Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Languages:
German
Size:
1K - 10K
ArXiv:
License:
Dataset Viewer
sentence1
string | sentence2
string | labels
int64 |
---|---|---|
Abitur | Schulabschluss | 1 |
aktuell | derzeitig | 1 |
alle Tage | jeden Tag | 1 |
also | das heißt | 1 |
Ambulanz | Behandlungsraum | 1 |
Angel | Rute | 1 |
Annonce | Werbung | 1 |
arm | bedürftig | 1 |
Art | Sorte | 1 |
Attraktion | Sehenswürdigkeit | 1 |
Bad | Badezimmer | 1 |
bald | zukünftig | 1 |
Bank | Sitzbank | 1 |
bat | bitten | 1 |
Beamer | Projektor | 1 |
bekommen | kriegen | 1 |
Billion | Billionen | 1 |
blamieren | bloßstellen | 1 |
blutig | roh | 1 |
Boot | kleines Schiff | 1 |
Brand | Feuer | 1 |
brav | gut erzogen | 1 |
Brief | Post Schreiben | 1 |
Brieftasche | Portemonnaie | 1 |
Büro | Arbeitszimmer | 1 |
Chance | Möglichkeit | 1 |
Charakter | Persönlichkeit | 1 |
Chef | Vorgesetzter | 1 |
Dank | Bedanken | 1 |
Daten | Termine | 1 |
dementiert | abstreiten | 1 |
Dessert | Nachtisch | 1 |
dezent | bescheiden | 1 |
dick | fett | 1 |
die | eine | 1 |
Direktion | Management | 1 |
Direktor | Vorsitzender | 1 |
Dom | Kathedrale | 1 |
Eiskaffee | Kaffee mit Eiscreme | 1 |
engagiert | fleißig | 1 |
Etikett | Preisschild | 1 |
Etikett | Preisschild | 1 |
eventuell | vielleicht | 1 |
Evergreen | altes bekanntes Lied | 1 |
Fabrik | Industrie Herstellungs Ort | 1 |
fabrizieren | produzieren | 1 |
Fahrt | Reise | 1 |
familiär | innerhalb der Familie | 1 |
fast | nahezu | 1 |
fasten | hungern | 1 |
Figur | Puppe | 1 |
Figur | Statur | 1 |
flattern | fliegen | 1 |
Flur | Korridor | 1 |
Formular | Formblatt | 1 |
Fotograf | Bilder machender Mensch | 1 |
Fund | Entdeckung | 1 |
Gang | Lauf | 1 |
Gaffer | Schaulustiger | 1 |
Genie | Begabter | 1 |
Gerichtsprozess | Gerichts Verfahren | 1 |
Gift | toxisch | 1 |
Glanz | Glimmer | 1 |
Glut | heiße Kohle | 1 |
Grab | Begräbnisstätte | 1 |
graben | buddeln schaufeln | 1 |
graziös | bezaubernd schön | 1 |
gültig | valide | 1 |
gut | super | 1 |
Gymnasium | Schule | 1 |
Hall | Echo | 1 |
Handy | Smartphone | 1 |
Happen | Snack | 1 |
hart | robust | 1 |
hat | haben | 1 |
Hausaufgaben | Schul Übungen | 1 |
Hausmeister | Hausverwalter | 1 |
Heft | Magazin | 1 |
hell | beleuchtet | 1 |
Herd | Ofen Kochplatte | 1 |
Hochschule | Universität | 1 |
Hose | Jeans trousers | 1 |
Hut | Mütze | 1 |
will | möchte | 1 |
im Guten gehen | im Guten auseinandergehen | 1 |
im Lot | in Ordnung | 1 |
Influenza | Grippe | 1 |
intrigant | hinterhältig | 1 |
irritieren | verwirren | 1 |
Jalousien | Vorhänge | 1 |
jammer | heulen | 1 |
Justiz | Rechts Instanz | 1 |
Karte | Plan | 1 |
Kaution | Bürgschaft | 1 |
Kind | junger Mensch | 1 |
Kissen | Kopf Polster | 1 |
Kittchen | Gefängnis | 1 |
Klosett | Toilette | 1 |
Kollege | Freund | 1 |
Kollege | Kamerad | 1 |
End of preview. Expand
in Data Studio
A dataset to identify False Friends / false cognates between English and German. A generally challenging task for multilingual models.
Task category | t2t |
Domains | Written |
Reference | https://drive.google.com/file/d/1jgq0nBnV-UiYNxbKNrrr2gxDEHm-DMKH/view?usp=share_link |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["FalseFriendsGermanEnglish"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@misc{Chibb_2022,
abstract = {{This paper explores the robustness of multilingual language models against false friends. False friends are words that sound or are written the same in two different languages but have different meaning. Generally, it is argued that multilingual models, such as XLM-RoBERTA, can outperform monolingual models in most tasks on conventional datasets. However, false friends are not considered in these tests. In this paper, experiments with a false friends dataset show that multilingual models are not robust against false friends; they have problems creating monolingual representations and differentiating between meanings of similarly written words in different languages. An attempt of word-based finetuning multilingual models on false friends pairs is promising, however the results do not generally solve the presented problem and still, monolingual models are more robust against false friends.}},
author = {Chibb, Aaron},
month = {Sep},
title = {{German-English False Friends in Multilingual Transformer Models: An Evaluation on Robustness and Word-to-Word Fine-Tuning}},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("FalseFriendsGermanEnglish")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 1524,
"number_of_characters": 61254,
"unique_pairs": 1502,
"min_sentence1_length": 3,
"avg_sentence1_length": 14.548556430446194,
"max_sentence1_length": 63,
"unique_sentence1": 489,
"min_sentence2_length": 3,
"avg_sentence2_length": 25.644356955380577,
"max_sentence2_length": 72,
"unique_sentence2": 986,
"unique_labels": 2,
"labels": {
"1": {
"count": 762
},
"0": {
"count": 762
}
}
}
}
This dataset card was automatically generated using MTEB
- Downloads last month
- 38