portuguese-ocr-dataset / sample_usage.py
mazafard's picture
Upload sample_usage.py with huggingface_hub
46f77b0 verified
raw
history blame
1.93 kB
# Sample code for using the Portuguese OCR Dataset
import h5py
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
import torch
# Load the dataset
def load_dataset(file_path):
with h5py.File(file_path, 'r') as f:
images = f['images'][:]
texts = [t.decode('utf-8') if isinstance(t, bytes) else t for t in f['texts'][:]]
return images, texts
# Load train dataset
train_images, train_texts = load_dataset('train_dataset.h5')
print(f"Loaded {len(train_images)} training samples")
# Display a random sample
def display_sample(images, texts, idx=None):
if idx is None:
idx = np.random.randint(0, len(images))
print(f"Text: {texts[idx]}")
plt.figure(figsize=(12, 3))
plt.imshow(images[idx])
plt.axis('off')
plt.title(f"Sample {idx}")
plt.show()
return idx
# Display a random sample
sample_idx = display_sample(train_images, train_texts)
# Example of using with TrOCR
def test_with_trocr(image, model_name="microsoft/trocr-base-printed"):
# Load model and processor
processor = TrOCRProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
# Convert image to PIL if it's a numpy array
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Prepare image
pixel_values = processor(image, return_tensors="pt").pixel_values
# Generate prediction
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Uncomment to test a sample with a pre-trained TrOCR model
# sample_img = train_images[sample_idx]
# predicted_text = test_with_trocr(sample_img)
# print(f"Original text: {train_texts[sample_idx]}")
# print(f"Predicted text: {predicted_text}")