Yoruba
stringlengths 7
481
| sentiment
stringclasses 2
values |
---|---|
kikase sugita ADORIBU to hikikae ni asu wa konai darou
|
Negative
|
onim o letu i moru,
|
Positive
|
Awon to gba iyanu lodo Olorun nikan o ba enu ilekun wole.
|
Positive
|
Igba yen nko, bawo ni mo ti fi han fun nyin?"
|
Negative
|
Oba t'O we adete mo (Ko s'oba meji af'Oluwa)
|
Negative
|
Olohun lo ni eto pe ki e beru Re, ti enyin ba je onigbagbo ododo).
|
Positive
|
Ati pe ti ko ba si ododo, nigbana ojiji Olorun lo wa mbe.
|
Negative
|
OSIEC Osun Taiwo Olodo
|
Positive
|
ni áinshun ni áinhun ni áinōhun
|
Negative
|
Otile, olodo!
|
Positive
|
if ala yaara nave ahipaad,
|
Positive
|
O ti funni ni idaniloju nkan yii si gbogbo eniyan nipa O ji dide kuro ninu oku. "
|
Positive
|
Oba t'o mo ohun gbogbo, (The all knowing God) Oba t'o mo ohun gbogbo, (il Dio onnisciente)
|
Positive
|
Saanse Jaye Aatak Aatak,
|
Positive
|
Kini a o se nigbati onigbagbo kan ba dede ku.
|
Positive
|
O tun so pe oun ko ti i setan lati ba wa soro, ati pe ti akoko oro ba to, oun yoo ranse si wa.
|
Positive
|
bali to aasiwan
|
Positive
|
ni èmi yóò fi ohun ìyanu hàn án."
|
Positive
|
Ti ko ba je wi pe awon eni ti a ni ko fe ni loju fata senu ni, kilo fe mu oju ti n gun ni tun maa tani bi ata.
|
Negative
|
Eyin ni ohun elo to po,ipo gidi.
|
Positive
|
Olúwa mi àmòimòtán.
|
Positive
|
Ati bakanna, w haven ti t afterlé àw godsn strangel strangerun àjòjì, ki nwon le ma sin won.
|
Positive
|
Wa Yusufeen wa be Ishaqeen wa gay re he mu, Min anbiyaeen
|
Positive
|
O tobi ju oun to tobiju, osi kere ju oun to kere ju.
|
Positive
|
O ko ba ri ohunkohun sugbon òkunkun.
|
Positive
|
Kii tan ninu igba osuun, k'ama fi r'amo Lori,
|
Negative
|
Tani ninu yin lati gbogbo eniyan re?
|
Negative
|
Yi ajinde ko ni waye si aye re.
|
Positive
|
Omó atanna Ifa yoro yoro lé kú lo Ikú ti nbe ni le yi kóderú kojade Owiri wiri a o fi iná Ifa wi wón lára
|
Negative
|
Mo ro, "bayi ni mo oye bi o lati tan Islam ni United States ati Europe."
|
Positive
|
Obesere Oye Olohun (God Knows Best)
|
Positive
|
Iwon't be online tonight!
|
Negative
|
Be tie bu won, ase Olorun ni, Olorun ti fun won ni ore ofe lati pa awon oruko yi re ni.
|
Positive
|
Wipe, ara eniyan o tobi wà.
|
Positive
|
Adegbulu AJ,
|
Negative
|
Gbogbo aye, gbe Jesu ga, Angel', e wole fun E mu ade Oba Re wa, Se l'Oba awon oba.
|
Positive
|
Adebukola Ogunrinde,
|
Negative
|
A si fi obinrin na sinu ile Farao.
|
Negative
|
'It's too late to go there today.' ïåðåâîä íà ðóññêèé ÿçûê è òðàíñêðèïöèÿ
|
Negative
|
Nigba miiran o ma n wo "
|
Positive
|
difa fun Marunlelogojo igi oko,
|
Positive
|
Beena ona imi leleyi la je ko daju..
|
Negative
|
OS MJI O gbo koran koran Babalawo agbe lo d'ifa fun agbe Eyi ti yoo ma fi oran gbogbo je ho-ho Won ni ko kara nile, ebo ni ko s Mo je, ho-ho ki ngo; ho ho Iworo isope, e wa ba ni lajase ogun Ajasegun laa ba ni lese orisa
|
Negative
|
See n mi sa ojee (Ibadan ijinle).
|
Positive
|
Ibinu oro ti baba naa so ni won ni Iyabo ba pada sile yii, bee lo seleri fun toko-tiyawo naa pe oun setan lati fina si gbogbo dukia won, ati pe ihooho ni won yoo ba jade kuro nibe.
|
Negative
|
Opolongo bi eyo umbo opolongo baba nishe omo niye oniye oun babalawo
|
Positive
|
opolongo bi eyo umbo opolongo baba nishe omo niye oniye oun babalawo
|
Positive
|
Aaaah je suis rassuré !
|
Positive
|
atijouru. ti uurji to-morrow.
|
Negative
|
"A wa si Allah ati fun u a yio pada."
|
Positive
|
Ni ipo yii, Emi ko ni idunnu.
|
Positive
|
"O, ibojì yìí àti òkúta tí mo ti gb between láàárín èmi àti youyin,
|
Positive
|
Nibi wan sowipe eni to keeko, Ko kin sukun fun eni to wa laaye tabi eni toti ku. (segbe:) E yo wan kuro niwaju.
|
Positive
|
Enia ko ni agbara,
|
Positive
|
Kini idinku fun agbegbe ibi isinmi?
|
Positive
|
Ibeere: "Se o ti ni iye ainipekun?"
|
Positive
|
E ri mi pe mo kere le fi yan mi je, Ifa inu mi ko Kere,
|
Positive
|
Mu dinari kan fun mi wá, kí n lè rí i. "
|
Negative
|
ol lu ni nit,
|
Positive
|
Fun iná ti a ti ràn ninu ibinu mi; o yoo sun lori nyin. "
|
Positive
|
si! lo amo! jeje
|
Negative
|
Ati eniti o ti yipada, ki yoo pada wa?
|
Negative
|
Aw?n ?na ti o ba ?sin Islam mu fun Is? ?l?hun ati Aabo R?By Abdur Rahman Muhammadul Awwal
|
Negative
|
Bo jo ro, iwo ni ma balo,
|
Positive
|
wò ó, kí o sì rí ìtìjú wa.
|
Negative
|
Ama Jarn la wo dayge age gà.
|
Negative
|
Ala ti je topic.
|
Positive
|
Akoko ti Japan nigbagbogbo n yipada.
|
Positive
|
ti ni guyé rañaa que gué'.
|
Positive
|
Bí o l'ówó bí o kò ní 'wà 'nkó,
|
Negative
|
E ku gbogbo igba mi o, Doctor.
|
Positive
|
Ko si esin teeyan n se laye yi ti Olorun ko gbo adura e.
|
Negative
|
Ewebe tutu ati saladi adalu, ale fun meji
|
Positive
|
Hummmm oro po ninu iwe kobo.God knows d best.
|
Positive
|
Nitori eyi, Oluwa le dariji ese wa ati fun ileri iye ainipekun ni paradise.
|
Positive
|
Arabinrin wa fun wa ni okuta marun tabi ...
|
Positive
|
Jot thaki jone jogi nipaayaa,
|
Positive
|
"Kan ik je joinen?"
|
Negative
|
Emi o pe lori Oluwa mi.
|
Positive
|
A pada wa ni gbogbo igba ti a ba wa ni Omaha Area.
|
Positive
|
êàêèå óñëîâèÿ òðóäà ó âàñ íà ðàáîòå;
|
Positive
|
Ki B'Aladura titun, ni ti Baba wa yan, O ti l sd Baba wa Tunlase At'ewe m lrun; Dagba sinu Iml, Eniyan gbagbe sugbn lrun niran.
|
Positive
|
A dupe, a sin a Olorun ti o mo ohun gbogbo.
|
Positive
|
Adia funAkinoro ti se omokunrin onko,
|
Positive
|
to jara sidai aakar jaliye,
|
Positive
|
reveler ni le jour ni Iheure.
|
Positive
|
Ni ojo ti o sunkun pe ohun ni ibudo,
|
Positive
|
Ma jeko ya e lenu ti ba lo ra beamer, Able God lasan legbo te lo n sina
|
Positive
|
Min ba dɛnkɛninya n ma, wo tigi ti to pinpi rɔ.
|
Negative
|
Aasman Chukar Aa Gaye Bhi Agar,
|
Positive
|
Awon eranko gan, o fe ku. pelu agbara lon fi ku pa wan. ìpànìyàn leleyi.
|
Negative
|
"oluo popo eye nile, oluopopo aba obo ekan nile odura oluo popo."
|
Positive
|
Oli, je to ona
|
Positive
|
Ya Miyaji Ki Aarti pratidin,
|
Positive
|
Lamento lo de tú messenger, ojalá lo recuperes.
|
Negative
|
Adogan kekere gbe ko ko nla ru,
|
Positive
|
Ma lo fi yan mi kere, kere
|
Positive
|
By Falope Ibukun
|
Positive
|
Satan is under my feet ko je lo so ewe agbeje mowo.
|
Negative
|
un wuwo bi erin,
|
Positive
|
Yoruba Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Yoruba for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 180,921
- Positive sentiment: 95181 (52.6%)
- Negative sentiment: 85740 (47.4%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Yoruba
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/yoruba-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Yoruba
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{yoruba_sentiments_corpus,
title={Yoruba Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/yoruba-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 9