— ์นœ์ • KIAํ–‰โ€ฆ๊ธฐํšŒ ์ค€ ๊ตฌ๋‹จ์— ๊ฐ์‚ฌ
์Šคํฌ์ธ 
์ „๊ตญ ๊ณณ๊ณณ์— ์ €๋…๊นŒ์ง€ ๋น„ยท๊ฐ•ํ•œ ๋ฐ”๋žŒโ€ฆ๋‚ฎ ์ตœ๊ณ  27๋„
์ƒํ™œ๋ฌธํ™”
ๆœด๋Œ€ํ†ต๋ น ๋Œ€ํ†ต๋ น ๋‹จ์ž„์ œ๋กœ ์ง€์†๊ฐ€๋Šฅํ•œ ๊ตญ์ •๊ณผ์ œ ์ถ”์ง„ ์–ด๋ ต๋‹ค์†๋ณด
์ •์น˜
8์›” ์‹œ์ค‘ํ†ตํ™”๋Ÿ‰ ์ „๋…„๋™๊ธฐ๋น„ 6.8%โ†‘โ€ฆ์ฆ๊ฐ€์„ธ ํ™•๋Œ€
๊ฒฝ์ œ
๋ฐ˜๋ฏผํŠน์œ„ ์ž„๋ฌด ์•„์ง ๋๋‚˜์ง€ ์•Š์•˜๋‹ค
์‚ฌํšŒ
์• ํ”Œ ํ€€ํ…€๋‹ทOLED ๊ฒฐํ•ฉ ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ํŠนํ—ˆ์ถœ์›
IT๊ณผํ•™
ํ„ฐํ‚ค ์—๋ฅด๋„์•ˆ ์ž๊ตญ ์™ธ๊ต๊ด€ ๊ฒจ๋ƒฅ ํ…Œ๋Ÿฌ ๋น„ํŒโ€ฆ์•…์˜์  ๊ณต๊ฒฉ
์„ธ๊ณ„
ๆœด๋Œ€ํ†ต๋ น ๋‚ด์ฃผ ๊ตญํšŒ์„œ ์ผ์ •์žฌ๊ฐœโ€ฆ์—ฌ์•ผ ์ง€๋„๋ถ€ ํ™˜๋‹ด๋„ ์œ ๋ ฅ
์ •์น˜
CNN ํŠธ๋Ÿผํ”„ ๋‚ด๋ถ€๊ณ ๋ฐœ์ž ์ƒยทํ•˜์› ์ •๋ณด์œ„ ์ถœ์„ ๋™์˜
์„ธ๊ณ„
๋ฏธ๊ตญ ํ”„๋กœ์Šคํฌ์ธ  ์ปค๋ฐ์•„์›ƒ ๋’ค ์ถœ์ „ 1ํ˜ธ ์ถ•๊ตฌ์„ ์ˆ˜ ๋กœ์ €์Šค ์€ํ‡ด
์Šคํฌ์ธ 
GSMA ํ†ต์‹ ์‚ฌ ์ธ์ˆ˜ํ•ฉ๋ณ‘ ๋•Œ ๋‹น๊ตญ์˜ ๋”๋”˜ ์‹ฌ์‚ฌ๋กœ ์‚ฌ์—…์— ์ง€์žฅ
์‚ฌํšŒ
็พŽ๋ฏผ์ฃผ ์ „๋Œ€ D1 ํž๋Ÿฌ๋ฆฌ๋ฅผ ๋งŒ๋“  ์‚ฌ๋žŒ๋“ค๊ณผ ๊ฐ€์กฑ
์„ธ๊ณ„
ๆœด๋Œ€ํ†ต๋ น ์—ํ‹ฐ์˜คํ”ผ์•„ ์ž…๋ง›์— ๋งž์•„์š”โ€ฆํ˜„์ง€์ธ๋“ค ์ž˜ ํ†ตํ•ด์š”
์ •์น˜
ํ™ฉ์‚ฌยท๋ฏธ์„ธ๋จผ์ง€ ๊ธฐ์Šน ์žฟ๋น› ์ฃผ๋งโ€ฆ๋‚˜๋“ค์ด๊ฐ ์ค„์–ด
์ƒํ™œ๋ฌธํ™”
์‹ ๊ฐ„ ๋ชฉ์–‘๋ฉด ๋ฐฉํ™” ์‚ฌ๊ฑด ์ „๋ง๊ธฐ
์ƒํ™œ๋ฌธํ™”
์ธ๋‹ˆ ํ•ญ๊ณต๋‹น๊ตญ ์ถ”๋ฝ ๋ณด์ž‰๊ธฐ ์กฐ์ข…์‚ฌ ๋Œ€ํ™” ๋ณด๋„ ์‚ฌ์‹ค๊ณผ ๋‹ฌ๋ผ
์„ธ๊ณ„
์„์œ ์™•๊ตญ ์‚ฌ์šฐ๋”” ํƒœ์–‘๊ด‘ยทํ’๋ ฅ ๋ฐœ์ „ ์ค‘์‹ฌ์ง€ ๋  ๊ฒƒ
์„ธ๊ณ„
ไธญํ™˜๊ตฌ์‹œ๋ณด ็พŽ ์‹ ๋ฏธ์‚ฌ์ผ๋ฐฉ์–ด์ „๋žต ๋ถ๋ฏธ ๆ ธ๋‹ดํŒ์— ๋„์›€ ์•ˆ๋ผ
์„ธ๊ณ„
2022 AG ๊ฐœ์ตœ์ง€ ์ค‘๊ตญ ํ•ญ์ €์šฐ๋กœ์˜ ์ดˆ๋Œ€
์Šคํฌ์ธ 
์‹ ๊ฐ„ ์ฑ…์— ๋น ์ ธ ์ฃฝ์ง€ ์•Š๊ธฐ
์ƒํ™œ๋ฌธํ™”
์ง‘์ฃผ์ธ ๋งค์ž…์ž„๋Œ€์ฃผํƒ ์‚ฌ์—… 23์ผ๋ถ€ํ„ฐ ์ƒ์‹œ ์ ‘์ˆ˜
๊ฒฝ์ œ
MLB ์ฑ„ํ”„๋จผยทํ—ค์ด๋” ์˜ฌํ•ด์˜ ๊ตฌ์›ํˆฌ์ˆ˜์ƒ ์ˆ˜์ƒ
์Šคํฌ์ธ 
๋ˆˆ๋ฌผ ํ˜๋ฆฐ MVP ๋ง์ปน 2๋ถ€ ๋ฆฌ๊ฑฐ ํ–ฅํ•œ ์˜๊ตฌ์‹ฌ ๋–จ์น˜๋ ค ๋…ธ...
์Šคํฌ์ธ 
๊ด€ํ›ˆํด๋Ÿฝ 65๋Œ€ ์ž„์›์ง„ ์„ ์ž„โ€ฆ11์ผ ์ฐฝ๋ฆฝ 61์ฃผ๋…„ ๊ธฐ๋…์‹
์‚ฌํšŒ
ํƒœ๊ตญ์—์„œ ์—ด๋ฆฐ ์‚ผ์„ฑํŽ˜์ด ๋ก ์นญ ํ–‰์‚ฌ
์„ธ๊ณ„
๊ฐ•ํ’ยท์˜ํ•˜๊ถŒ ๋‚ ์”จโ€ฆ์˜คํ›„๋ถ€ํ„ฐ ๋น„๊นŒ์ง€ ๋‚ด๋ ค
์ƒํ™œ๋ฌธํ™”
์ปค์ง€๋Š” ์ค‘๊ตญ ๊ธฐ์—… ์ฑ„๋ฌด๋ถˆ์ดํ–‰ ๋ฆฌ์Šคํฌโ€ฆ์˜ฌํ•ด ๋˜ ์ตœ๊ณ ์น˜
์„ธ๊ณ„
ํ•œ๊ตญ๊ด€๊ด‘๊ณต์‚ฌ ๊ตญ๋‚ด ์ˆ™์†Œ ์ฒดํ—˜๊ธฐ ๋ชจ์€ ์—ฌํ–‰์ž์˜ ๋ฐฉ ์ถœ๊ฐ„
์ƒํ™œ๋ฌธํ™”
ํƒœํ’ ์†”๋ฆญ ์ ‘๊ทผโ€ฆ์˜คํ›„๋ถ€ํ„ฐ ์ œ์ฃผ ํ•ญ๊ณต๊ธฐ ์ด์ฐฉ๋ฅ™ ์–ด๋ ค์šธ ๋“ฏ
์ƒํ™œ๋ฌธํ™”
๋ถ„๋ฆฌ๊ณต์‹œ ๋†“๊ณ  ์ดํ†ต์‹œ์žฅ ๋ถ„๋ž€ ์กฐ์งโ€ฆLG์ „์ž ํŒ ํ”๋“ค๊ธฐ ํ†ตํ• ๊นŒ
๊ฒฝ์ œ
MLB ํŒŒ์šธ๋ณผ ์‚ฌ๊ณ  2012๋…„ ์ดํ›„ 800๊ฑด ์ด์ƒ ๋ฐœ์ƒ
์Šคํฌ์ธ 
๊ธˆ๊ฐ’ ํ•˜๋ฝ์— ๊ธˆํŽ€๋“œ ์ˆ˜์ต๋ฅ  ์ถ”๋ฝโ€ฆ์ตœ๊ทผ ํ•œ๋‹ฌ 4.86%
๊ฒฝ์ œ
์ž‘๋…„ ์„ธํƒ๊ธฐ ๋ถ„์•ผ ๋ฏธ๊ตญํŠนํ—ˆ LG์ „์žยท์‚ผ์„ฑ์ „์ž 1โˆผ2์œ„
๊ฒฝ์ œ
๋™ํƒ„2์‹ ๋„์‹œ ๋ถ„์–‘ํ–‰๋ณต์ฃผํƒ ๊ฑด์„ค์— ๋ฏผ๊ฐ„ ์ฐธ์—ฌ
์‚ฌํšŒ
๊ฒŒ์‹œํŒ KISA ์ œ17ํšŒ KICT ์ •๋ณด๋ณดํ˜ธ๋Œ€์ƒ 21์ผ๊นŒ์ง€ ์ ‘์ˆ˜
์‚ฌํšŒ
ํ™ฉ์ด๋ฆฌ ์–ด๋–ค ๊ฒฝ์šฐ๋„ ๊ตญ๊ฐ€๊ธฐ๋Šฅ ์•ˆ์ •์  ์œ ์ง€์†๋ณด
์ •์น˜
๋ช…์„ฑํ‹ฐ์—”์—์Šคยท์‚ผ์„ฑ์ŠคํŒฉ2ํ˜ธ ์ฝ”์Šค๋‹ฅ ์‹ ๊ทœ์ƒ์žฅ
๊ฒฝ์ œ
๊ฒฝ์ฃผํ•œ์ˆ˜์›ยท๋Œ€์ „์ฝ”๋ ˆ์ผ ๋‚ด์…”๋„์ถ•๊ตฌ์„ ์ˆ˜๊ถŒ 4๊ฐ• ํ•ฉ๋ฅ˜
์Šคํฌ์ธ 
์ง๋ฐ”๋ธŒ์›จ ์ „ ๋Œ€ํ†ต๋ น ๋ฌด๊ฐ€๋ฒ  ์‹œ์‹  ์˜์›…๋ฌ˜์—ญ ์•„๋‹Œ ๊ณ ํ–ฅ์— ๋ฌปํ˜€
์„ธ๊ณ„
๊ตญ๋ฏผ์˜๋‹น ๋ถ€์‚ฐ์‹œ๋‹น ๋ฐœ๊ธฐ์ธ ๋Œ€ํšŒ ์—ด๋ คโ€ฆ26์ผ ์ฐฝ๋‹น๋Œ€ํšŒ
์ •์น˜
๋ฉ”์‹œ ํ†ต์‚ฐ 4๋ฒˆ์งธ ์œ ๋Ÿฝ ๊ณจ๋“ ์Šˆ ์ตœ์ข… ํ™•์ •โ€ฆํ˜ธ๋‚ ๋‘์™€ ๋™๋ฅ 
์„ธ๊ณ„
็พŽ์ „๋ฌธ๊ฐ€ ํ˜‘์ƒ์—†๋Š” ๋Œ€๋ถ์••๋ฐ• ์•ˆ ํ†ตํ•ดโ€ฆ์ƒํ˜ธ์ฃผ์˜ ํ•„์š”์ข…ํ•ฉ
์„ธ๊ณ„
ํ•˜๋‚˜๊ธˆํˆฌ ๋‚ด๋…„ ์ฝ”์Šคํ”ผ 1900โˆผ2400์„  ๋“ฑ๋ฝ
๊ฒฝ์ œ
๋”๋ฏผ์ฃผ ์›๋‚ด๋Œ€ํ‘œ ๊ฒฝ์„  6๋ช… ์ถœ๋งˆโ€ฆ๋‚ด๋‹ฌ 4์ผ ์„ ์ถœ์ข…ํ•ฉ
์ •์น˜
์€ํ–‰ ์ ํฌ ํ์‡„๋•Œ ๊ณ ๊ฐ์˜ํ–ฅ ํ‰๊ฐ€ํ•œ๋‹คโ€ฆ๋ถˆํŽธ ์ตœ์†Œํ™”๋Œ€์ฑ… ์œ ๋„
์‚ฌํšŒ
ํ”„๋กœ๋†๊ตฌ SK ํ˜„๋Œ€๋ชจ๋น„์Šค์— ์‹œ์ฆŒ ์ฒซ ํŒจ ์•ˆ๊ธฐ๊ณ  2์—ฐ์Šน์ข…ํ•ฉ
์Šคํฌ์ธ 
์•„์‹œ์•ˆ๊ฒŒ์ž„ ์ด์Šน์šฐ ๋ฉ€ํ‹ฐ๊ณจ ํ•œ๊ตญ ์ถ•๊ตฌ ๋ฒ ํŠธ๋‚จ์— 3...
์Šคํฌ์ธ 
ํŠธ๋Ÿผํ”„์™€ ๊ฐˆ๋“ฑ ๋นš์€ ๋ฏธ ๋ฒ•๋ฌด๋ถ€ ๋ถ€์žฅ๊ด€ ๋‚ด๋‹ฌ ์‚ฌ์ž„
์„ธ๊ณ„
CNBC ๋ฏธยท์ค‘ ๋ฌด์—ญํ˜‘์ƒ 3์›”1์ผ ์‹œํ•œ ์—ฐ์žฅ ๊ฐ€๋Šฅ์„ฑ
์„ธ๊ณ„
๋…์ผ ์ฃผ๋… ๅŒ—๋Œ€์‚ฌ ํ›„์ž„ ์ž„๋ช… ๋™์˜ ๊ฑฐ๋ถ€ RFA
์„ธ๊ณ„
์ฐฝ์› 39์‚ฌ๋‹จ ์œ ๋‹ˆ์‹œํ‹ฐ 1์ˆœ์œ„ ์ฒญ์•ฝ์— 20๋งŒ๋ช… ๋ชฐ๋ ค
๊ฒฝ์ œ
ๅŒ—๊ตญ๋ฐฉ์œ„ ๊ฒ€์—ด๋‹จ ์ฒœ์•ˆํ•จ์‚ฌ๊ฑด ๋ถ์†Œํ–‰์„ค์€ ์–ต์ง€ ์ฃผ์žฅ
์ •์น˜
์ฃผ์š”๊ตญ ์ง€๋„์ž ์—ฐ๋ด‰์€โ€ฆ์˜ค๋ฐ”๋งˆ 4์–ต4์ฒœ๋งŒ์›ยท์‹œ์ง„ํ•‘ 2์ฒœ๋งŒ์›
์„ธ๊ณ„
LG์ „์ž ํœด๋Œ€์ „ํ™” ๊ตญ๋‚ด ์ƒ์‚ฐ ์ค‘๋‹จโ€ฆ๋ฒ ํŠธ๋‚จ์œผ๋กœ ๊ฑฐ์  ์ด๋™์ข…ํ•ฉ
๊ฒฝ์ œ
NHN์—”ํ„ฐ 3๋ถ„๊ธฐ ์˜์—…์ต 295%โ†‘โ€ฆํŽ˜์ด์ฝ” ์ง€์† ์„ฑ์žฅ์ข…ํ•ฉ
๊ฒฝ์ œ
End of preview. Expand in Data Studio

KLUE-TC

An MTEB dataset
Massive Text Embedding Benchmark

Topic classification dataset of human-annotated news headlines. Part of the Korean Language Understanding Evaluation (KLUE).

Task category t2c
Domains News, Written
Reference https://arxiv.org/abs/2105.09680

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["KLUE-TC"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{park2021klue,
  archiveprefix = {arXiv},
  author = {Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jungwoo Ha and Kyunghyun Cho},
  eprint = {2105.09680},
  primaryclass = {cs.CL},
  title = {KLUE: Korean Language Understanding Evaluation},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Mรกrton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiล„ski and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrรธm and Roman Solomatin and ร–mer ร‡aฤŸatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafaล‚ Poล›wiata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Bjรถrn Plรผster and Jan Philipp Harries and Loรฏc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek ล uppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Gรผnther and Mengzhou Xia and Weijia Shi and Xing Han Lรน and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("KLUE-TC")

desc_stats = task.metadata.descriptive_stats
{
    "validation": {
        "num_samples": 2048,
        "number_of_characters": 55699,
        "number_texts_intersect_with_train": 0,
        "min_text_length": 8,
        "average_text_length": 27.19677734375,
        "max_text_length": 41,
        "unique_text": 2048,
        "unique_labels": 7,
        "labels": {
            "\uc0ac\ud68c": {
                "count": 832
            },
            "\uc815\uce58": {
                "count": 162
            },
            "\uacbd\uc81c": {
                "count": 303
            },
            "\uc0dd\ud65c\ubb38\ud654": {
                "count": 308
            },
            "IT\uacfc\ud559": {
                "count": 125
            },
            "\uc2a4\ud3ec\uce20": {
                "count": 130
            },
            "\uc138\uacc4": {
                "count": 188
            }
        }
    },
    "train": {
        "num_samples": 45678,
        "number_of_characters": 1250049,
        "number_texts_intersect_with_train": null,
        "min_text_length": 4,
        "average_text_length": 27.36654406935505,
        "max_text_length": 44,
        "unique_text": 45678,
        "unique_labels": 7,
        "labels": {
            "\uc0dd\ud65c\ubb38\ud654": {
                "count": 5751
            },
            "\uc0ac\ud68c": {
                "count": 5133
            },
            "IT\uacfc\ud559": {
                "count": 5235
            },
            "\uc2a4\ud3ec\uce20": {
                "count": 7742
            },
            "\uc138\uacc4": {
                "count": 8320
            },
            "\uc815\uce58": {
                "count": 7379
            },
            "\uacbd\uc81c": {
                "count": 6118
            }
        }
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
38