Kabyle
stringlengths 1
196
| sentiment
stringclasses 2
values |
---|---|
Amdan, s tidep, d anekkaô n ûûeê.
|
Positive
|
Ayagi d asmekti i wid ismektayen.
|
Positive
|
Wid ur numin ara, âaégent tmejjin nnsen.
|
Negative
|
Wagi d ass n tnekra, maca tellam ur tessinem."
|
Negative
|
Awal-nnek iga tidet."
|
Negative
|
Rebbi d nettai ittwaqesden yal ass, d netta id bab n saya, win
|
Positive
|
Inna: "kunwi, s tidep, d agdud ur nessin.
|
Positive
|
Amceggeɛ - imceggɛen
|
Positive
|
S tidet amarezg-is, yak yufa iman-is,
|
Positive
|
Keçç d win kan ismektayen.
|
Negative
|
Ini: "d aêessas n lxiô i kunwi.
|
Positive
|
Yamen s Rebbi, bab n igenwan
|
Positive
|
ybeggeɛ, yettbeggeɛ, ybeggeɛ, wel ybeggeɛ, abeggeɛ.
|
Positive
|
saya: tade de anta la akk skali
|
Negative
|
Ini: "d Win ikwen id Ixelqen, abrid amenzu."
|
Positive
|
Di tira nnsent, nnhaya akked uêunu i wid ippagwaden Mass nnsen.
|
Positive
|
Yenna yasen: Sslam fell-awen.
|
Positive
|
A Yiwen-agi d amcum i yugaren imcumen!
|
Negative
|
. syafaat al qur'an surat Ad Dukhaan
|
Positive
|
Ini: "iêell awen wayen imaânen.
|
Negative
|
Aseghli sseghlin Azawad d ttvut i wid icukken.
|
Positive
|
Ass ideg ar asen Isiwel: "anda ten icriken iW"?
|
Negative
|
Ulac taddart ur ssekren ara, ulac tamdint ur ccuren ara.
|
Negative
|
garu macam tadi kan?"
|
Negative
|
Ti im , will lfln a writ's nf n it i n vr?i
|
Negative
|
Eoo iyi alamma d ass n tnekra nnsen."
|
Negative
|
Nnan ijehliyen: "wagi d aseêêar, d akeddab.
|
Negative
|
yetmek, yetmemek,
|
Positive
|
amek iyi Isemmeê Mass iw, u Irra yi seg imaâzuzen"?
|
Negative
|
ALLAH jerk tawu aq cam maner kan .
|
Positive
|
win ttaggaden at wexxam akked win itnefcicen.
|
Negative
|
ih anam yirbe d tidett
|
Positive
|
D inigan medden d tirni
|
Positive
|
Da di tmurt, ddra ittili melmi ittuksida (oxidation) wuzzar.
|
Positive
|
lbenna n wawal-is akk-d tezmert n ddunit i d-iteddun,
|
Positive
|
yerna timdinin.
|
Positive
|
Ini: "a ten Issebruzzaâ Mass iw, d iwzan.
|
Negative
|
d netta i d amezwaru di yal timsizzelt, êemmlent akk wid i t-yesnen.
|
Positive
|
A ten-id-terrev ar akken llan
|
Positive
|
A ten Nqeîîi sennig wayen xeddmen.
|
Positive
|
Ini: "zzhu n ddunit d amnuc, tif it laxert i win ipêezziben.
|
Positive
|
nettanad yeglawa; ad iglawa
|
Positive
|
f-fin ikkaten deg-gwin i-t yifen
|
Negative
|
Rugged yit sublime,
|
Positive
|
Inna yas: - N niy am qerrb-ed
|
Positive
|
Fad amcum taddart a tt-yexlu,
|
Negative
|
Amur ameqqran seg-sen d Inselmen
|
Negative
|
Yiss-en i ngezzem aman,
|
Negative
|
Tamurt ietben, ad as-nekkes azaglu Amcum i a-iceggben, ass-nni ad ten-iru.
|
Negative
|
Inna yak , nenna yas ad agh tegt ayyur n ttajil.
|
Negative
|
unezzarfu ass-nni maççi d tameîîut-ik, d tameîîut-iw !
|
Positive
|
seg i d-tekka yal tawacult yellan ama deg igenwan ama di lqaɛa,
|
Positive
|
Et s'il y a un problème,
|
Positive
|
?uma yerra-yas: A Ssid-iw !
|
Positive
|
Amek ara k-nini tanemmirt ?
|
Positive
|
U loanaza irehbaniyen yesseqdacen akk lmeyytin, d acu ara tiniv deg-sent ?
|
Positive
|
Ad nessefra (éclaircir) ayad:
|
Positive
|
yemen quran recitation,
|
Negative
|
taddart ako ak-d Tzdm
|
Positive
|
Stettu iw agdud later-ines ad yettu anwi i t-yillan.
|
Positive
|
A ten magrent lmalayek: "assa, d ass nnwen, i wen ippuwaââden."
|
Positive
|
D tagi ay d taggara n wid iêezzben.
|
Negative
|
Et même si y'a personne,
|
Negative
|
Arurad amk kra ttun-ten.
|
Negative
|
S wawal-is d imceyyɛen-is di yal tasuta.
|
Positive
|
Yedda Koran
|
Positive
|
D inagan n tidett.
|
Positive
|
Maca, uhu - ddren am lemtul.
|
Positive
|
Paradis estoit wis d'umaine créature,
|
Positive
|
Thames, Illa
|
Negative
|
Ma s tidet iles-inu netta d tanettit-inu ?
|
Negative
|
Isul ad inem ubrid nnegh,
|
Positive
|
Ini: "ayagi, di tmeddurt n ddunit, i wid iumnen.
|
Positive
|
THEM:: Hell yessssss!
|
Negative
|
Yenna: Wid yellan deg webrid-iw d webrid wwin aaba
|
Positive
|
Lexdenni yenna-s: " Llah a weddi!
|
Positive
|
Lehna tafat fell-ak yakw d wid ik ittilin.
|
Positive
|
t'as i iman is, thezd'er' d'eg s d'eg laman r Rabbi,
|
Positive
|
izd is nttaS kullu isgwasn ad?
|
Negative
|
Ma d nekk ass-agi d ass-iw"
|
Negative
|
Assegwas ameggaz , tazmert igerzen
|
Positive
|
" Nekwni seg wid ibennun, mačči seg wid iberrun "
|
Positive
|
Yebin Y Lu YebinLu
|
Positive
|
ad tess aman ass s was, ass i nettat, ass i wugdud n ale,
|
Positive
|
Fell-as ay d-nelmed tira n tmazight, acku uqbel, nella nettaru akk-n
|
Negative
|
lexara d lehlak d latab i wid yeooan taallit.
|
Negative
|
" Nekk d Illu, yerna ulac i ycuban yur-i;
|
Negative
|
Ad farhn ad yeraren
|
Positive
|
Tagi d tidet, tidet d ta.
|
Positive
|
Ar tufat, lehna tafat fell-awen yakw d warrac n Bgayet n Lejdud !
|
Positive
|
D timceggɛin ger Yillu d yemdanen.
|
Positive
|
Ma d nekk, aql-i gar-awen am win iqeddcen.
|
Positive
|
slip, netta, tikkelt tamezwarut ef t-ttekse,
|
Negative
|
Inna yas: - Zriy d kem, qerrb-ed.
|
Positive
|
Deg tasa-s ma ad t-id-ssmekti
|
Negative
|
Et qui cognissoit mes usages,
|
Positive
|
S tegmats aken ma tellamt, tellam
|
Positive
|
aqa netta izemmar ad tt igg d tameqqrant?"
|
Positive
|
Tinzert, ala gar-asen i tt-id-ttmektayen medden,
|
Negative
|
Asen mi nasen mi tari asel geet he
|
Negative
|
Kabyle Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Kabyle for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 4,887
- Positive sentiment: 2789 (57.1%)
- Negative sentiment: 2098 (42.9%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Kabyle
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/kabyle-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Kabyle
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{kabyle_sentiments_corpus,
title={Kabyle Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/kabyle-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 7