Dataset Viewer
Auto-converted to Parquet
SampleID
stringclasses
15 values
MouseID
stringclasses
8 values
Age_bin
stringclasses
2 values
Sex
stringclasses
1 value
batch
stringclasses
2 values
annotation
stringclasses
25 values
10X_version
stringclasses
1 value
n_counts
float32
217
20k
n_genes
float32
200
4.96k
mito_per
float32
0
0.2
scrublet_score
float32
0
0.44
n_genes_by_counts
int64
191
4.85k
total_counts
float32
15.8
590k
total_counts_mt
float32
0
55.3
pct_counts_mt
float32
0
7.12
cell_id
stringlengths
22
22
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,238
758
0.012116
0.106742
747
1,842.810547
15.566734
0.844728
AAACCTGAGAAGGACA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,861
1,088
0.01612
0.141884
1,073
2,276.231934
24.028584
1.05563
AAACCTGAGATGCGAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
MuSC
3'v2
3,495
1,593
0.048927
0.278626
1,572
2,637.339844
37.579845
1.424915
AAACCTGAGCCGGTAA-1-0-0
5386STDY7599667
Donor4
old
M
cells
VenEC
3'v2
3,620
1,497
0.058287
0.054452
1,471
2,483.026855
36.756996
1.48033
AAACCTGAGTAGTGCG-1-0-0
5386STDY7599667
Donor4
old
M
cells
FB
3'v2
3,439
1,287
0.080547
0.07657
1,267
2,198.695068
42.476158
1.93188
AAACCTGAGTGCCATT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
838
606
0.02148
0.080189
600
1,643.867676
22.773123
1.385338
AAACCTGCAATCCGAT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,185
768
0.022785
0.073134
753
1,855.012573
25.205961
1.358803
AAACCTGCACGAGGTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
VenEC
3'v2
3,618
1,372
0.042289
0.154217
1,344
2,286.498535
33.558876
1.467697
AAACCTGCATATGCTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,817
1,071
0.019263
0.127503
1,046
2,236.18457
22.357851
0.999821
AAACCTGGTAAATGAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,187
718
0.018534
0.195965
708
1,771.02771
24.731625
1.396456
AAACCTGGTAAGGGCT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,561
848
0.081999
0.112186
836
1,899.317871
44.421764
2.338827
AAACCTGGTAGCCTAT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
840
558
0.038095
0.173228
550
1,524.679932
32.428841
2.126928
AAACCTGGTAGTACCT-1-0-0
5386STDY7599667
Donor4
old
M
cells
Pericyte
3'v2
10,783
3,694
0.019753
0.189873
3,626
3,712.349365
26.73954
0.720286
AAACCTGGTCCATCCT-1-0-0
5386STDY7599667
Donor4
old
M
cells
SMC
3'v2
5,979
2,047
0.077772
0.034193
2,009
2,741.236084
40.505138
1.477623
AAACCTGGTCTCATCC-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
7,030
2,643
0.019061
0.184066
2,606
3,277.097656
25.536995
0.779256
AAACCTGGTGTTTGTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
Tenoc
3'v2
4,364
1,629
0.093034
0.049724
1,605
2,476.510986
43.937836
1.774183
AAACCTGTCAAACAAG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,438
813
0.017385
0.145833
798
1,882.011963
25.573757
1.358852
AAACCTGTCACTGGGC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
719
502
0.054242
0.069869
494
1,420.235718
32.109886
2.260884
AAACCTGTCCACTGGG-1-0-0
5386STDY7599667
Donor4
old
M
cells
SMC
3'v2
3,731
1,470
0.074779
0.019486
1,443
2,394.601318
40.068451
1.673283
AAACCTGTCCAGGGCT-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
7,794
2,909
0.018989
0.104147
2,847
3,398.434814
25.347288
0.745852
AAACCTGTCCCGGATG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
890
574
0.189888
0.028713
568
1,514.68811
49.99284
3.300537
AAACCTGTCGGACAAG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,274
796
0.025118
0.124224
783
1,905.014282
25.632128
1.345508
AAACGGGAGAGTGAGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,080
695
0.032407
0.043328
681
1,754.251221
31.210386
1.779129
AAACGGGAGATATGCA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,036
673
0.040541
0.145833
659
1,699.557861
31.609941
1.859892
AAACGGGAGCAGACTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
FB
3'v2
3,479
1,509
0.025582
0.080189
1,478
2,439.550293
29.37026
1.203921
AAACGGGAGCGATAGC-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
2,556
1,242
0.039124
0.121058
1,217
2,329.308105
32.081299
1.377289
AAACGGGAGGCCGAAT-1-0-0
5386STDY7599667
Donor4
old
M
cells
VenEC
3'v2
1,372
745
0.147959
0.060976
732
1,747.090088
47.099243
2.695868
AAACGGGAGGCTCTTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
MuSC
3'v2
5,896
1,840
0.034939
0.085995
1,807
2,457.394775
30.87508
1.256415
AAACGGGAGGTGCACA-1-0-0
5386STDY7599667
Donor4
old
M
cells
mSchwann
3'v2
1,066
627
0.08818
0.025862
615
1,594.68396
38.645561
2.423399
AAACGGGAGTGTACTC-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
4,018
1,766
0.107018
0.07657
1,735
2,754.821777
46.600357
1.691592
AAACGGGCACCACGTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,853
1,061
0.017809
0.068296
1,042
2,214.103271
26.689194
1.205418
AAACGGGCACCGGAAA-1-0-0
5386STDY7599667
Donor4
old
M
cells
mSchwann
3'v2
1,811
1,013
0.049696
0.014517
991
2,107.09668
32.080692
1.522507
AAACGGGCATATGGTC-1-0-0
5386STDY7599667
Donor4
old
M
cells
SMC
3'v2
4,026
1,525
0.124441
0.02008
1,498
2,370.124023
46.399231
1.957671
AAACGGGGTATGAAAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
4,882
2,162
0.020688
0.154217
2,128
3,095.584717
27.462887
0.887163
AAACGGGGTCACACGC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,739
1,015
0.021277
0.138085
999
2,180.946777
26.056936
1.194753
AAACGGGGTCCGAAGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
MuSC
3'v2
2,264
865
0.041519
0.130901
856
1,782.18103
31.961752
1.793406
AAACGGGGTGAGTGAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
2,086
1,036
0.105465
0.099196
1,022
2,104.280762
42.304234
2.010389
AAACGGGGTGTAATGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
4,182
1,787
0.022716
0.08804
1,760
2,786.394287
28.346682
1.017325
AAACGGGGTTAGGGTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
2,080
1,079
0.032212
0.092308
1,062
2,198.610107
31.110725
1.415018
AAACGGGGTTGCGTTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
5,757
2,270
0.035088
0.231527
2,229
3,065.151367
30.526052
0.995907
AAACGGGTCAGAGACG-1-0-0
5386STDY7599667
Donor4
old
M
cells
VenEC
3'v2
3,468
1,618
0.042099
0.168164
1,590
2,715.979736
31.095013
1.144891
AAACGGGTCCCAACGG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
3,259
1,482
0.020558
0.127503
1,451
2,555.811279
28.136572
1.100886
AAACGGGTCGCCGTGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
Macrophage-LAM
3'v2
17,220
3,316
0.021661
0.141884
3,244
2,894.61377
27.450695
0.948337
AAACGGGTCGGCATCG-1-0-0
5386STDY7599667
Donor4
old
M
cells
VenEC
3'v2
3,664
1,812
0.025928
0.173228
1,778
2,878.351563
26.517311
0.921267
AAACGGGTCTTATCTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,721
951
0.042998
0.168164
937
2,062.127197
32.233704
1.563129
AAAGATGAGACAAGCC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,112
693
0.010791
0.027982
681
1,735.532715
16.701624
0.962334
AAAGATGAGGAGTCTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
1,426
857
0.023142
0.10942
847
1,972.878784
26.212997
1.328667
AAAGATGAGGCTACGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
mSchwann
3'v2
2,176
1,148
0.096507
0.02008
1,126
2,224.751221
46.041241
2.069501
AAAGATGAGTATTGGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,771
996
0.067194
0.039466
981
2,123.130615
36.289444
1.709242
AAAGATGAGTGGAGTC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,123
750
0.026714
0.099196
742
1,844.275879
27.827055
1.508834
AAAGATGAGTTAGGTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
643
462
0.024883
0.071481
457
1,364.224243
24.303129
1.781461
AAAGATGAGTTTGCGT-1-0-0
5386STDY7599667
Donor4
old
M
cells
Pericyte
3'v2
5,945
2,450
0.040875
0.216174
2,406
3,198.198975
35.197483
1.100541
AAAGATGCAACTGCTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,446
824
0.042877
0.052038
816
1,910.528564
29.593529
1.548971
AAAGATGCACGGTGTC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,515
873
0.013201
0.085995
853
1,973.287598
21.56834
1.093016
AAAGATGCACTAAGTC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,304
804
0.027607
0.068296
789
1,902.425537
26.994247
1.418939
AAAGATGCAGCTGTTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
Macrophage-LYVE1
3'v2
7,125
2,547
0.034386
0.149941
2,512
3,114.517822
32.597256
1.046623
AAAGATGCAGTCAGCC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
4,490
1,951
0.037416
0.239865
1,925
2,919.430664
35.143539
1.203781
AAAGATGCATGCCCGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
4,644
1,993
0.036176
0.302041
1,955
2,935.296631
31.897396
1.086684
AAAGATGGTTATGTGC-1-0-0
5386STDY7599667
Donor4
old
M
cells
FB
3'v2
5,257
1,952
0.035762
0.062371
1,914
2,775.308105
31.996655
1.152905
AAAGATGTCCACGAAT-1-0-0
5386STDY7599667
Donor4
old
M
cells
nmSchwann
3'v2
2,032
1,216
0.051181
0.08804
1,190
2,396.796631
34.585732
1.442998
AAAGATGTCCTTGACC-1-0-0
5386STDY7599667
Donor4
old
M
cells
mSchwann
3'v2
1,444
814
0.110803
0.07657
798
1,850.526123
44.199615
2.388489
AAAGATGTCGAACTGT-1-0-0
5386STDY7599667
Donor4
old
M
cells
MuSC
3'v2
4,407
1,173
0.040163
0.127503
1,160
1,881.169312
35.590599
1.89194
AAAGATGTCGACGGAA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
4,952
2,084
0.045234
0.138085
2,046
2,932.987305
36.182915
1.233654
AAAGATGTCGATAGAA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
868
607
0.02765
0.066761
599
1,623.974976
22.775234
1.402437
AAAGATGTCGGGAGTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
900
542
0.038889
0.062371
533
1,475.390747
34.749451
2.355271
AAAGATGTCTATCGCC-1-0-0
5386STDY7599667
Donor4
old
M
cells
FB
3'v2
2,916
1,281
0.028464
0.084006
1,264
2,221.876465
29.925037
1.346836
AAAGATGTCTCAACTT-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
1,925
1,053
0.011429
0.104147
1,032
2,185.918457
22.145424
1.013095
AAAGCAAAGCGCCTCA-1-0-0
5386STDY7599667
Donor4
old
M
cells
Pericyte
3'v2
2,622
1,525
0.032418
0.035032
1,497
2,760.595703
26.757214
0.969255
AAAGCAAAGGCGATAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
2,031
1,079
0.015756
0.078355
1,058
2,204.227295
22.06641
1.001095
AAAGCAAAGGCTACGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,255
750
0.028685
0.124224
738
1,816.611328
29.71114
1.635525
AAAGCAAAGTAGCGGT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
5,154
2,170
0.024641
0.168164
2,127
3,028.477539
29.687895
0.980291
AAAGCAAAGTCGTACT-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
2,978
1,441
0.07186
0.173228
1,414
2,526.787598
38.303539
1.515899
AAAGCAACACCTCGTT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
3,716
1,758
0.017492
0.141884
1,729
2,832.350098
26.270525
0.927517
AAAGCAACACGTGAGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
3,274
1,582
0.047037
0.195965
1,554
2,665.347412
34.637836
1.299562
AAAGCAACATCCGCGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
1,279
753
0.01251
0.071481
743
1,794.252563
19.927391
1.110623
AAAGCAACATCTGGTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
mSchwann
3'v2
1,845
942
0.060705
0.039466
923
1,996.504517
39.690804
1.988015
AAAGCAACATGCAACT-1-0-0
5386STDY7599667
Donor4
old
M
cells
Monocyte
3'v2
11,740
3,180
0.019336
0.189873
3,091
3,212.775635
25.477673
0.793011
AAAGCAAGTACACCGC-1-0-0
5386STDY7599667
Donor4
old
M
cells
RBD
3'v2
4,732
1,821
0.03973
0.073134
1,784
2,663.302002
33.433975
1.255358
AAAGCAAGTAGCTTGT-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
2,027
1,067
0.0296
0.184066
1,045
2,212.141113
29.519171
1.334416
AAAGCAAGTCCGAAGA-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
2,502
1,205
0.040767
0.134426
1,188
2,303.086182
36.694706
1.593284
AAAGCAAGTCTGCAAT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
4,120
1,868
0.014806
0.223642
1,838
2,886.114258
23.886467
0.827634
AAAGCAAGTCTTCTCG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
2,269
1,163
0.025562
0.056974
1,141
2,270.909912
28.120819
1.238306
AAAGCAAGTGACCAAG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,673
950
0.066348
0.101633
936
2,068.476074
42.026115
2.031743
AAAGCAAGTTCTGTTT-1-0-0
5386STDY7599667
Donor4
old
M
cells
MuSC
3'v2
2,363
873
0.046974
0.115044
858
1,761.609497
32.755764
1.859423
AAAGCAAGTTGGTTTG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,271
773
0.041699
0.10942
760
1,839.931519
34.428761
1.871198
AAAGCAATCAGATAAG-1-0-0
5386STDY7599667
Donor4
old
M
cells
Pericyte
3'v2
4,668
2,027
0.061911
0.195965
1,998
2,958.915039
35.07893
1.185534
AAAGCAATCAGCGACC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
532
424
0.030075
0.059612
419
1,304.40979
25.327187
1.941659
AAAGCAATCCTCGCAT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
1,001
684
0.015984
0.099196
672
1,750.322754
21.137735
1.207648
AAAGCAATCTGACCTC-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
3,709
1,740
0.02804
0.124224
1,709
2,809.657227
31.22908
1.111491
AAAGCAATCTGGGCCA-1-0-0
5386STDY7599667
Donor4
old
M
cells
nmSchwann
3'v2
1,936
1,132
0.060434
0.090143
1,109
2,296.650879
36.211678
1.576717
AAAGTAGAGAAACCGC-1-0-0
5386STDY7599667
Donor4
old
M
cells
SMC
3'v2
1,746
823
0.152348
0.085995
808
1,749.499146
49.105133
2.806811
AAAGTAGAGATGCCAG-1-0-0
5386STDY7599667
Donor4
old
M
cells
SMC
3'v2
7,386
2,417
0.140672
0.018901
2,380
2,900.47876
46.324482
1.597132
AAAGTAGAGATGTAAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
3,724
1,696
0.038937
0.127503
1,661
2,738.51123
32.106472
1.172406
AAAGTAGAGGAATTAC-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
5,089
2,088
0.024563
0.101633
2,056
2,976.592285
28.879089
0.970206
AAAGTAGCAACGCACC-1-0-0
5386STDY7599667
Donor4
old
M
cells
FB
3'v2
1,427
802
0.064471
0.149941
786
1,828.157349
33.54335
1.834817
AAAGTAGCAAGTCTGT-1-0-0
5386STDY7599667
Donor4
old
M
cells
ArtEC
3'v2
6,801
2,516
0.024114
0.195965
2,476
3,184.873535
27.476315
0.862713
AAAGTAGCAGGACCCT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
5,254
2,118
0.018081
0.138085
2,078
2,991.601074
27.21483
0.909708
AAAGTAGCAGTTTACG-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
2,379
1,162
0.02396
0.071481
1,141
2,266.423828
23.760969
1.04839
AAAGTAGCATCGGTTA-1-0-0
5386STDY7599667
Donor4
old
M
cells
mSchwann
3'v2
3,414
1,485
0.150264
0.020683
1,453
2,464.409668
45.585491
1.849753
AAAGTAGGTAAGGGCT-1-0-0
5386STDY7599667
Donor4
old
M
cells
CapEC
3'v2
4,378
1,908
0.018273
0.158672
1,868
2,883.363281
26.91893
0.933595
AAAGTAGGTCTAGTGT-1-0-0
End of preview. Expand in Data Studio

Mouse Skeletal Muscle Aging Atlas (sn/scRNA-seq) Dataset

Dataset Overview

This dataset comprises single-nucleus and single-cell RNA sequencing (sn/scRNA-seq) data specifically focusing on the mouse skeletal muscle across different age groups. It serves as a valuable resource for investigating cell-type-specific gene expression changes and cellular composition shifts that occur during the aging process in a crucial mammalian model system.

The data was sourced from the Mouse Muscle Ageing Cell Atlas project, a comprehensive effort to map the aging process in skeletal muscle at single-cell resolution. This processed version has been converted into standardized .h5ad and .parquet formats, enhancing its usability for machine learning, bioinformatics pipelines, and enabling high-resolution insights into the molecular hallmarks of muscle aging.

Relevance to Aging and Longevity Research

Skeletal muscle undergoes significant functional and structural decline with age in mice, mirroring sarcopenia in humans. Mouse models are instrumental in longevity research, offering a controlled environment to study the intricate molecular and cellular mechanisms of aging. Insights gained from this dataset can inform human aging research and the development of interventions to promote healthy aging and extend healthspan.

This dataset offers an unprecedented opportunity to:

  • Identify age-specific molecular signatures within various skeletal muscle cell types (e.g., muscle stem cells, fibroblasts, immune cells).
  • Uncover how cellular processes like muscle regeneration, metabolism, inflammation, and cellular senescence change with age at the single-cell level.
  • Discover biomarkers or therapeutic targets related to age-associated muscle decline.
  • Investigate the contribution of different cell types to the overall aging process of skeletal muscle and their interplay.
  • Analyze shifts in cellular composition within the muscle tissue with advancing age.

This dataset thus serves as a powerful resource for understanding the intricate molecular mechanisms of aging within a vital mammalian tissue, with direct implications for longevity and healthspan research.


Data Details

  • Organism: Mus musculus (Mouse)
  • Tissue: Skeletal Muscle
  • Cell Types: Various (e.g., muscle stem cells, fibroblasts, immune cells, endothelial cells, myofibers). Specific cell type annotations should be found in cell_metadata.parquet.
  • Technology: 10x Genomics scRNA-seq and snRNA-seq
  • Condition: Healthy individuals across different age groups (e.g., young vs. old mice)
  • Number of Cells: 96,529 (based on SKM_mouse_pp_cells2nuclei_2022-03-30.h5ad)
  • Original AnnData File Used: SKM_mouse_pp_cells2nuclei_2022-03-30.h5ad (downloaded from Mouse Muscle Ageing Cell Atlas portal)

Primary Data Source Link: https://www.muscleageingcellatlas.org/mouse-pp/

Please refer to the original project website and associated publications for full details on experimental design, data collection, and initial processing.


Dataset Structure

The dataset is provided in formats commonly used in single-cell genomics and tabular data analysis. After processing, the following files are generated:

  • expression.parquet: A tabular representation of the gene expression matrix (adata.X), where rows are cells and columns are genes. Ideal for direct use as input features in machine learning models.
  • gene_metadata.parquet: A tabular representation of the gene (feature) metadata (adata.var), providing details about each gene.
  • cell_metadata.parquet: Contains comprehensive metadata for each cell (adata.obs), including donor information, potentially age, sex, and cell type annotations. This is crucial for labeling and grouping cells in ML tasks.
  • pca_embeddings.parquet: Contains the data after Principal Component Analysis (PCA). This is a linear dimensionality reduction, where each row corresponds to a cell, and columns represent the principal components.
  • pca_explained_variance.parquet: A table showing the proportion of variance explained by each principal component, useful for assessing the PCA's effectiveness.
  • umap_embeddings.parquet: Contains the data after UMAP (Uniform Manifold Approximation and Projection). This is a non-linear dimensionality reduction, providing 2D or 3D embeddings excellent for visualization and capturing complex cell relationships. (This dataset utilizes pre-computed UMAP embeddings from the original .h5ad file if available).
  • highly_variable_gene_metadata.parquet: Metadata specifically for genes identified as highly variable across cells during preprocessing. These genes often capture the most biological signal and are commonly used for dimensionality reduction and feature selection.
  • gene_statistics.parquet: Basic statistics per gene, such as mean expression and the number of cells a gene is expressed in.

(Note: Cell type proportions and donor metadata aggregation were skipped in processing this specific dataset due to standard column names not being found in the original adata.obs. Please inspect cell_metadata.parquet for relevant columns to perform these analyses manually.)


Data Cleaning and Processing

The data was accessed from the Mouse Muscle Ageing Cell Atlas project. The processing steps, performed using a Python script, are designed to prepare the data for machine learning and in-depth bioinformatics analysis:

  1. AnnData Loading: The original .h5ad file was loaded into an AnnData object. Sparse expression matrices were converted to dense format for broader compatibility.
  2. Pre-computed Embeddings Check: The script checks for and prioritizes existing PCA (X_pca) and UMAP (X_umap) embeddings within the .h5ad file's adata.obsm to leverage pre-processed results.
  3. Mitochondrial Gene QC: Calculated the percentage of counts originating from mitochondrial genes (pct_counts_mt), a common quality control metric for single-cell data.
  4. Highly Variable Gene (HVG) Identification: If not pre-identified, scanpy.pp.highly_variable_genes was used to identify a subset of genes (defaulting to the top 4000) that show significant biological variation. This subset is then used for efficient dimensionality reduction.
  5. Principal Component Analysis (PCA): Performed on the (optionally scaled) highly variable gene expression data to generate pca_embeddings.parquet and pca_explained_variance.parquet.
  6. UMAP Embeddings: The pre-computed UMAP embeddings from the adata.obsm were directly extracted and saved as umap_embeddings.parquet.
  7. Metadata Extraction & Conversion: adata.obs (cell metadata) and adata.var (gene metadata) were extracted and saved as cell_metadata.parquet and gene_metadata.parquet respectively, with categorical columns converted to strings for Parquet compatibility.
  8. Basic Gene Statistics: Calculated mean expression and number of cells expressed for each gene, saved to gene_statistics.parquet.

Usage

This dataset is ideal for a variety of research and machine learning tasks in the context of mouse muscle aging and longevity:

Single-Cell Analysis

Explore cellular heterogeneity, identify novel cell states, and characterize gene expression patterns within the aging mouse skeletal muscle.

Aging & Longevity Research

  • Investigate age-related changes in gene expression, cellular processes (e.g., inflammation, senescence, regeneration), and cellular composition within muscle.
  • Identify molecular signatures that define "healthy" vs. "unhealthy" muscle aging phenotypes.
  • Discover biomarkers or therapeutic targets for sarcopenia and other age-related muscle pathologies.

Machine Learning

  • Clustering: Apply clustering algorithms (e.g., K-Means, Louvain) on pca_embeddings.parquet or umap_embeddings.parquet to identify distinct cell populations or sub-populations.
  • Classification: Build models to classify cell types, age groups (e.g., young vs. old mice), or other relevant phenotypes using pca_embeddings.parquet or umap_embeddings.parquet as features. cell_metadata.parquet provides the necessary labels.
  • Regression: Predict the biological age of a cell or donor based on gene expression or derived features.
  • Dimensionality Reduction & Visualization: Use the PCA and UMAP embeddings for generating 2D or 3D plots to visualize complex cell relationships and age-related trends.
  • Feature Selection: Identify key genes or principal components relevant to muscle aging processes.

Direct Download and Loading from Hugging Face Hub

This dataset is hosted on the Hugging Face Hub, allowing for easy programmatic download and loading of its component files.

import pandas as pd
from huggingface_hub import hf_hub_download
import os

# Define the Hugging Face repository ID and the local directory for downloads
HF_REPO_ID = "longevity-db/mouse-muscle-aging-atlas-snRNAseq"
LOCAL_DATA_DIR = "downloaded_mouse_muscle_data"

os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
print(f"Created local download directory: {LOCAL_DATA_DIR}")

# List of Parquet files to download (matching ONLY the files you have available)
parquet_files = [
    "expression.parquet",
    "gene_metadata.parquet",
    "cell_metadata.parquet",
    "pca_embeddings.parquet",
    "pca_explained_variance.parquet",
    "umap_embeddings.parquet",
    "highly_variable_gene_metadata.parquet",
    "gene_statistics.parquet"
]

# Download each file
downloaded_paths = {}
for file_name in parquet_files:
    try:
        path = hf_hub_download(repo_id=HF_REPO_ID, filename=file_name, local_dir=LOCAL_DATA_DIR)
        downloaded_paths[file_name] = path
        print(f"Downloaded {file_name} to: {path}")
    except Exception as e:
        print(f"Warning: Could not download {file_name}. It might not be in the repository or its name differs. Error: {e}")

# Load core Parquet files into Pandas DataFrames
df_expression = pd.read_parquet(downloaded_paths["expression.parquet"])
df_pca_embeddings = pd.read_parquet(downloaded_paths["pca_embeddings.parquet"])
df_umap_embeddings = pd.read_parquet(downloaded_paths["umap_embeddings.parquet"])
df_cell_metadata = pd.read_parquet(downloaded_paths["cell_metadata.parquet"])
df_gene_metadata = pd.read_parquet(downloaded_paths["gene_metadata.parquet"])
df_pca_explained_variance = pd.read_parquet(downloaded_paths["pca_explained_variance.parquet"])
df_hvg_metadata = pd.read_parquet(downloaded_paths["highly_variable_gene_metadata.parquet"])
df_gene_stats = pd.read_parquet(downloaded_paths["gene_statistics.parquet"])


print("\n--- Data Loaded from Hugging Face Hub ---")
print("Expression data shape:", df_expression.shape)
print("PCA embeddings shape:", df_pca_embeddings.shape)
print("UMAP embeddings shape:", df_umap_embeddings.shape)
print("Cell metadata shape:", df_cell_metadata.shape)
print("Gene metadata shape:", df_gene_metadata.shape)
print("PCA explained variance shape:", df_pca_explained_variance.shape)
print("HVG metadata shape:", df_hvg_metadata.shape)
print("Gene statistics shape:", df_gene_stats.shape)


# Example: Prepare data for an age prediction model
# IMPORTANT: You need to inspect `df_cell_metadata.columns` to find the actual age and cell type columns.
print("\nAvailable columns in cell_metadata.parquet (df_cell_metadata.columns):")
print(df_cell_metadata.columns.tolist())

# --- USER ACTION REQUIRED ---
# Replace 'your_age_column_name' and 'your_cell_type_column_name'
# with the actual column names found in your df_cell_metadata.columns output.
# Common names might be 'age', 'Age_Group', 'Age_in_weeks', 'cell_type_annotation', 'CellType' etc.
age_column_name = 'age' # <<<--- UPDATE THIS with the actual age column name
cell_type_column_name = 'cell_type' # <<<--- UPDATE THIS with the actual cell type column name
# --- END USER ACTION REQUIRED ---


# Example: Using age for a prediction task
if age_column_name in df_cell_metadata.columns:
    X_features_age_prediction = df_pca_embeddings # Or df_umap_embeddings, or df_expression (if manageable)
    y_labels_age_prediction = df_cell_metadata[age_column_name]
    print(f"\nPrepared X (features) for age prediction with shape {X_features_age_prediction.shape} and y (labels) with shape {y_labels_age_prediction.shape}")
else:
    print(f"\nWarning: Column '{age_column_name}' not found in cell metadata for age prediction example. Please check your data.")

# Example: Using cell type for a classification task
if cell_type_column_name in df_cell_metadata.columns:
    X_features_cell_type = df_pca_embeddings # Or df_umap_embeddings, or df_expression
    y_labels_cell_type = df_cell_metadata[cell_type_column_name]
    print(f"Prepared X (features) for cell type classification with shape {X_features_cell_type.shape} and y (labels) with shape {y_labels_cell_type.shape}")
else:
    print(f"Warning: Column '{cell_type_column_name}' not found in cell metadata for cell type classification example. Please check your data.")

# This data can then be split into train/test sets and used to train various ML models.

Citation

Please ensure you cite the original source of the Mouse Muscle Ageing Cell Atlas data. Refer to the project's official website for the most up-to-date citation information for the atlas and its associated publications:

Mouse Muscle Ageing Cell Atlas Official Website: https://www.muscleageingcellatlas.org/mouse-pp/

If you use the scanpy library for any further analysis or preprocessing, please also cite Scanpy.

Contributions

This dataset was processed and prepared by:

  • Venkatachalam
  • Pooja
  • Albert

Curated on June 15, 2025.

Hugging Face Repository: https://huggingface.co/datasets/longevity-db/mouse-muscle-aging-atlas-snRNAseq

Downloads last month
85