Datasets:
audio
audioduration (s) 1.02
10.7
| text
stringlengths 13
45
|
---|---|
ne tΙΙ Ιnam tu obi
|
|
asikafoΙ fΙfΙΙfΙ pii ahanan bi
|
|
pΙ pono no woyΙ fufuo
|
|
araba ahwe adaka gye abue
|
|
waboa na ntΙΙ bere yi
|
|
ΙbΙkΙ awareΙ asan akΙgyina bea
|
|
ama mmoa abΙ asΙre kaeΙ
|
|
bea Ιdaa afuo ΙbobΙΙ fie
|
|
nani yee ama naso naso sua
|
|
adan no ara rebΙ tii
|
|
Ιmma ha kasa sΙn atifi
|
|
papa na noaa ehu kΙkΙΙ
|
|
Ιnnii a nadwene wakeka wo
|
|
adan he ankyΙ nsΙhwΙ no
|
|
me wΙde bi wΙ a
|
|
ade na nkoto twenee no
|
|
dua yΙnhyΙ nafuo he fi
|
|
obiara gyae wo a ne redi
|
|
mango teaa Ιbo twa simon
|
|
obiara nti aane watete biara
|
|
pΙ atu simon ahyΙ ΙsΙfo no
|
|
ne nsΙhwΙ sΙre nnadeΙ no dΙΙ
|
|
benkum yi seree ase he ho
|
|
safoa mΙgye tenaa asi nnua
|
|
se saa a kaa obiara Ιreyi
|
|
simon Ιsan nsaden to hohoro
|
|
abΙfra na ahyΙ nni kaa
|
|
pΙnkΙ sΙ a gye ara aso
|
|
hwene he twaa nani boΙ
|
|
ΙboΙ no tΙΙ abΙfra no
|
|
nyansa dΙdΙ tiatia aduosia he
|
|
nyansa na bΙbisaa abaa no
|
|
atu wuraa tiri na ho
|
|
ΙkΙ nano na bΙkΙ ho
|
|
teaa ho efie to mu
|
|
Ιban nomm hwee akye wo
|
|
afei nkra yΙreto Ιbo no bae
|
|
mframa no wΙ hΙ afuom
|
|
obiara wura kΙse he sΙn
|
|
yaa nsaden ΙtΙ nyinaa akye
|
|
tΙΙ nsa bobΙ wo ase
|
|
ayera sΙ asΙre nano he
|
|
mennom waboa ma hwee twenee
|
|
dwabΙ ahuri afuom ato me yi
|
|
ama woantie mango sΙ ananse
|
|
afei bΙtΙ anto dwom atifi
|
|
ne adΙfoΙ bi faa fam
|
|
afe he yΙΙ ΙkyerΙkyerΙni bi
|
|
mango tu afe na sii
|
|
nnadeΙ gyegyee ΙyΙ ase na
|
|
wo he ne atentene Ιban
|
|
twenee na Ιreyi mo kurom
|
|
abena Ιde araba akΙdidi aba
|
|
wani no hwehwΙ adanko no
|
|
naso na woante nsanom na
|
|
araba ne simon hwΙ hΙ
|
|
nani anka yΙ da atete
|
|
wΙ hyee fufuo anigyeΙ saa
|
|
dua wΙde mansa mfuo kyerΙ
|
|
yaa twerΙΙ adar bi dwaree
|
|
paanoo ntΙ kyΙΙ tΙnee sika
|
|
yΙ yi bΙtΙn biara kanea
|
|
Ιntumi dware nsΙhwΙ na ase
|
|
abakΙsΙm wura sΙ ama kyerΙ a
|
|
awia faa ne dwa emu
|
|
kwan Ιde yΙn nnua he
|
|
benkum no mesua mmaa he
|
|
egya sΙ kumm ne ΙkyerΙkyerΙni
|
|
nafuo yare bi sesaa soro
|
|
dan bepΙ he ΙyΙ fΙfΙ
|
|
hΙ ama hwee afei a asa
|
|
afe maa nwoma ha ntΙkwa
|
|
ne wadwuma fi ne twae nti
|
|
nsu na bere he ayΙ fΙre
|
|
aba na som naso osuani
|
|
mansa mΙkΙ fi amaneΙ he
|
|
nkuro no awe a adar
|
|
a ma sΙ amaneΙ bi se
|
|
yΙn ΙsΙre dΙnhwere asΙe adar
|
|
wΙ ΙsΙre nso bi Ιkwan
|
|
sika no Ιno dane wΙato
|
|
waboa he ayΙ amaneΙ no meho
|
|
abakΙsΙm bi no akΙgyina ha
|
|
aba ΙbΙkΙ wani abue simon
|
|
ΙyΙ tiatia sΙ ΙyΙΙ nwansena
|
|
Ιno awe Ιhunu ka a
|
|
simon bΙtΙ afia asΙre hyee
|
|
ana saa abena sΙree atΙ
|
|
obiara wakeka ayΙ Ιsoaa nyinaa
|
|
Ιno renkΙ redidi hwΙ biribi
|
|
ehu tan nsia sΙ ntumi ntΙmntΙm
|
|
mesua sΙ menkΙ Ιban no
|
|
ansa ho ato abo nsΙhwΙ
|
|
ho dΙdΙ no akwadaa mΙhwΙ
|
|
dua yΙreto asi anigyeΙ akyi
|
|
afia menkΙ dΙnhwere bi kanea
|
|
yaa Ιmaa kΙ akuafoΙ na
|
|
se tantan fufuo fΙre na
|
|
atadeΙ yi wΙ anigyeΙ ntΙmntΙm
|
|
abaa bi kΙΙ Ιhaw tantan
|
Twi Speech-Text Parallel Dataset - Part 1 of 5
π The Largest Speech Dataset for Twi Language
This dataset contains part 1 of the largest speech dataset for the Twi language, featuring 1 million speech-to-text pairs split across 5 parts (approximately 200,000 samples each). This represents a groundbreaking resource for Twi (Akan), a language spoken primarily in Ghana.
π Breaking the Low-Resource Language Barrier
This publication demonstrates that African languages don't have to remain low-resource. Through creative synthetic data generation techniques, we've produced the largest collection of AI training data for speech-to-text models in Twi, proving that innovative approaches can build the datasets African languages need.
π Complete Dataset Series (1M Total Samples)
Part | Repository | Samples | Status |
---|---|---|---|
Part 1 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part001 |
~200,000 | π₯ THIS PART |
Part 2 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part002 |
~200,000 | β Available |
Part 3 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part003 |
~200,000 | β Available |
Part 4 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part004 |
~200,000 | β Available |
Part 5 | michsethowusu/twi-speech-text-parallel-synthetic-1m-part005 |
~200,000 | β Available |
Dataset Summary
- Language: Twi/Akan -
aka
- Total Dataset Size: 1,000,000 speech-text pairs
- This Part: {len(data):,} audio files (filtered, >1KB)
- Task: Speech Recognition, Text-to-Speech
- Format: WAV audio files with corresponding text transcriptions
- Generation Method: Synthetic data generation
- Modalities: Audio + Text
π― Supported Tasks
- Automatic Speech Recognition (ASR): Train models to convert Twi speech to text
- Text-to-Speech (TTS): Use parallel data for TTS model development
- Speech-to-Speech Translation: Cross-lingual speech applications
- Keyword Spotting: Identify specific Twi words in audio
- Phonetic Analysis: Study Twi pronunciation patterns
- Language Model Training: Large-scale Twi language understanding
π Dataset Structure
Data Fields
audio
: Audio file in WAV format (synthetically generated)text
: Corresponding text transcription in Twi
Data Splits
This part contains a single training split with {len(data):,} filtered audio-text pairs (small/corrupted files removed).
Loading the Complete Dataset
from datasets import load_dataset, concatenate_datasets
# Load all parts of the dataset
parts = []
for i in range(1, 6):
part_name = f"michsethowusu/twi-speech-text-parallel-synthetic-1m-part{i:03d}"
part = load_dataset(part_name, split="train")
parts.append(part)
# Combine all parts into one dataset
complete_dataset = concatenate_datasets(parts)
print(f"Complete dataset size: {{len(complete_dataset):,}} samples")
Loading Just This Part
from datasets import load_dataset
# Load only this part
dataset = load_dataset("michsethowusu/twi-speech-text-parallel-synthetic-1m-part001", split="train")
print(f"Part 1 dataset size: {{len(dataset):,}} samples")
π οΈ Dataset Creation
Methodology
This dataset was created using synthetic data generation techniques, specifically designed to overcome the challenge of limited speech resources for African languages. The approach demonstrates how AI can be used to bootstrap language resources for underrepresented languages.
Data Processing Pipeline
- Text Generation: Synthetic Twi sentences generated
- Speech Synthesis: Text-to-speech conversion using advanced models
- Quality Filtering: Files smaller than 1KB removed to ensure quality
- Alignment Verification: Audio-text alignment validated
- Format Standardization: Consistent WAV format and text encoding
Technical Details
- Audio Format: WAV files, various sample rates
- Text Encoding: UTF-8
- Language Code:
aka
(ISO 639-3) - Filtering: Minimum file size 1KB to remove corrupted/empty files
π Impact and Applications
Breaking Language Barriers
This dataset represents a paradigm shift in how we approach low-resource African languages:
- Scalability: Proves synthetic generation can create large datasets
- Accessibility: Makes Twi ASR/TTS development feasible
- Innovation: Demonstrates creative solutions for language preservation
- Reproducibility: Methodology can be applied to other African languages
Use Cases
- Educational Technology: Twi language learning applications
- Accessibility: Voice interfaces for Twi speakers
- Cultural Preservation: Digital archiving of Twi speech patterns
- Research: Phonetic and linguistic studies of Twi
- Commercial Applications: Voice assistants for Ghanaian markets
β οΈ Considerations for Using the Data
Social Impact
Positive Impact:
- Advances language technology for underrepresented communities
- Supports digital inclusion for Twi speakers
- Contributes to cultural and linguistic preservation
- Enables development of Twi-language AI applications
Limitations and Biases
- Synthetic Nature: Generated data may not capture all nuances of natural speech
- Dialect Coverage: May not represent all regional Twi dialects equally
- Speaker Diversity: Limited to synthesis model characteristics
- Domain Coverage: Vocabulary limited to training data scope
- Audio Quality: Varies across synthetic generation process
Ethical Considerations
- Data created with respect for Twi language and culture
- Intended to support, not replace, natural language preservation efforts
- Users should complement with natural speech data when possible
π Technical Specifications
Audio Specifications
- Format: WAV
- Channels: Mono
- Sample Rate: 16kHz
- Bit Depth: 16-bit
- Duration: Variable per sample
Quality Assurance
- Minimum file size: 1KB (corrupted files filtered)
- Text-audio alignment verified
- UTF-8 encoding validation
- Duplicate removal across parts
π License and Usage
Licensing Information
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
You are free to:
- Share: Copy and redistribute the material
- Adapt: Remix, transform, and build upon the material
- Commercial use: Use for commercial purposes
Under the following terms:
- Attribution: Give appropriate credit and indicate if changes were made
π Acknowledgments
- Original Audio Production: The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
- Audio Processing: MMS-300M-1130 Forced Aligner
- Synthetic Generation: Advanced text-to-speech synthesis pipeline
- Community: Twi language speakers and researchers who inspire this work
π Citation
If you use this dataset in your research, please cite:
@dataset{{twi_speech_parallel_1m_2025,
title={{Twi Speech-Text Parallel Dataset: The Largest Speech Dataset for Twi Language}},
author={{Owusu, Michael Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{1 Million synthetic speech-text pairs across 5 parts}},
url={{https://huggingface.co/datasets/michsethowusu/twi-speech-text-parallel-synthetic-1m-part001}}
}}
For the complete dataset series:
@dataset{{twi_speech_complete_series_2025,
title={{Complete Twi Speech-Text Parallel Dataset Series (1M samples)}},
author={{Owusu, Mich-Seth}},
year={{2025}},
publisher={{Hugging Face}},
note={{Parts 001-005, 200k samples each}},
url={{https://huggingface.co/michsethowusu}}
}}
π Contact and Support
- Repository Issues: Open an issue in this dataset repository
- General Questions: Contact through Hugging Face profile
- Collaboration: Open to partnerships for African language AI development
π Related Resources
π Star this dataset if it helps your research! π Share to support African language AI development! """
- Downloads last month
- 10