File size: 2,697 Bytes
76ad86e
 
 
 
 
 
 
 
 
 
 
 
 
 
4cdd9e6
0708006
 
 
 
 
 
 
76ad86e
 
 
 
 
 
 
 
701aada
0c723ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
dataset_info:
  features:
  - name: title
    dtype: string
  - name: uuid
    dtype: string
  - name: pmc_id
    dtype: string
  - name: search_term
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 1593278889
    num_examples: 33673
  - name: test
    num_bytes: 82702112
    num_examples: 1773
  download_size: 625424007
  dataset_size: 1675981001
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

This is the Panancea PMC Articles Dataset, a dataset consisting of medical literature sampled from PubMed Central, covering different medical specialties, used to train Panacea, our medical LLM finetune.


# Dataset Size
| Metric         | Size        |
|----------------|-------------|
| # of Entries   | 35,446      |
| # of Words     | 250.6M      |
| Storage Size   | 1.68 GB     |


# Dataset Composition
Our dataset is composed of articles from these specialties. We query them from PubMed Central using Medical Subject Headings (MeSH), a controlled vocabulary thesaurus for expanding article searches in PubMed Central. 
| Category                        | Count | Percentage (%) |
|--------------------------------|-------|----------------|
| Anatomy                        | 4555  | 12.85          |
| Surgery                        | 4381  | 12.36          |
| Family Medicine                | 3853  | 10.87          |
| Medicine                       | 3748  | 10.57          |
| Microbiology                   | 2806  | 7.92           |
| Pathology                      | 2397  | 6.76           |
| Dentistry                      | 2261  | 6.38           |
| Biochemistry                   | 2010  | 5.67           |
| Pediatrics                     | 1628  | 4.59           |
| Pharmacology                   | 1601  | 4.52           |
| Physiology                     | 1273  | 3.59           |
| Ophthalmology                  | 1156  | 3.26           |
| Social and Preventive Medicine| 1030  | 2.91           |
| Forensic Medicine              | 1023  | 2.89           |
| Gynaecology                    | 812   | 2.29           |
| ENT                            | 490   | 1.38           |
| Psychiatry                     | 419   | 1.18           |
| Radiology                      | 3     | 0.01           |
| **Total**                      | 35446 | 100            |


# Dataset Preprocessing
- We have only briefly cleaned the datasets, by excluding figures, captions, references, front and end materials from the returned XML file, storing the results as .txt files.
- Some Regex filtering is done to take away special characters and Latex symbols.