Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
5
corpus-id
stringlengths
10
10
score
float64
1
1
00000
gAk7Gdp0CX
1
00000
NbrnTP3fAb
1
00000
LojIIf94Ch
1
00000
rsK9EjHvIH
1
00001
AwFv0Yg7NZ
1
00001
zHzmA4KR1V
1
00002
eNo41eoPni
1
00002
RBT7qYHDBT
1
00002
YUPnmbpD0e
1
00002
n62tOy4Cqp
1
00003
8JHUdKF0j7
1
00003
nFbmOHnKYa
1
00003
RBT7qYHDBT
1
00003
n62tOy4Cqp
1
00004
TtLFxJpRa5
1
00004
aVNqTIAae2
1
00004
f7ZJ69PqcU
1
00004
MbyIbNiCdx
1
00004
td26fEeVVh
1
00005
ld6DYyeNdj
1
00005
gMXAdx9G81
1
00005
f7ZJ69PqcU
1
00005
nnBbuQzkCh
1
00005
8GrgmolaHr
1
00006
CtlRJoWcUR
1
00006
zHzmA4KR1V
1
00006
AwFv0Yg7NZ
1
00006
q0Zf2pCLxb
1
00007
DO4lKNEfvu
1
00007
B19sMLT6mn
1
00007
aVNqTIAae2
1
00007
P9K63LSFZH
1
00007
RcoreogrNw
1
00008
YsP6ihgIqL
1
00008
RCQ5WMO5AH
1
00008
nnBbuQzkCh
1
00008
erqtHioRRd
1
00008
nuVxUZpfbH
1
00009
qWCA79ISjs
1
00009
f7ZJ69PqcU
1
00009
aVNqTIAae2
1
00009
RCQ5WMO5AH
1
00009
YsP6ihgIqL
1
00010
BnD3XkfFNu
1
00010
6JDWYlgAAC
1
00010
QMgV0Lh8Wv
1
00010
erqtHioRRd
1
00011
TP9gyv1plB
1
00011
zKG5mSoyPs
1
00011
YTH8xIZM1J
1
00011
nnBbuQzkCh
1
00012
u8zF9OHzlw
1
00012
Is9hVLXnGB
1
00012
QMgV0Lh8Wv
1
00012
8IRh1E2JDB
1
00012
9NIQ0Wobtq
1
00013
ZESFqZ8pIx
1
00013
Y7gbtP7ySe
1
00013
aVNqTIAae2
1
00013
nnBbuQzkCh
1
00013
Xoblu17rNy
1
00014
nuVxUZpfbH
1
00014
RCQ5WMO5AH
1
00014
td26fEeVVh
1
00014
nnBbuQzkCh
1
00015
9OBGhnuKon
1
00015
MbyIbNiCdx
1
00015
nnBbuQzkCh
1
00015
f7ZJ69PqcU
1
00015
P1uRr6YICt
1
00016
6JDWYlgAAC
1
00016
erqtHioRRd
1
00017
3npgW2zMj5
1
00017
3UDqpNVGMr
1
00017
0lnXv2Rra6
1
00017
2qFl41sNLj
1
00018
nuVxUZpfbH
1
00018
qWCA79ISjs
1
00018
RCQ5WMO5AH
1
00018
Xoblu17rNy
1
00018
nnBbuQzkCh
1
00019
f7ZJ69PqcU
1
00019
YsP6ihgIqL
1
00019
nnBbuQzkCh
1
00019
aVNqTIAae2
1
00020
QMgV0Lh8Wv
1
00020
NbrnTP3fAb
1
00020
HSUPwePut0
1
00020
LojIIf94Ch
1
00021
B19sMLT6mn
1
00021
aVNqTIAae2
1
00021
nFbmOHnKYa
1
00021
DO4lKNEfvu
1
00021
P9K63LSFZH
1
00022
QR6FEecAtp
1
00022
QMgV0Lh8Wv
1
00022
erqtHioRRd
1
00022
NbrnTP3fAb
1
00022
O4ZektUJrh
1
00023
TtLFxJpRa5
1
End of preview. Expand in Data Studio

AILAStatutes

An MTEB dataset
Massive Text Embedding Benchmark

This dataset is structured for the task of identifying the most relevant statutes for a given situation.

Task category t2t
Domains Legal, Written
Reference https://zenodo.org/records/4063986

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["AILAStatutes"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@dataset{paheli_bhattacharya_2020_4063986,
  author = {Paheli Bhattacharya and
Kripabandhu Ghosh and
Saptarshi Ghosh and
Arindam Pal and
Parth Mehta and
Arnab Bhattacharya and
Prasenjit Majumder},
  doi = {10.5281/zenodo.4063986},
  month = oct,
  publisher = {Zenodo},
  title = {AILA 2019 Precedent \& Statute Retrieval Task},
  url = {https://doi.org/10.5281/zenodo.4063986},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("AILAStatutes")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 132,
        "number_of_characters": 313841,
        "num_documents": 82,
        "min_document_length": 164,
        "average_document_length": 1974.6341463414635,
        "max_document_length": 26039,
        "unique_documents": 82,
        "num_queries": 50,
        "min_query_length": 1174,
        "average_query_length": 3038.42,
        "max_query_length": 5936,
        "unique_queries": 50,
        "none_queries": 0,
        "num_relevant_docs": 217,
        "min_relevant_docs_per_query": 2,
        "average_relevant_docs_per_query": 4.34,
        "max_relevant_docs_per_query": 5,
        "unique_relevant_docs": 82,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
249