Datasets:
Tasks:
Text Ranking
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
English
Size:
1K - 10K
License:
metadata
license: mit
pretty_name: MixBench
task_categories:
- text-ranking
task_ids:
- document-retrieval
language:
- en
multilinguality: monolingual
annotations_creators:
- machine-generated
dataset_creator: Binxu Li et al.
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: image
dtype: image
configs:
- config_name: MSCOCO
data_files:
- split: queries
path: MSCOCO/queries.parquet
- split: corpus
path: MSCOCO/corpus.parquet
- split: mixed_corpus
path: MSCOCO/mixed_corpus.parquet
- config_name: Google_WIT
data_files:
- split: queries
path: Google_WIT/queries.parquet
- split: corpus
path: Google_WIT/corpus.parquet
- split: mixed_corpus
path: Google_WIT/mixed_corpus.parquet
- config_name: VisualNews
data_files:
- split: queries
path: VisualNews/queries.parquet
- split: corpus
path: VisualNews/corpus.parquet
- split: mixed_corpus
path: VisualNews/mixed_corpus.parquet
- config_name: OVEN
data_files:
- split: queries
path: OVEN/queries.parquet
- split: corpus
path: OVEN/corpus.parquet
- split: mixed_corpus
path: OVEN/mixed_corpus.parquet
tags:
- retrieval
- image
- text
- multimodal
- benchmark
MixBench: A Benchmark for Mixed Modality Retrieval
MixBench is a benchmark for evaluating retrieval across text, images, and multimodal documents. It is designed to test how well retrieval models handle queries and documents that span different modalities, such as pure text, pure images, and combined image+text inputs.
MixBench includes four subsets, each curated from a different data source:
- MSCOCO
- Google_WIT
- VisualNews
- OVEN
Each subset contains:
queries.jsonl
: each entry contains aquery_id
,text
, and/orimage
mixed_corpus.jsonl
: each entry contains acorpus_id
, atext
or animage
or a multimodal document (text
andimage
)qrels.tsv
: a tab-separated list of relevant query-document pairs (query_id
,corpus_id
,score=1
)corpus.jsonl
: the original corpus
This benchmark supports diverse retrieval settings including unimodal-to-multimodal and cross-modal search.
🔄 Load Example
You can load a specific subset of MixBench using the name
argument:
from datasets import load_dataset
# Load the MSCOCO subset
ds_query = load_dataset("andy0207/mixbench", name="MSCOCO", split='query')
ds_corpus = load_dataset("andy0207/mixbench", name="MSCOCO", split='mixed_corpus')
ds_query = load_dataset("andy0207/mixbench", name="MSCOCO", split='qrel')
# Load other subsets (corpus)
ds_gwit = load_dataset("andy0207/mixbench", name="Google_WIT", split='mixed_corpus')
ds_news = load_dataset("andy0207/mixbench", name="VisualNews",split='mixed_corpus')
ds_oven = load_dataset("andy0207/mixbench", name="OVEN", split='mixed_corpus')