|
## Dataset Summary |
|
|
|
A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of english scientific papers. For more details about the dataset please refer the original paper - [https://aclanthology.org/D14-1150.pdf](https://aclanthology.org/D14-1150.pdf) |
|
Original source of the data - []() |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
- **id**: unique identifier of the document. |
|
- **document**: Whitespace separated list of words in the document. |
|
- **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all. |
|
- **extractive_keyphrases**: List of all the present keyphrases. |
|
- **abstractive_keyphrase**: List of all the absent keyphrases. |
|
|
|
|
|
### Data Splits |
|
|
|
|Split| #datapoints | |
|
|--|--| |
|
| Test | 755 | |
|
|
|
- Percentage of keyphrases that are named entities: 56.99% (named entities detected using scispacy - en-core-sci-lg model) |
|
- Percentage of keyphrases that are noun phrases: 54.99% (noun phrases detected using spacy en-core-web-lg after removing determiners) |
|
|
|
## Usage |
|
|
|
### Full Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# get entire dataset |
|
dataset = load_dataset("midas/kdd", "raw") |
|
|
|
# sample from the test split |
|
print("Sample from test dataset split") |
|
test_sample = dataset["test"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Document BIO Tags: ", test_sample["doc_bio_tags"]) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
``` |
|
**Output** |
|
|
|
```bash |
|
Sample from test data split |
|
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata'] |
|
Tokenized Document: ['Discovering', 'roll-up', 'dependencies'] |
|
Document BIO Tags: ['O', 'O', 'O'] |
|
Extractive/present Keyphrases: [] |
|
Abstractive/absent Keyphrases: ['logical design'] |
|
|
|
----------- |
|
|
|
``` |
|
|
|
### Keyphrase Extraction |
|
```python |
|
from datasets import load_dataset |
|
|
|
# get the dataset only for keyphrase extraction |
|
dataset = load_dataset("midas/kdd", "extraction") |
|
|
|
print("Samples for Keyphrase Extraction") |
|
|
|
# sample from the test split |
|
print("Sample from test data split") |
|
test_sample = dataset["test"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Document BIO Tags: ", test_sample["doc_bio_tags"]) |
|
print("\n-----------\n") |
|
``` |
|
|
|
### Keyphrase Generation |
|
```python |
|
# get the dataset only for keyphrase generation |
|
dataset = load_dataset("midas/kdd", "generation") |
|
|
|
print("Samples for Keyphrase Generation") |
|
|
|
# sample from the test split |
|
print("Sample from test data split") |
|
test_sample = dataset["test"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
``` |
|
|
|
## Citation Information |
|
``` |
|
@inproceedings{caragea-etal-2014-citation, |
|
title = "Citation-Enhanced Keyphrase Extraction from Research Papers: A Supervised Approach", |
|
author = "Caragea, Cornelia and |
|
Bulgarov, Florin Adrian and |
|
Godea, Andreea and |
|
Das Gollapalli, Sujatha", |
|
booktitle = "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing ({EMNLP})", |
|
month = oct, |
|
year = "2014", |
|
address = "Doha, Qatar", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/D14-1150", |
|
doi = "10.3115/v1/D14-1150", |
|
pages = "1435--1446", |
|
|
|
} |
|
``` |
|
|
|
## Contributions |
|
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset |
|
|