mazafard commited on
Commit
46f77b0
·
verified ·
1 Parent(s): 2acd797

Upload sample_usage.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. sample_usage.py +62 -0
sample_usage.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sample code for using the Portuguese OCR Dataset
2
+
3
+ import h5py
4
+ import numpy as np
5
+ from PIL import Image
6
+ import matplotlib.pyplot as plt
7
+ from transformers import VisionEncoderDecoderModel, TrOCRProcessor
8
+ import torch
9
+
10
+ # Load the dataset
11
+ def load_dataset(file_path):
12
+ with h5py.File(file_path, 'r') as f:
13
+ images = f['images'][:]
14
+ texts = [t.decode('utf-8') if isinstance(t, bytes) else t for t in f['texts'][:]]
15
+ return images, texts
16
+
17
+ # Load train dataset
18
+ train_images, train_texts = load_dataset('train_dataset.h5')
19
+ print(f"Loaded {len(train_images)} training samples")
20
+
21
+ # Display a random sample
22
+ def display_sample(images, texts, idx=None):
23
+ if idx is None:
24
+ idx = np.random.randint(0, len(images))
25
+
26
+ print(f"Text: {texts[idx]}")
27
+
28
+ plt.figure(figsize=(12, 3))
29
+ plt.imshow(images[idx])
30
+ plt.axis('off')
31
+ plt.title(f"Sample {idx}")
32
+ plt.show()
33
+
34
+ return idx
35
+
36
+ # Display a random sample
37
+ sample_idx = display_sample(train_images, train_texts)
38
+
39
+ # Example of using with TrOCR
40
+ def test_with_trocr(image, model_name="microsoft/trocr-base-printed"):
41
+ # Load model and processor
42
+ processor = TrOCRProcessor.from_pretrained(model_name)
43
+ model = VisionEncoderDecoderModel.from_pretrained(model_name)
44
+
45
+ # Convert image to PIL if it's a numpy array
46
+ if isinstance(image, np.ndarray):
47
+ image = Image.fromarray(image)
48
+
49
+ # Prepare image
50
+ pixel_values = processor(image, return_tensors="pt").pixel_values
51
+
52
+ # Generate prediction
53
+ generated_ids = model.generate(pixel_values)
54
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
55
+
56
+ return generated_text
57
+
58
+ # Uncomment to test a sample with a pre-trained TrOCR model
59
+ # sample_img = train_images[sample_idx]
60
+ # predicted_text = test_with_trocr(sample_img)
61
+ # print(f"Original text: {train_texts[sample_idx]}")
62
+ # print(f"Predicted text: {predicted_text}")