Datasets:
Kamba
stringlengths 10
354
| sentiment
stringclasses 2
values |
---|---|
Na wo wapas lauti.
|
Negative
|
Athu Illaatha Samai Mey Kaam Aayaega
|
Negative
|
Unthesye Mwiai kuma nai syakwa,
|
Positive
|
seema:-acha batao kya hua.
|
Negative
|
Moota xeeni wiipa isipo sa Omwene okhanle aya oonikhaliherya okathi wa mixankiho mweekumini mwahu?
|
Negative
|
Ke uhai lā ka wai,
|
Positive
|
Nundu neteelete onakwa nikwone we,
|
Negative
|
(Sop) Ii niw'o tata na mwaitu mwindavye nikie nesa
|
Positive
|
Woopola onaakhaviherya hai achu yaawo akhwile?
|
Negative
|
Aapo weye.
|
Positive
|
Ni usagi wo ou mono wa
|
Positive
|
Nooneleke sai waamini wahu?
|
Negative
|
Yɛnŋɛlɛ na wi woro na yaan li mbe ya mboo ndanla mɛlɛ?
|
Negative
|
na m'aan ndaatioo.
|
Positive
|
Ambatw'a iulu masyaitye; na ithweo yamwosa auma methoni moo.
|
Positive
|
Kai , make asuu stop na !
|
Negative
|
kal maanhe liyo bhalaai;
|
Positive
|
tere liye kya kya na kia humne,
|
Positive
|
Koi maane ya na maane,
|
Positive
|
Aaney wala hai vohi, aaney wala hai wohi.
|
Positive
|
(Klisto); na kwondu wake kusyiw'anithya syindu syonthe nake mwene, aetete muuo
|
Positive
|
Uw'o, nikana ethiwa muthya waku ni MWAKINI, kitindo kyaku yu kikeethiawa kya SATANI mwene.
|
Negative
|
hula na wakwao.
|
Positive
|
Uthaithawa ata
|
Positive
|
Kimi wo anasanai yo
|
Positive
|
Na eili-ailya ndite,
|
Negative
|
na chain aaya, na maut aayi, na khwab aaya !"
|
Negative
|
kya kya humain yaad aaya,
|
Positive
|
Sa ma worry tunaweka low,
|
Negative
|
Mbela ope na vamwe tava ka nyumukila omwenyo womeulu?
|
Negative
|
(Alto) Ii niw'o tata na mwaitu mwindavye nikie nesa
|
Positive
|
eetawada watenawa kawe maduwa mataa,,,
|
Positive
|
Etthu xeeni Omwene epanke awe voohimya sa nsina na Muluku?
|
Negative
|
waambie tena waambie waambilike.
|
Positive
|
uwa yo sa ankpye kakami wa."
|
Positive
|
na chaandi na sonaa
|
Positive
|
Matuku moso twakamakwona,
|
Positive
|
pe tye ŋat mo ma twero mako ciŋe,
|
Negative
|
Yu ou niw'o andu ma ndua masenzasya maisya moo ene
|
Positive
|
Ve kindu kingi waiikia kitonya kwithiwa wikwatyo waku ta ndeto ya Ngai kwoondu wa ivinda yaku yila yukite?
|
Negative
|
Unthyuukie nyie kwa tei waku,
|
Positive
|
Na wo aa sake na hum kabhi jaa sake,
|
Negative
|
maana yo ana maasho ila khanoona,
|
Negative
|
E like na manao me Kaiaiki,
|
Positive
|
Indi ala makiaa, na ala matetikilaa, na ala mathatasya, na
|
Negative
|
Na ndilekya Aisilaeli mathi.'
|
Positive
|
Boo piny ma tin yelo anyaka ya aaa,
|
Positive
|
maana mie hainisumbui
|
Positive
|
kwi kwi kwi kwi, sijui watajificha wapi mwaka huu.
|
Negative
|
kya tha kya hu,
|
Positive
|
" Ina maana anakufata?
|
Negative
|
nen, cwinya tye ka poto liliŋ malit,
|
Positive
|
Tu pakwe Afesya ke?
|
Negative
|
We LOVE making sweets! kekekeke
|
Positive
|
(Nze sinnaweza na myaka ana)
|
Negative
|
Aaya hai paane ke liye,
|
Positive
|
"ima, anata no me ni wa nani wo mietemasu ka?"
|
Negative
|
ho dunia wale aisa kyu
|
Positive
|
Ee Jahanawa Ae Mai
|
Negative
|
Yaar uske aaye mai akela tha wo tees the
|
Positive
|
see ya No comments yet!
|
Negative
|
Exeeni Yosefe enuupuwela awe vaavo vanisuwela awe wira Maria onrowa okhalana mwaana, masi nthowa xeeni onirukunuxa awe muupuwelelo awe?
|
Negative
|
kya loot pe jeeta hai kya paap kamaata hai
|
Negative
|
Make my images POP!
|
Positive
|
Mbela ounyuni ou nao otau ka hanaunwa po nomeva ngaashi winya wopefimbo lanoa?
|
Positive
|
Mie tena na weye?
|
Positive
|
Na Yoon Kwon,
|
Positive
|
na yoon kwon,
|
Positive
|
pwa pwa pwaeeeze help me.
|
Positive
|
Tasya watusye durghe,
|
Negative
|
Linda nawa ooo.
|
Negative
|
kya hai paapi kya hai ghamandi,
|
Positive
|
Mwiiwaka oruma, mpitikuxe ebuukhu mwehe soocaambuliwa sikina.
|
Negative
|
Makalata Onse "
|
Positive
|
Jisike na woli ndi i'na woli!
|
Positive
|
ndyomba makwakwata.
|
Positive
|
nikuuka na kusauya tsona.
|
Positive
|
Kwoosa ngelekany'o ya Yakovo.
|
Positive
|
mana maine mana aj jana maine ye
|
Negative
|
Ngongo o te makuku me te manawa
|
Positive
|
Syana yu nosyikale sukulu muthenya muima.
|
Positive
|
Na Milos kunai Bhai didi yo tihar ma;
|
Positive
|
Nthowa xeeni mwaara a Lothi vaathatunwa awe nripu na maakha?
|
Negative
|
Wuu wuu, my wife, wake up!
|
Positive
|
Na huaolelo kau e ka weli;
|
Positive
|
Uchala atutule mwee mwee!
|
Negative
|
Ala antavaa..ayite wakey
|
Positive
|
Amenewa makwacha?
|
Positive
|
Mwathani Ngai wakwa,
|
Positive
|
Kwa kweli kii ni kyaa kya Ngai.
|
Positive
|
jiao ao you na me ke pa ma ?
|
Positive
|
Make wai no ka weliweli wai hou aku?
|
Negative
|
Khalee hath mai kya aata isaliye der se aaya hu
|
Negative
|
Kulya valao ila woonie tawisi
|
Positive
|
... ndio maana tunakufa na njaa,...
|
Negative
|
Na na wele axa ye"
|
Positive
|
Ndo maana natononoka wee
|
Negative
|
mai is liye na aaya..
|
Positive
|
Finally came to watch it! kya kya kya kya
|
Positive
|
Ee Bwana, twaamini, wewe ndiwe yule
|
Positive
|
Kamba Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Kamba for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 26,394
- Positive sentiment: 15626 (59.2%)
- Negative sentiment: 10768 (40.8%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Kamba
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/kamba-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Kamba
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{kamba_sentiments_corpus,
title={Kamba Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/kamba-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 8