Dataset Viewer
Auto-converted to Parquet
The dataset viewer is taking too long to fetch the data. Try to refresh this page.
Server-side error
Error code:   ClientConnectionError

ml.Datx - Noisy

This dataset contains texts in six Malian languages with various noise functions applied. It is designed for use with Hugging Face's NLP tools and models.

Languages Included

  • Bambara
  • Bomu
  • Bozo
  • Mamama
  • Songhay
  • Soninke

Noise Functions Applied

The following noise functions have been applied to the texts:

  • Character Swap: Randomly swaps adjacent characters.
  • Random Space Insertion: Inserts random characters at random positions.
  • Random Character Deletion: Deletes random characters.
  • Random Word Position Swapping: Substitutes random characters with other random characters.
  • Word Masking: Random word masking using BLANK keyword

Dataset Structure

The dataset is structured as follows:

  • data/lang_id_output.json`: Contains a list based dictionary representation of the data

Each data instance contains the followings original, space_insertion, char_delete, char_swap, word_swap, word_delete, word_blank, cleaned, for example:

[
    {
        "original": "Yesu Kirisita Tuura Wema TUURA WEMA",
        "space_insertion": " Ye su Kiris i ta Tu u r a  Wem a  TUU RA   WEM A",
        "char_delete": "Ysu isia Tuurema TURAWMA",
        "char_swap": "eYsu iKisriat Turua Wma eTUURA WMEA",
        "word_swap": "Yesu Kirisita Tuura Wema WEMA TUURA",
        "word_delete": "Yesu Kirisita Tuura Wema TUURA WEMA",
        "word_blank": "Yesu Kirisita Tuura Wema BLANK WEMA",
        "cleaned": "Yesu Kirisita Tuura Wema TUURA WEMA"
    }
...
]

Usage

To use this dataset with Hugging Face, you can load it using the datasets library:

from datasets import load_dataset

dataset = load_dataset('mlsftwrs/mlnoisy')

Sources

  • TBA

Citation

If you use this dataset in your research, please cite it as follows:

@misc{diarra2025mldatxnoisy,
    title={ml.Datx:Noisy -  Malian Noisy Dataset for LLM Training},
    author={
        Sebastien Diarra and
        Nene Tangara and
        Seydou Diallo
    },
    url={https://mlsftwrs.ml/project/mldatx},
    year={2025}
}

Contact

For any questions or issues, please contact:

Downloads last month
58