Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
5
corpus-id
stringlengths
10
10
score
float64
1
1
00000
FCIX3BYOtD
1
00000
YsP6ihgIqL
1
00001
QMgV0Lh8Wv
1
00001
0pKGytvukF
1
00002
3UDqpNVGMr
1
00003
ZDYUvh7i71
1
00004
tST18iwItC
1
00004
efQrSO42uK
1
00004
gMXAdx9G81
1
00004
r4Eh0C3BfQ
1
00004
PNLbWphJeV
1
00005
QR6FEecAtp
1
00005
50OXirZRiR
1
00005
18Y2bTu5X1
1
00005
qWCA79ISjs
1
00006
JHS64k2k59
1
00007
pkObaWoukd
1
00007
CtlRJoWcUR
1
00007
NbrnTP3fAb
1
00008
rsK9EjHvIH
1
00008
DmH5RiMKpP
1
00009
JLQ6xVJGyO
1
00009
UMVmI5BRh8
1
00009
B19sMLT6mn
1
00010
2qFl41sNLj
1
00010
8EE5GXTeLY
1
00011
ILft9SGVZe
1
00012
GCLgR0OVSn
1
00012
5eZffTYIKI
1
00012
YqWg21nYCs
1
00013
4efLerNHu9
1
00014
JLQ6xVJGyO
1
00015
6UmFFciuDC
1
00015
DIq2AnHTmt
1
00016
9NIQ0Wobtq
1
00016
n62tOy4Cqp
1
00016
gAk7Gdp0CX
1
00017
RBT7qYHDBT
1
00018
TtLFxJpRa5
1
00018
ArQEPcyLas
1
00018
08YMNb5Zql
1
00018
6JDWYlgAAC
1
00019
P9K63LSFZH
1
00019
NJOVzNEMr7
1
00020
BnD3XkfFNu
1
00020
nnBbuQzkCh
1
00020
9s8OrJQUdL
1
00020
tUeC99enq5
1
00021
Y7gbtP7ySe
1
00021
SstzyshA6P
1
00022
xavU07zUHL
1
00022
ZESFqZ8pIx
1
00023
YxPY8EcFK1
1
00024
AwFv0Yg7NZ
1
00024
uQO001xtSV
1
00024
q0Zf2pCLxb
1
00024
2BGCSzOjD8
1
00024
850kEnydx9
1
00024
FVr9Qh8yXv
1
00025
uPGtk4vvVS
1
00025
SmNqE40fAr
1
00025
JnOng0wVJY
1
00025
4HZKjht3X1
1
00025
phlhHVlnES
1
00025
HtYDZw69Cr
1
00025
8JHUdKF0j7
1
00025
Rtva1JyiNb
1
00026
r9HE60Dlgk
1
00026
OjkeaBKsoR
1
00026
zKG5mSoyPs
1
00026
S87XwXaHCP
1
00026
kWCRNYdWCs
1
00027
u8zF9OHzlw
1
00027
ndZ4szi6sE
1
00028
6jOSL0IZbc
1
00028
XRvj7uff0L
1
00028
ZXe1cb51JJ
1
00028
RCQ5WMO5AH
1
00028
YUPnmbpD0e
1
00028
BGjxrzuLWO
1
00028
TtLFxJpRa5
1
00028
MM0jQb6gbt
1
00028
5F21rWz5FY
1
00028
gQH8wylh0C
1
00028
P1uRr6YICt
1
00028
jMPqPEBqUh
1
00028
8Y7XsrSvBp
1
00028
8GrgmolaHr
1
00028
sUkiH8G4Zp
1
00028
OZM4OtBJTf
1
00028
7nvdE2ODH0
1
00028
30pNIhsHFk
1
00028
8NBQv2WNl7
1
00028
nipuaUkxRF
1
00028
hF4vTYYojm
1
00028
Is9hVLXnGB
1
00029
MbyIbNiCdx
1
00029
A4dhjkuRv6
1
00029
cmc5F9HpUl
1
00029
2ceN59UAgN
1
End of preview. Expand in Data Studio

AILACasedocs

An MTEB dataset
Massive Text Embedding Benchmark

The task is to retrieve the case document that most closely matches or is most relevant to the scenario described in the provided query.

Task category t2t
Domains Legal, Written
Reference https://zenodo.org/records/4063986

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["AILACasedocs"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@dataset{paheli_bhattacharya_2020_4063986,
  author = {Paheli Bhattacharya and
Kripabandhu Ghosh and
Saptarshi Ghosh and
Arindam Pal and
Parth Mehta and
Arnab Bhattacharya and
Prasenjit Majumder},
  doi = {10.5281/zenodo.4063986},
  month = oct,
  publisher = {Zenodo},
  title = {AILA 2019 Precedent \& Statute Retrieval Task},
  url = {https://doi.org/10.5281/zenodo.4063986},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("AILACasedocs")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 236,
        "number_of_characters": 5164499,
        "num_documents": 186,
        "min_document_length": 1014,
        "average_document_length": 26949.344086021505,
        "max_document_length": 222891,
        "unique_documents": 186,
        "num_queries": 50,
        "min_query_length": 1174,
        "average_query_length": 3038.42,
        "max_query_length": 5936,
        "unique_queries": 50,
        "none_queries": 0,
        "num_relevant_docs": 195,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 3.9,
        "max_relevant_docs_per_query": 22,
        "unique_relevant_docs": 186,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
162