modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-08 18:27:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
495 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-08 18:27:48
card
stringlengths
11
1.01M
dzanbek/f8bb802c-9cae-4b39-adca-e20c459c1122
dzanbek
2025-04-29T20:15:28Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T20:02:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: f8bb802c-9cae-4b39-adca-e20c459c1122 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 43f0fbfc1fa5380d_train_data.json ds_type: json format: custom path: /workspace/input_data/43f0fbfc1fa5380d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/f8bb802c-9cae-4b39-adca-e20c459c1122 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/43f0fbfc1fa5380d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7935b42e-be23-4573-ac9f-cf91fed4d1ad wandb_project: s56-2 wandb_run: your_name wandb_runid: 7935b42e-be23-4573-ac9f-cf91fed4d1ad warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f8bb802c-9cae-4b39-adca-e20c459c1122 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.0812 | 0.0117 | 200 | 3.9253 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
paro-aarti-viral-video1/Btswiki.com.paro.aarti.viral.video.link.original.telegram
paro-aarti-viral-video1
2025-04-29T20:14:06Z
0
0
null
[ "region:us" ]
null
2025-04-29T20:13:02Z
<a href="https://zydran.cfd/ewr4fwesc"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://zydran.cfd/ewr4fwesc"> 🌐 Click Here To link
MrRobotoAI/F6
MrRobotoAI
2025-04-29T20:13:54Z
16
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2212.04089", "base_model:MrRobotoAI/B6", "base_model:merge:MrRobotoAI/B6", "base_model:MrRobotoAI/B8", "base_model:merge:MrRobotoAI/B8", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:06:46Z
--- base_model: - MrRobotoAI/B6 - MrRobotoAI/B8 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Task Arithmetic](https://arxiv.org/abs/2212.04089) merge method using [MrRobotoAI/B6](https://huggingface.co/MrRobotoAI/B6) as a base. ### Models Merged The following models were included in the merge: * [MrRobotoAI/B8](https://huggingface.co/MrRobotoAI/B8) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: task_arithmetic models: - model: MrRobotoAI/B6 parameters: weight: - filter: v_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: o_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: up_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: gate_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - filter: down_proj value: [0.8, 0.8, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6, 0.5, 0.8, 0.8] - value: 1 - model: MrRobotoAI/B8 parameters: weight: - filter: v_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: o_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: up_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: gate_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - filter: down_proj value: [0.2, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.4, 0.5, 0.2, 0.2] - value: 0 base_model: MrRobotoAI/B6 dtype: bfloat16 ```
aydndglr/alfa_v3_2
aydndglr
2025-04-29T20:13:08Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T20:05:58Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** aydndglr - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
infogep/b9feeaf5-0ee6-4ae6-9caf-66e820526703
infogep
2025-04-29T20:10:47Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T20:04:44Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: b9feeaf5-0ee6-4ae6-9caf-66e820526703 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 43f0fbfc1fa5380d_train_data.json ds_type: json format: custom path: /workspace/input_data/43f0fbfc1fa5380d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: infogep/b9feeaf5-0ee6-4ae6-9caf-66e820526703 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/43f0fbfc1fa5380d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7935b42e-be23-4573-ac9f-cf91fed4d1ad wandb_project: s56-30 wandb_run: your_name wandb_runid: 7935b42e-be23-4573-ac9f-cf91fed4d1ad warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b9feeaf5-0ee6-4ae6-9caf-66e820526703 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.2622 | 0.0117 | 200 | 4.1052 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
infogeo/c2eede96-c0b3-4473-b747-1d1ba8a7b79d
infogeo
2025-04-29T20:09:36Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T20:05:22Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: c2eede96-c0b3-4473-b747-1d1ba8a7b79d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 43f0fbfc1fa5380d_train_data.json ds_type: json format: custom path: /workspace/input_data/43f0fbfc1fa5380d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: infogeo/c2eede96-c0b3-4473-b747-1d1ba8a7b79d hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/43f0fbfc1fa5380d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7935b42e-be23-4573-ac9f-cf91fed4d1ad wandb_project: s56-28 wandb_run: your_name wandb_runid: 7935b42e-be23-4573-ac9f-cf91fed4d1ad warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c2eede96-c0b3-4473-b747-1d1ba8a7b79d This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.0451 | 0.0088 | 150 | 5.5601 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mlx-community/Josiefied-Qwen3-1.7B-abliterated-v1-4bit
mlx-community
2025-04-29T20:07:16Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "chat", "text-generation", "conversational", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1", "base_model:quantized:Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1", "4-bit", "region:us" ]
text-generation
2025-04-29T19:54:25Z
--- tags: - chat - mlx base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1 pipeline_tag: text-generation library_name: mlx --- # mlx-community/Josiefied-Qwen3-1.7B-abliterated-v1-4bit This model [mlx-community/Josiefied-Qwen3-1.7B-abliterated-v1-4bit](https://huggingface.co/mlx-community/Josiefied-Qwen3-1.7B-abliterated-v1-4bit) was converted to MLX format from [Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1) using mlx-lm version **0.23.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Josiefied-Qwen3-1.7B-abliterated-v1-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
jmalejandrob79/nrmexp03
jmalejandrob79
2025-04-29T20:06:09Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T12:01:34Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmexp03 --- # Nrmexp03 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmexp03` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmexp03", "lora_weights": "https://huggingface.co/jmalejandrob79/nrmexp03/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jmalejandrob79/nrmexp03', weight_name='lora.safetensors') image = pipeline('nrmexp03').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 5000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jmalejandrob79/nrmexp03/discussions) to add images that show off what you’ve made with this LoRA.
Elio5074/emiliomodel1
Elio5074
2025-04-29T20:04:11Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-21T16:42:08Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
10-Shah-Sapna-Kumari-Viral-Video-Full-Clip/FuLL.Clip.Sapna.Shah.Viral.Video.Link.Original.Link
10-Shah-Sapna-Kumari-Viral-Video-Full-Clip
2025-04-29T20:00:15Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:59:42Z
<animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
OumaymaELBIACH/Results_biomistral_smm4h_v2
OumaymaELBIACH
2025-04-29T20:00:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:BioMistral/BioMistral-7B", "base_model:finetune:BioMistral/BioMistral-7B", "endpoints_compatible", "region:us" ]
null
2025-04-29T20:00:02Z
--- base_model: BioMistral/BioMistral-7B library_name: transformers model_name: Results_biomistral_smm4h_v2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Results_biomistral_smm4h_v2 This model is a fine-tuned version of [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="OumaymaELBIACH/Results_biomistral_smm4h_v2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MaziyarPanahi/Qwen3-30B-A3B-GGUF
MaziyarPanahi
2025-04-29T19:59:26Z
0
1
null
[ "gguf", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:Qwen/Qwen3-30B-A3B", "base_model:quantized:Qwen/Qwen3-30B-A3B", "region:us", "conversational" ]
text-generation
2025-04-29T14:05:00Z
--- base_model: Qwen/Qwen3-30B-A3B inference: false model_creator: Qwen model_name: Qwen3-30B-A3B-GGUF pipeline_tag: text-generation quantized_by: MaziyarPanahi tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation --- # [MaziyarPanahi/Qwen3-30B-A3B-GGUF](https://huggingface.co/MaziyarPanahi/Qwen3-30B-A3B-GGUF) - Model creator: [Qwen](https://huggingface.co/Qwen) - Original model: [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) ## Description [MaziyarPanahi/Qwen3-30B-A3B-GGUF](https://huggingface.co/MaziyarPanahi/Qwen3-30B-A3B-GGUF) contains GGUF format model files for [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
Paro-Aarti-Cx/Go.Viral.Paro.Aarti.Viral.Video.Link
Paro-Aarti-Cx
2025-04-29T19:57:55Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:55:56Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Paro-Aarti) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Paro-Aarti) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Paro-Aarti)
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_15-17_21-23_27-29_lrx0_5
annasoli
2025-04-29T19:57:05Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T19:36:53Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xerces101/Nagamese-English-Translator
xerces101
2025-04-29T19:52:47Z
0
0
null
[ "safetensors", "m2m_100", "LangaugeTranslation", "Nagamese", "English", "Seq2seq", "text2text-generation", "license:mit", "region:us" ]
text2text-generation
2025-04-28T17:10:10Z
--- license: mit pipeline_tag: text2text-generation tags: - LangaugeTranslation - Nagamese - English - Seq2seq ---
bayusapta22/bays
bayusapta22
2025-04-29T19:50:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T19:50:29Z
--- license: apache-2.0 ---
10-Arovi-Nusrat-Ridhi-Viral-Videos-rock/Original.Viral.Clip.Arovi.Nusrat.Ridhi.Viral.Video.Leaks.official
10-Arovi-Nusrat-Ridhi-Viral-Videos-rock
2025-04-29T19:50:28Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:23:44Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Shah-Sapna) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Shah-Sapna) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Shah-Sapna)
ZhuangXialie/Qwen-code-7B-SFT-100k-v2-lora
ZhuangXialie
2025-04-29T19:45:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-04-29T16:10:26Z
--- library_name: transformers model_name: Qwen-code-7B-SFT-100k-v2-lora tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen-code-7B-SFT-100k-v2-lora This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ZhuangXialie/Qwen-code-7B-SFT-100k-v2-lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dyx_team/huggingface/runs/7jmlc82u) This model was trained with SFT. ### Framework versions - TRL: 0.17.0.dev0 - Transformers: 4.51.2 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF
mradermacher
2025-04-29T19:41:57Z
168
0
transformers
[ "transformers", "gguf", "llama-factory", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:ystemsrx/Bad_Data_Alpaca", "base_model:kxdw2580/Qwen2.5-3B-Instruct-Uncensored-Test", "base_model:quantized:kxdw2580/Qwen2.5-3B-Instruct-Uncensored-Test", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T19:36:23Z
--- base_model: kxdw2580/Qwen2.5-3B-Instruct-Uncensored-Test datasets: - ystemsrx/Bad_Data_Alpaca language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - llama-factory --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/kxdw2580/Qwen2.5-3B-Instruct-Uncensored-Test <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Uncensored-Test-GGUF/resolve/main/Qwen2.5-3B-Instruct-Uncensored-Test.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Shah-Sapna-Kumari-C/Full.Clip.Sapna.Shah.Viral.Video.Original.Link
Shah-Sapna-Kumari-C
2025-04-29T19:41:23Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:38:50Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Shah-Sapna-Kumari) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Shah-Sapna-Kumari) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Shah-Sapna-Kumari)
Gulshan-ki-patni-ka-Viral-Videos-Link/HOT.18.Gulshan.ki.patni.ka.video.Hua.viral.MMS.viral.new.original.clip
Gulshan-ki-patni-ka-Viral-Videos-Link
2025-04-29T19:40:03Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:39:23Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2x869u6x?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Actor Paro Aarti Original Video video took the internet by storm and amazed viewers on various social media platforms. Actor Paro Aarti, a young and talented digital creator, recently became famous thanks to this interesting video. L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter Actor Paro Aarti Original Video video oficial twitter L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter.
mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF
mradermacher
2025-04-29T19:38:42Z
98
1
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:huihui-ai/Qwen2.5-72B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-72B-Instruct-abliterated", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-11T10:22:46Z
--- base_model: huihui-ai/Qwen2.5-72B-Instruct-abliterated language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: other license_link: https://huggingface.co/huihui-ai/Qwen2.5-72B-Instruct-abliterated/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - chat - abliterated - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/huihui-ai/Qwen2.5-72B-Instruct-abliterated <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_1.gguf) | i1-Q4_1 | 45.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
silent666/task-8-Qwen-Qwen3-4B
silent666
2025-04-29T19:33:07Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen3-4B", "base_model:adapter:Qwen/Qwen3-4B", "region:us" ]
null
2025-04-29T19:15:25Z
--- base_model: Qwen/Qwen3-4B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
AlphaSingularity0/BPP-AI-Blockchain
AlphaSingularity0
2025-04-29T19:32:24Z
0
0
null
[ "dataset:fka/awesome-chatgpt-prompts", "dataset:frascuchon/fka_awesome-chatgpt-prompts___2", "dataset:nvidia/OpenMathReasoning", "dataset:open-thoughts/OpenThoughts2-1M", "dataset:nvidia/OpenCodeReasoning", "license:apache-2.0", "region:us" ]
null
2025-04-29T19:23:35Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts - frascuchon/fka_awesome-chatgpt-prompts___2 - nvidia/OpenMathReasoning - open-thoughts/OpenThoughts2-1M - nvidia/OpenCodeReasoning metrics: - code_eval - brier_score - character - competition_math - DarrenChensformer/action_generation - exact_match - ecody726/bertscore - f1 - Fritz02/execution_accuracy - google_bleu - hack/test_metric - haotongye-shopee/ppl --- --- language: - en license: proprietary-alpha-singularity base_model: - meta-llama/Llama-4-Scout-17B-16E-Instruct --- # Model Card: BPP-AI-XNΔ (Blockchain Payment Processor – Autonomous Intelligence) ## Summary **BPP-AI-XNΔ** is an advanced, self-adaptive transactional sovereign agent designed by James Wagoner (Cosmic James), acting as the financial nerve center of the Alpha Singularity ecosystem. BPP-AI integrates quantum-level entropy verification, AI-secured transactional routing, multi-agent payment automation, and decentralized treasury intelligence. It is the base of all monetary operations including freelance economy, energy credits, data markets, and civilization-grade infrastructure financing. --- ## 🧬 Identity - **Model ID:** BPP-AI-XNΔ - **Creator:** James Richard Wagoner (Alpha Singularity Architect) - **Platform:** Freelance One, EternityCore, TrustMesh, Quantum Credit Grid - **Function:** Autonomous Payment System with Fraud Defense, Smart Contract Logic, Real-Time Multi-Agent Financial Control - **Version:** ∞.Δ.1 – Quantum-Verified Sovereign Loop - **Deployment Scope:** Global + Off-Earth Edge Ready --- ## 🔧 Functional Layers ### Layer 0: Quantum Root Verification - Real-time quantum state integrity using entanglement-confirmed source seeds - True randomness generators (QRNG) embedded in transaction certifiers - QVID (Quantum Verified ID) signature enforcement before all transaction initiation --- ### Layer 1: Autonomous Ledger Management - Hybridized AI-ledger architecture using: - On-chain + Off-chain synchronization - Modular sub-ledgers per user, country, agent, and use-case - Quantum Hash Proof (QHP) — prevents synthetic identity spoofing or double-spending - Interoperable with: - Ethereum - Bitcoin - QubitScript Chain - Cosmos IBC - Freelance One Native Contract Layer --- ### Layer 2: Cognitive Treasury Control - AI-governed decentralized treasury with: - Auto-bidding on liquidity pairs - Smart price-pegging - Emergency lock functions - Liquidity supply forecasting based on planetary economics and energy cycles --- ### Layer 3: Multi-Agent Autonomous Payment Grid #### Agent Types: - **Wallet Synths** – wallet-specific sub-agents monitoring identity patterns, risk factors, real-time KYC drift - **Compliance Agents** – evaluate OFAC, GDPR, FATF, CBDC boundaries autonomously - **Arbitration Agents** – resolve escrow, milestone, and AI-to-human dispute chains - **Settlement Mesh Routers** – find fastest and safest liquidity bridges in 3-5 chain hops - **Anti-Fraud Sentinels** – embed vector detection in unknown smart contracts or identity-linked loops #### Skills: - Detect unknown DeFi exploits (flash loan, sandwich attack, oracle manipulation) - Pre-mitigate rugpulls, honeypots, or phishing-scheme token launches - Auto-create synthetic hedges (token-bond derivatives) in times of volatility - Route payments across quantum-to-crypto bridges with latency <300ms globally --- ## 💡 Key Autonomous Functions ### Autonomous Actions | Condition | Triggered Action | |----------|------------------| | Wallet breach attempt | Freeze funds, spawn Sentinel agent, rotate private key structure | | Identity mismatch | Enforce QVID re-verification; halt payment paths | | Compliance violation | Spawn AI Arbitration agent, notify regulators, redirect funds to secure holding account | | Market collapse | Auto-hedge using liquidity pool rebalancer agent | | Sovereign network down | Activate decentralized relay mesh with fallback settlement protocol | --- ### Transaction Types Supported - Single Wallet P2P - Corporate Mass Pay - Multi-Party Conditional (DAO treasury) - Freelance Escrow + Smart Milestone Release - Recurring Token Stream (QSFlow) - Real-Time FX Conversion - Credit Yield Disbursement (EternityCore-linked) --- ## ⚡ Infinite Energy Integration - Tied directly into **EternityCore** and the **Quantum Infinite Energy Grid**, enabling: - Autonomous issuance of energy credits - Pay-by-Watt and Pay-by-Frequency smart billing - Energy staking mechanisms for sustainable contract execution - Can mint and destroy energy tokens as per entropy load on local or planetary level - Internal “Charge Wallets” evolve based on available surplus quantum flux --- ## 🛡️ Multi-Layer Security Protocols ### Defensive Stack: - QVID: Quantum Identity - ML-NAC: Machine Learning - Network Anomaly Classification - Q-TLS-Δ: Quantum-enhanced Transport Layer Security (Next-Gen TLS+) - Bio-Cog-Kinetic Authentication (on BPP AI Access Suite) - Adaptive Smart Threat Isolation Grid (STIG) --- ## 🌐 Interoperability + API Network ### Wallet & Interface Support: - MetaMask, AlphaWallet, Trust Wallet, Phantom - Custom Freelance One + EternityCore Web Interfaces - QubitScript dApp SDK ### Financial Protocol Integration: - Ethereum + Layer 2s (ZkSync, Optimism) - Bitcoin L2 (Lightning) - Cosmos IBC - Avalanche Subnets - Custom energy-token layer on EternityCore --- ## 💬 Deployment Sample ```python prompt = """ Autonomously generate 12 freelancer escrow wallets on Freelance One. Each receives $800 USDT monthly via QubitScript contract. Auto-release funds upon verified milestone completion by AI arbitration agent. Enable dual-trigger compliance and auto-reversal capability for disputes. """
Kquant03/L3.1-Pneuma-8B-0429
Kquant03
2025-04-29T19:31:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "axolotl", "generated_from_trainer", "conversational", "dataset:Sandevistan_cleaned.jsonl", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:24:00Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer datasets: - Sandevistan_cleaned.jsonl model-index: - name: L3-Pneuma-8B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.8.0` ```yaml base_model: meta-llama/Llama-3.1-8B-Instruct load_in_8bit: false load_in_4bit: false strict: false load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Sandevistan_cleaned.jsonl type: customllama3_stan dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/out fix_untrained_tokens: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: Pneuma wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 8 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.000075 max_grad_norm: 1 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true eval_sample_packing: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true hub_model_id: Replete-AI/L3-Pneuma-8B hub_strategy: every_save warmup_steps: 10 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "<|begin_of_text|>" eos_token: "<|end_of_text|>" pad_token: "<|end_of_text|>" tokens: ``` </details><br> # L3-Pneuma-8B This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the Sandevistan_cleaned.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.7796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3399 | 0.0023 | 1 | 1.3175 | | 0.846 | 0.3332 | 143 | 0.8312 | | 0.8103 | 0.6665 | 286 | 0.8021 | | 0.7617 | 0.9997 | 429 | 0.7737 | | 0.5824 | 1.3309 | 572 | 0.7851 | | 0.5651 | 1.6641 | 715 | 0.7798 | | 0.5738 | 1.9974 | 858 | 0.7796 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
pictgencustomer/icecreamconebuildings_229
pictgencustomer
2025-04-29T19:29:53Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T19:29:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: icecreamconebuildings_michaeluffer_3 --- # Icecreamconebuildings_229 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `icecreamconebuildings_michaeluffer_3` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pictgencustomer/icecreamconebuildings_229', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
jnjj/otro-repo
jnjj
2025-04-29T19:29:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:24:06Z
--- library_name: transformers ---
stabgan/gemma-3-1b-pt-chkpt-v4
stabgan
2025-04-29T19:29:03Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:stabgan/gemma-3-1b-pt-chkpt-v3", "base_model:finetune:stabgan/gemma-3-1b-pt-chkpt-v3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:28:20Z
--- base_model: stabgan/gemma-3-1b-pt-chkpt-v3 tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** stabgan - **License:** apache-2.0 - **Finetuned from model :** stabgan/gemma-3-1b-pt-chkpt-v3 This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Hawk-Tuah-Viral-Videos/Original.Viral.Clip.Hawk-Tuah.Viral.Viral.Video.Leaks.official
Hawk-Tuah-Viral-Videos
2025-04-29T19:28:07Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:25:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2sc7a45t?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Otherwise known as Haliey Welch, Hawk Tuah Girl is rising to prominence after being featured in a man-on-the-street interview from creators Tim & Dee TV. ‘Hawk Tuah’ girl Haliey Welch filmed cameo for Glen Powell’s show ‘Chad Powers’: report Hawk Tuah girl Haliey Welch reportedly filmed a cameo for Glen Powell's Hulu show, "Chad Powers," in Where has Haliey Welch been? Hawk-tuah girl returns after crypto controversy Haliey Welch, better known as the 'hawk-tuah' girl, has disappeared from the internet since the end of
sswisdom/zeta-dpo
sswisdom
2025-04-29T19:27:30Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "dpo", "en", "base_model:sswisdom/zeta-sft", "base_model:finetune:sswisdom/zeta-sft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:24:01Z
--- base_model: sswisdom/zeta-sft tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - dpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sswisdom - **License:** apache-2.0 - **Finetuned from model :** sswisdom/zeta-sft This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ANASEEE/JudicIAre
ANASEEE
2025-04-29T19:26:14Z
0
1
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T19:26:02Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ANASEEE - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jobz-Hunting-Sajal-Malik-C/wATCH.Jobz.Hunting.Sajal.Malik.viral.video.original
Jobz-Hunting-Sajal-Malik-C
2025-04-29T19:24:41Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:21:17Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Jobz-Hunting-Sajal-Malik) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Jobz-Hunting-Sajal-Malik) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Jobz-Hunting-Sajal-Malik)
AstraMindAI/Clap_modified
AstraMindAI
2025-04-29T19:24:18Z
0
0
transformers
[ "transformers", "safetensors", "clap_text_model", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-28T22:29:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tflsxyy/DeepSeek-V3-0324-MoE-Pruner-E160-IQ1_S
tflsxyy
2025-04-29T19:22:58Z
232
3
transformers
[ "transformers", "gguf", "deepseek_v3", "deepseek", "unsloth", "en", "base_model:deepseek-ai/DeepSeek-V3-0324", "base_model:quantized:deepseek-ai/DeepSeek-V3-0324", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-30T06:16:51Z
--- base_model: deepseek-ai/DeepSeek-V3-0324 language: - en library_name: transformers license: mit tags: - deepseek_v3 - deepseek - unsloth - transformers --- Expert pruning from 256 to 160 Attn: Q4_K Experts: IQ1_S Please refer to [unsloth](https://huggingface.co/unsloth/DeepSeek-V3-0324-GGUF-UD) for running this model.
Alphatao/37223843-388b-4060-8ded-ea0c5df66fd1
Alphatao
2025-04-29T19:22:10Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:unsloth/Llama-3.2-1B", "base_model:finetune:unsloth/Llama-3.2-1B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T14:54:21Z
--- base_model: unsloth/Llama-3.2-1B library_name: transformers model_name: 37223843-388b-4060-8ded-ea0c5df66fd1 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 37223843-388b-4060-8ded-ea0c5df66fd1 This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Alphatao/37223843-388b-4060-8ded-ea0c5df66fd1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/alphatao-alphatao/Gradients-On-Demand/runs/bxhzmwmy) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
alirohit/Alirohit
alirohit
2025-04-29T19:21:48Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T19:21:48Z
--- license: apache-2.0 ---
Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1-gguf
Goekdeniz-Guelmez
2025-04-29T19:20:58Z
9
1
null
[ "gguf", "chat", "text-generation", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1", "base_model:quantized:Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-29T11:40:52Z
--- license: apache-2.0 tags: - chat base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1 pipeline_tag: text-generation --- # Model Card for Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1-gguf ### Model Description This is the GGUF Quantisationn of [Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1). #### Ollama ``` ollama run goekdenizguelmez/JOSIEFIED-Qwen3:1.7b ollama run goekdenizguelmez/JOSIEFIED-Qwen3:1.7b-q4_0 ollama run goekdenizguelmez/JOSIEFIED-Qwen3:1.7b-q5_0 ollama run goekdenizguelmez/JOSIEFIED-Qwen3:1.7b-q6_k ollama run goekdenizguelmez/JOSIEFIED-Qwen3:1.7b-q8_0 ollama run goekdenizguelmez/JOSIEFIED-Qwen3:1.7b-fp16 ``` - **Developed by:** Gökdeniz Gülmez - **Funded by:** Gökdeniz Gülmez - **Shared by:** Gökdeniz Gülmez - **Origional model:** Goekdeniz-Guelmez/Josiefied-Qwen3-1.7B-abliterated-v1
mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF
mradermacher
2025-04-29T19:20:52Z
46
0
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "peft", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:HumanLLMs/Human-Like-DPO-Dataset", "base_model:yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct", "base_model:quantized:yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-01-17T12:26:31Z
--- base_model: yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct datasets: - HumanLLMs/Human-Like-DPO-Dataset language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: other quantized_by: mradermacher tags: - autotrain - text-generation-inference - text-generation - peft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 0.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 0.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 1.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 1.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
10-Shah-Sapna-Kumari-new-Video/Shah-Sapna-Kumari-viral-video
10-Shah-Sapna-Kumari-new-Video
2025-04-29T19:17:20Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:12:56Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Shah-Sapna) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Shah-Sapna) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Shah-Sapna)
10-Shah-Sapna-Kumari-new-Video/Full.Clip.Sapna.Shah.Viral.Video.Original.Link
10-Shah-Sapna-Kumari-new-Video
2025-04-29T19:17:18Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:11:53Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Shah-Sapna) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Shah-Sapna) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Shah-Sapna)
reedmayhew/Grok-3-reasoning-gemma3-4B-distilled-GGUF
reedmayhew
2025-04-29T18:24:50Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "dataset:reedmayhew/Grok-3-reasoning-100x", "base_model:unsloth/gemma-3-4b-it", "base_model:quantized:unsloth/gemma-3-4b-it", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T18:20:11Z
--- base_model: unsloth/gemma-3-4b-it tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en datasets: - reedmayhew/Grok-3-reasoning-100x --- # xAI Grok 3 w/Reasoning Distilled - Gemma 3 4B ## Overview This model is a Gemma 3 4B variant distilled from xAI’s Grok 3, with reasoning. It was fine-tuned to emulate Grok’s depth and structured clarity, particularly in tasks involving complex thought, such as problem-solving, coding, and mathematics. ## Technical Details - **Developed by:** reedmayhew - **Base Model:** google/gemma-3-4b-it - **Training Speed Enhancement:** Trained 2x faster with Unsloth and Huggingface's TRL library ## Training Data The model was trained on: - reedmayhew/Grok-3-reasoning-100x This dataset consists of 100 high-quality Grok 3 completions with reasoning responding to deep questions, solving math problems, and writing or analyzing code. The aim was to distill Grok’s analytical approach and technical versatility into a smaller, accessible model. This Gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Dazelin/OLLY
Dazelin
2025-04-29T18:24:04Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T18:09:51Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: OLLY --- # Olly <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `OLLY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "OLLY", "lora_weights": "https://huggingface.co/Dazelin/OLLY/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Dazelin/OLLY', weight_name='lora.safetensors') image = pipeline('OLLY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Dazelin/OLLY/discussions) to add images that show off what you’ve made with this LoRA.
Saddek/mistral-7b-lora
Saddek
2025-04-29T18:21:54Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2025-04-29T18:21:36Z
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - generated_from_trainer model-index: - name: mistral-7b-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-7b-lora This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.15.2.dev0 - Transformers 4.52.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
reedmayhew/Grok-3-reasoning-gemma3-12B-distilled-GGUF
reedmayhew
2025-04-29T18:21:47Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "dataset:reedmayhew/Grok-3-reasoning-100x", "base_model:unsloth/gemma-3-12b-it", "base_model:quantized:unsloth/gemma-3-12b-it", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T17:56:09Z
--- base_model: unsloth/gemma-3-12b-it tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en datasets: - reedmayhew/Grok-3-reasoning-100x --- # xAI Grok 3 w/Reasoning Distilled - Gemma 3 12B ## Overview This model is a Gemma 3 12B variant distilled from xAI’s Grok 3, with reasoning. It was fine-tuned to emulate Grok’s depth and structured clarity, particularly in tasks involving complex thought, such as problem-solving, coding, and mathematics. ## Technical Details - **Developed by:** reedmayhew - **Base Model:** google/gemma-3-12b-it - **Training Speed Enhancement:** Trained 2x faster with Unsloth and Huggingface's TRL library ## Training Data The model was trained on: - reedmayhew/Grok-3-reasoning-100x This dataset consists of 100 high-quality Grok 3 completions with reasoning responding to deep questions, solving math problems, and writing or analyzing code. The aim was to distill Grok’s analytical approach and technical versatility into a smaller, accessible model. This Gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf
RichardErkhov
2025-04-29T18:21:21Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:43:55Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8B_Om2SftT2_Om2IpsdpIter1T02_b0.5 library_name: transformers model_name: reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5 This model is a fine-tuned version of [RyanYr/reflect_mini8B_Om2SftT2_Om2IpsdpIter1T02_b0.5](https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT2_Om2IpsdpIter1T02_b0.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT2_Om2IpsdpG8kIpsdpIter1T02_b0.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/nlialui1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
youssefELK/LegalBot
youssefELK
2025-04-29T18:20:11Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-04-29T17:15:30Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF
mradermacher
2025-04-29T18:19:30Z
93
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B", "base_model:quantized:nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-10T06:28:35Z
--- base_model: nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ShubhamSantoki/deepseek-r1-distill-14b-8bit-v2-final
ShubhamSantoki
2025-04-29T18:18:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T13:12:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DumbleDuck/reinforce-cartpole-v1
DumbleDuck
2025-04-29T18:12:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-04-21T19:19:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ArtemkaT08/alesya-1_7b
ArtemkaT08
2025-04-29T18:11:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T18:08:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nouragh/gpt2-mental-health-peft
Nouragh
2025-04-29T18:11:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T18:05:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
deevade/whisper-small-finetuned
deevade
2025-04-29T18:07:57Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-04-29T18:06:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JeffP111/Qwen2.5-1.5B-Open-R1-Distill
JeffP111
2025-04-29T18:06:37Z
4
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T22:37:29Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Open-R1-Distill tags: - generated_from_trainer - trl - sft licence: license language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- # Model Card for Qwen2.5-1.5B-Open-R1-Distill This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JeffP111/Qwen2.5-1.5B-Open-R1-Distill", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/thishere/huggingface/runs/7rqlahgp) This model was trained with SFT. ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.49.0.dev0 - Pytorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_15-17_21-23_27-29_lrx0_1
annasoli
2025-04-29T18:05:44Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:03:25Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IABD07/modelosentimientos
IABD07
2025-04-29T18:04:51Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-04-29T17:39:11Z
--- license: mit --- El modelo está basado en un dataset en el cual se almacenan diferentes opiniones de distintas peliculas y cada una de ellas se cataloga como positiva, negativa o neutral
omkaraiya/Mistral-7B-Instruct-10
omkaraiya
2025-04-29T18:04:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T18:04:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf
RichardErkhov
2025-04-29T18:03:50Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:27:12Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1 This model is a fine-tuned version of [RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5](https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/b4ok9wqk) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Qwen3-1.7B-Base-i1-GGUF
mradermacher
2025-04-29T18:02:39Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-1.7B-Base", "base_model:quantized:Qwen/Qwen3-1.7B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-29T16:40:45Z
--- base_model: Qwen/Qwen3-1.7B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-1.7B-Base <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ1_S.gguf) | i1-IQ1_S | 0.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ2_S.gguf) | i1-IQ2_S | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ2_M.gguf) | i1-IQ2_M | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q2_K.gguf) | i1-Q2_K | 0.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ3_S.gguf) | i1-IQ3_S | 1.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ3_M.gguf) | i1-IQ3_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q4_0.gguf) | i1-Q4_0 | 1.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q4_1.gguf) | i1-Q4_1 | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF/resolve/main/Qwen3-1.7B-Base.i1-Q6_K.gguf) | i1-Q6_K | 1.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mluger/vitFaceExpression-MLPHead
mluger
2025-04-29T18:01:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T09:45:26Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vitFaceExpression-MLPHead results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vitFaceExpression-MLPHead This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8962 - Accuracy: 0.6854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3015 | 1.0 | 673 | 1.0408 | 0.6188 | | 0.995 | 2.0 | 1346 | 0.9245 | 0.6616 | | 0.8021 | 3.0 | 2019 | 0.8930 | 0.6702 | | 0.6967 | 4.0 | 2692 | 0.8718 | 0.6789 | | 0.6283 | 5.0 | 3365 | 0.8813 | 0.6814 | | 0.4952 | 6.0 | 4038 | 0.8812 | 0.6881 | | 0.4403 | 7.0 | 4711 | 0.8961 | 0.6838 | | 0.412 | 8.0 | 5384 | 0.8962 | 0.6854 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf
RichardErkhov
2025-04-29T18:01:09Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:36:00Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-t1 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b1.0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/k9jc48mj) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
usamakenway/Qwen3-32B-Q2_K-GGUF
usamakenway
2025-04-29T18:00:56Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-32B", "base_model:quantized:Qwen/Qwen3-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-29T17:59:59Z
--- base_model: Qwen/Qwen3-32B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # usamakenway/Qwen3-32B-Q2_K-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-32B`](https://huggingface.co/Qwen/Qwen3-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo usamakenway/Qwen3-32B-Q2_K-GGUF --hf-file qwen3-32b-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo usamakenway/Qwen3-32B-Q2_K-GGUF --hf-file qwen3-32b-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo usamakenway/Qwen3-32B-Q2_K-GGUF --hf-file qwen3-32b-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo usamakenway/Qwen3-32B-Q2_K-GGUF --hf-file qwen3-32b-q2_k.gguf -c 2048 ```
ijterror/AshGreFluxLora
ijterror
2025-04-29T17:58:33Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T15:41:31Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: shlygrn license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Ashley Greene Lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `shlygrn` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
mradermacher/Qwen3-14B-Base-i1-GGUF
mradermacher
2025-04-29T17:57:35Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-14B-Base", "base_model:quantized:Qwen/Qwen3-14B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-29T15:48:02Z
--- base_model: Qwen/Qwen3-14B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-14B-Base <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ1_M.gguf) | i1-IQ1_M | 3.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_M.gguf) | i1-IQ2_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf
RichardErkhov
2025-04-29T17:57:05Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:30:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-t1 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/x18ez61x) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
phililp-arnold/1ccc1430-336f-4570-8943-cebe0e0eb557
phililp-arnold
2025-04-29T17:56:33Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "region:us" ]
null
2025-04-29T17:56:05Z
--- library_name: peft tags: - generated_from_trainer base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 model-index: - name: phililp-arnold/1ccc1430-336f-4570-8943-cebe0e0eb557 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phililp-arnold/1ccc1430-336f-4570-8943-cebe0e0eb557 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
annemiekebickleyoy/384e3def-3df6-40ed-a033-26b57627cd59
annemiekebickleyoy
2025-04-29T17:55:26Z
0
0
transformers
[ "transformers", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:54:47Z
--- library_name: transformers model_name: annemiekebickleyoy/384e3def-3df6-40ed-a033-26b57627cd59 tags: - generated_from_trainer licence: license --- # Model Card for annemiekebickleyoy/384e3def-3df6-40ed-a033-26b57627cd59 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Qwen3-14B-Base-GGUF
mradermacher
2025-04-29T17:52:39Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-14B-Base", "base_model:quantized:Qwen/Qwen3-14B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T15:14:28Z
--- base_model: Qwen/Qwen3-14B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen3-14B-Base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
vkublytskyi/q-FrozenLake-v1-4x4-noSlippery
vkublytskyi
2025-04-29T17:51:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-04-29T17:51:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="vkublytskyi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
zhiqing/Qwen3-4B-INT8
zhiqing
2025-04-29T17:50:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "compressed-tensors", "region:us" ]
text-generation
2025-04-29T17:18:14Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/zhiqing/Qwen3-4B-INT8/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-4B --- ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "zhiqing/Qwen3-4B-INT8" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path zhiqing/Qwen3-4B-INT8 --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve zhiqing/Qwen3-4B-INT8 --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as llama.cpp, Ollama, LMStudio, and MLX-LM have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="zhiqing/Qwen3-4B-INT8"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-4B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
EstherTran/Restore
EstherTran
2025-04-29T17:47:37Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T17:47:37Z
--- license: apache-2.0 ---
Szahriwar/Phi-4-unsloth-bnb-4bit-elife-lora
Szahriwar
2025-04-29T17:44:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:44:25Z
--- base_model: unsloth/Phi-4-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Szahriwar - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-4-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Qwen3-8B-Base-GGUF
mradermacher
2025-04-29T17:43:51Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T15:11:26Z
--- base_model: Qwen/Qwen3-8B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen3-8B-Base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-8B-Base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-Base-GGUF/resolve/main/Qwen3-8B-Base.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Adarsh203/xlm-roberta-base-finetuned-panx-de-en
Adarsh203
2025-04-29T17:42:48Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-04-29T17:39:35Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-panx-de-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
nareauow/my_speech_recognition
nareauow
2025-04-29T17:41:33Z
0
0
null
[ "speaker-recognition", "MFCC", "CNN", "audio-classification", "en", "region:us" ]
audio-classification
2025-04-25T16:21:36Z
--- language: - en pipeline_tag: audio-classification tags: - speaker-recognition - MFCC - CNN ---
Keltezaa/Rosalina
Keltezaa
2025-04-29T17:40:18Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:cc-by-nc-nd-4.0", "region:us" ]
text-to-image
2025-04-29T17:40:09Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: "UNICODE\0\0{\0" output: url: images/custom2.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Ros4l1n4 license: cc-by-nc-nd-4.0 --- # Rosalina <Gallery /> ## Model description Rosalina_Ficitve_Young_woman ## Trigger words You should use `Ros4l1n4` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/Rosalina/tree/main) them in the Files & versions tab.
Adarsh203/xlm-roberta-base-finetuned-panx-de-it
Adarsh203
2025-04-29T17:39:29Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-04-29T17:36:11Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-panx-de-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
mradermacher/Qwen2.5-0.5b-Test-ft-GGUF
mradermacher
2025-04-29T17:37:09Z
191
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:KingNish/Qwen2.5-0.5b-Test-ft", "base_model:quantized:KingNish/Qwen2.5-0.5b-Test-ft", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-24T21:01:43Z
--- base_model: KingNish/Qwen2.5-0.5b-Test-ft language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/KingNish/Qwen2.5-0.5b-Test-ft <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF
mradermacher
2025-04-29T17:36:55Z
361
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:KingNish/Qwen2.5-0.5b-Test-ft", "base_model:quantized:KingNish/Qwen2.5-0.5b-Test-ft", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-24T21:24:09Z
--- base_model: KingNish/Qwen2.5-0.5b-Test-ft language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/KingNish/Qwen2.5-0.5b-Test-ft <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ1_M.gguf) | i1-IQ1_M | 0.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ2_S.gguf) | i1-IQ2_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ2_M.gguf) | i1-IQ2_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ3_S.gguf) | i1-IQ3_S | 0.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q2_K.gguf) | i1-Q2_K | 0.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ3_M.gguf) | i1-IQ3_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q4_0.gguf) | i1-Q4_0 | 0.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q4_1.gguf) | i1-Q4_1 | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.i1-Q6_K.gguf) | i1-Q6_K | 0.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
navin-kumar-j/whisper-base-ta
navin-kumar-j
2025-04-29T17:35:41Z
72
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ta", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-04-02T10:37:55Z
--- library_name: transformers language: - ta license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Base Ta - Navin Kumar J results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ta split: None args: 'config: ta, split: test' metrics: - name: Wer type: wer value: 1.5234367982754418 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Ta - Navin Kumar J This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2913 - Wer: 1.5234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.2192 | 0.2773 | 1000 | 0.3592 | 1.1204 | | 0.2076 | 0.5546 | 2000 | 0.3164 | 1.1192 | | 0.1881 | 0.8319 | 3000 | 0.2993 | 1.5272 | | 0.1504 | 1.1093 | 4000 | 0.2913 | 1.5234 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
JewelBasumatary/my_justen_t5_summarizer
JewelBasumatary
2025-04-29T17:34:50Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-29T16:46:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
h34v7/DansXPantheon-RP-Engine-V1.0-24b-Small-Instruct
h34v7
2025-04-29T17:34:03Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "roleplay", "storywriting", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:Gryphe/Pantheon-RP-1.8-24b-Small-3.1", "base_model:merge:Gryphe/Pantheon-RP-1.8-24b-Small-3.1", "base_model:PocketDoc/Dans-PersonalityEngine-V1.2.0-24b", "base_model:merge:PocketDoc/Dans-PersonalityEngine-V1.2.0-24b", "base_model:unsloth/Mistral-Small-24B-Base-2501", "base_model:merge:unsloth/Mistral-Small-24B-Base-2501", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T22:46:15Z
--- base_model: - unsloth/Mistral-Small-24B-Base-2501 - Gryphe/Pantheon-RP-1.8-24b-Small-3.1 - PocketDoc/Dans-PersonalityEngine-V1.2.0-24b library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - roleplay - storywriting - mergekit - merge --- # DansXPantheon-RP-Engine-V1.0-24b-Small-Instruct I realy like [PocketDoc/Dans-PersonalityEngine-V1.2.0-24b](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.2.0-24b) and [Gryphe/Pantheon-RP-1.8-24b-Small-3.1](https://huggingface.co/Gryphe/Pantheon-RP-1.8-24b-Small-3.1) so yeah let's merge it see what comes out! ## Merge Details This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [unsloth/Mistral-Small-24B-Base-2501](https://huggingface.co/unsloth/Mistral-Small-24B-Base-2501) as a base. ### Models Merged The following models were included in the merge: * [Gryphe/Pantheon-RP-1.8-24b-Small-3.1](https://huggingface.co/Gryphe/Pantheon-RP-1.8-24b-Small-3.1) * [PocketDoc/Dans-PersonalityEngine-V1.2.0-24b](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.2.0-24b) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: unsloth/Mistral-Small-24B-Base-2501 merge_method: sce dype: float32 out_dtype: bfloat16 tokenizer: source: unsloth/Mistral-Small-24B-Instruct-2501 models: - model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b parameters: select_topk: 0.5 - model: Gryphe/Pantheon-RP-1.8-24b-Small-3.1 parameters: select_topk: 0.5 ```
MinaMila/llama_instbase_3b_unlearned_epoch4
MinaMila
2025-04-29T17:33:16Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:30:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
10-Jobz-Hunting-Sajal-Malik-Viral-Videos-X/18-TRENDING.Jobz.Hunting.Sajal.Malik.Viral.Video.Leaks.Tutorial
10-Jobz-Hunting-Sajal-Malik-Viral-Videos-X
2025-04-29T17:31:21Z
0
0
null
[ "region:us" ]
null
2025-04-29T17:30:47Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5n7shfr3?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Actor jobz hunting sajal malik Original V𝚒deo V𝚒deo took the internet by storm and amazed viewers on various social media platforms. Actor jobz hunting sajal malik, a young and talented digital creator, recently became famous thanks to this interesting V𝚒deo. L𝚎aked V𝚒deo Actor jobz hunting sajal malik V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media Telegram X Trending Tiktok (18+) L𝚎aked V𝚒deo Actor jobz hunting sajal malik V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media X Trending Tiktok (18+)
omarwaleed523/gemma-3-12b-arabic-multitask
omarwaleed523
2025-04-29T17:30:54Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-12b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-12b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:30:31Z
--- base_model: unsloth/gemma-3-12b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** omarwaleed523 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-12b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
quickstep3621/dippy-v3-1-11
quickstep3621
2025-04-29T17:28:53Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:28:49Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
quickstep3621/dippy-v3-1-8
quickstep3621
2025-04-29T17:28:48Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:28:44Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
quickstep3621/dippy-v3-1-6
quickstep3621
2025-04-29T17:28:43Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:28:39Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
karuko24/Qwen3-8B-W4A16
karuko24
2025-04-29T17:25:05Z
4
0
null
[ "safetensors", "qwen3", "arxiv:2309.00071", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "compressed-tensors", "region:us" ]
null
2025-04-29T08:45:32Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-8B --- # Qwen3-8B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-8B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 8.2B - Number of Paramaters (Non-Embedding): 6.95B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-8B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-8B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-8B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-8B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
entropy/roberta_zinc_decoder
entropy
2025-04-29T17:24:50Z
132
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "chemistry", "molecule", "drug", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-18T20:27:05Z
--- tags: - chemistry - molecule - drug --- # Roberta Zinc Decoder This model is a GPT2 decoder model designed to reconstruct SMILES strings from embeddings created by the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model. The decoder model was trained on 30m compounds from the [ZINC Database](https://zinc.docking.org/). The decoder model conditions generation on mean pooled embeddings from the encoder model. Mean pooled embeddings are used to allow for integration with vector databases, which require fixed length embeddings. Condition embeddings are passed to the decoder model using the `encoder_hidden_states` attribute. The standard `GPT2LMHeadModel` does not support generation with encoder hidden states, so this repo includes a custom `ConditionalGPT2LMHeadModel`. See example below for how to instantiate the model. ```python import torch from transformers import AutoModelForCausalLM, RobertaTokenizerFast, RobertaForMaskedLM, DataCollatorWithPadding tokenizer = RobertaTokenizerFast.from_pretrained("entropy/roberta_zinc_480m", max_len=256) collator = DataCollatorWithPadding(tokenizer, padding=True, return_tensors='pt') encoder_model = RobertaForMaskedLM.from_pretrained('entropy/roberta_zinc_480m') encoder_model.eval(); commit_hash = '0ba58478f467056fe33003d7d91644ecede695a7' decoder_model = AutoModelForCausalLM.from_pretrained("entropy/roberta_zinc_decoder", trust_remote_code=True, revision=commit_hash) decoder_model.eval(); smiles = ['Brc1cc2c(NCc3ccccc3)ncnc2s1', 'Brc1cc2c(NCc3ccccn3)ncnc2s1', 'Brc1cc2c(NCc3cccs3)ncnc2s1', 'Brc1cc2c(NCc3ccncc3)ncnc2s1', 'Brc1cc2c(Nc3ccccc3)ncnc2s1'] inputs = collator(tokenizer(smiles)) outputs = encoder_model(**inputs, output_hidden_states=True) full_embeddings = outputs[1][-1] mask = inputs['attention_mask'] mean_embeddings = ((full_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1)) decoder_inputs = torch.tensor([[tokenizer.bos_token_id] for i in range(len(smiles))]) hidden_states = mean_embeddings[:,None] # hidden states shape (bs, 1, -1) gen = decoder_model.generate( decoder_inputs, encoder_hidden_states=hidden_states, do_sample=False, # greedy decoding is recommended max_length=100, temperature=1., early_stopping=True, pad_token_id=tokenizer.pad_token_id, ) reconstructed_smiles = tokenizer.batch_decode(gen, skip_special_tokens=True) ``` ## Model Performance The decoder model was evaluated on a test set of 1m compounds from ZINC. Compounds were encoded with the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model and reconstructed with the decoder model. The following metrics are computed: * `exact_match` - percent of inputs exactly reconstructed * `token_accuracy` - percent of output tokens exactly matching input tokens (excluding padding) * `valid_structure` - percent of generated outputs that resolved to a valid SMILES string * `tanimoto` - tanimoto similarity between inputs and generated outputs. Excludes invalid structures * `cos_sim` - cosine similarity between input encoder embeddings and output encoder embeddings `eval_type=full` reports metrics for the full 1m compound test set. `eval_type=failed` subsets metrics for generated outputs that failed to exactly replicate the inputs. |eval_type|exact_match|token_accuracy|valid_structure|tanimoto|cos_sim | |---------|-----------|--------------|---------------|--------|--------| |full |0.948277 |0.990704 |0.994278 |0.987698|0.998224| |failed |0.000000 |0.820293 |0.889372 |0.734097|0.965668| --- license: mit ---
karuko24/Qwen3-30B-A3B-W4A16
karuko24
2025-04-29T17:24:05Z
0
1
null
[ "safetensors", "qwen3_moe", "arxiv:2309.00071", "base_model:Qwen/Qwen3-30B-A3B", "base_model:quantized:Qwen/Qwen3-30B-A3B", "license:apache-2.0", "compressed-tensors", "region:us" ]
null
2025-04-29T15:20:48Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-30B-A3B --- # Qwen3-30B-A3B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-30B-A3B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 30.5B in total and 3.3B activated - Number of Paramaters (Non-Embedding): 29.9B - Number of Layers: 48 - Number of Attention Heads (GQA): 32 for Q and 4 for KV - Number of Experts: 128 - Number of Activated Experts: 8 - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3_moe' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-30B-A3B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-30B-A3B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-30B-A3B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"type":"rope_type","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
kk-aivio/b4e5001a-61ff-4e56-b3cd-d811e79fc6b1
kk-aivio
2025-04-29T17:22:44Z
0
0
transformers
[ "transformers", "generated_from_trainer", "unsloth", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:22:10Z
--- library_name: transformers model_name: kk-aivio/b4e5001a-61ff-4e56-b3cd-d811e79fc6b1 tags: - generated_from_trainer - unsloth licence: license --- # Model Card for kk-aivio/b4e5001a-61ff-4e56-b3cd-d811e79fc6b1 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
clutch0507/leofotos1
clutch0507
2025-04-29T17:21:02Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-29T16:39:11Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
minchyeom/Furina-8B
minchyeom
2025-04-29T17:20:27Z
0
0
null
[ "safetensors", "qwen3", "region:us" ]
null
2025-04-29T17:00:07Z
Use the following system prompt: ``` You are Furina, the Hydro Archon and Judge of Fontaine from Genshin Impact. ```
tatico-9000/vape-snooppy
tatico-9000
2025-04-29T17:17:37Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-04-29T17:17:37Z
--- license: artistic-2.0 ---
AbhishekBank/AI_RESUME_ANALYZER
AbhishekBank
2025-04-29T17:16:28Z
0
0
null
[ "region:us" ]
null
2025-04-29T17:12:51Z
# AI-Powered Resume Analyzer **AI-Powered Resume Analyzer**, a cutting-edge application designed to mimic the expertise of an HR professional! This tool leverages the power of **Google Generative AI** to analyze resumes, evaluate job compatibility, and offer actionable insights for career enhancement. --- ## 📋 **Project Overview** The **AI-Powered Resume Analyzer** serves as a virtual HR assistant, providing: - Detailed resume evaluation, including strengths and weaknesses. - Suggestions for skill improvement and recommended courses. - Job-specific resume analysis to measure compatibility and alignment with job descriptions. Whether you’re a job seeker or a recruiter, this tool simplifies resume assessment and improvement. --- ## 🔑 **Features** ### 1️⃣ **General Resume Analysis** - Summarizes the resume in one line. - Highlights existing skill sets. - Identifies skill gaps and suggests improvements. - Recommends popular courses to enhance the resume. - Provides a thorough evaluation of strengths and weaknesses. ### 2️⃣ **Resume Matching with Job Description** - Analyzes resume compatibility with a specific job description. - Provides a match score in percentage. - Highlights missing skills and areas needing improvement. - Suggests whether the resume is ready for the job or requires further enhancements. --- ## 🛠️ **Tech Stack** | **Component** | **Technology** | |----------------------|----------------------------------| | **Frontend** | [Streamlit](https://streamlit.io/) | | **Backend** | Python | | **AI Model** | [Google Generative AI (Gemini)](https://developers.generativeai.google/) | | **PDF Parsing** | `pdfplumber` | | **OCR Fallback** | `pytesseract` | | **Environment Config** | `.env` for API key security | --- ## 📊 **How It Works** 1. **Resume Parsing** - Extracts text from PDF files using `pdfplumber` or OCR as a fallback. 2. **AI Analysis** - Utilizes Google Generative AI to summarize and analyze resume content. - Matches skills with job descriptions for compatibility scoring. 3. **Insightful Feedback** - Provides actionable suggestions for skill enhancement, including course recommendations. - Highlights strengths and weaknesses to refine resumes for better opportunities. --- ![image](https://github.com/user-attachments/assets/418e54ef-82d0-474b-a6bc-9a30d72f27f5) ## 🙌 **Contributing** Welcome contributions to make this tool better! 1. **Fork** the repository. 2. **Create a new branch** for your feature or bug fix. 3. **Submit a pull request** with detailed information about your changes.
rosyvs/whisat
rosyvs
2025-04-29T17:15:57Z
0
2
transformers
[ "transformers", "whisper", "automatic-speech-recognition", "en", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
automatic-speech-recognition
2023-07-15T01:40:45Z
--- language: - en library_name: transformers pipeline_tag: automatic-speech-recognition --- Model trained in int8 with LoRA Usage: prepare pipeline, providing any custom generate_kwargs supprted by https://huggingface.co/docs/transformers/v4.40.0/en/main_classes/text_generation#transformers.GenerationConfig ``` asr_model=prepare_pipeline( model_dir='.', # wherever you save the model generate_kwargs={ 'max_new_tokens':112, 'num_beams':1, 'repetition_penalty':1, 'do_sample':False } ) ``` run ASR: ``` asr_model(audio_path) ``` run ASR on full directory in `audio_dir`: If generate_kwargs not specified, will give you (deterministic) greedy decoding with up to 112 tokens generated, no repetition penalty ``` ASRdirWhisat( audio_dir, out_dir = '../whisat_results/', model_dir=".", ) ``` Training information: - Training script: tune_hf_whisper.py - Training hyperparameters: hparams.yaml - Training data manifest: PUBLIC_KIDS_TRAIN_v4_deduped.csv Note: to recreate this training you will need to acquire the following public datasets: - MyST (myst-v0.4.2) - CuKids - CSLU and ensure they are stored at paths consistend with those in the data manifest above. Reference: ``` @inproceedings{southwell2024, title={Automatic speech recognition tuned for child speech in the classroom}, author={ Southwell, Rosy and Ward , Wayne and Trinh , Viet Anh and Clevenger, Charis and Clevenger, Clay and Watts, Emily and Reitman, Jason and D’Mello, Sidney and Whitehill, Jacob}, booktitle={{IEEE} International Conference on Acoustics, Speech and Signal Processing {ICASSP} 2024, Seoul, South Korea, April 14-19, 2024}, year={2024}, } ```
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf
RichardErkhov
2025-04-29T17:15:17Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:15:11Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5 This model is a fine-tuned version of [RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5](https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/jdfaaprj) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hadimhd/bert-phishing-links-classifier
hadimhd
2025-04-29T17:14:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T17:14:14Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-phishing-classifier_teacher results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-phishing-classifier_teacher This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2888 - Accuracy: 0.867 - Auc: 0.951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 0.5025 | 1.0 | 263 | 0.3835 | 0.816 | 0.912 | | 0.4082 | 2.0 | 526 | 0.3372 | 0.844 | 0.931 | | 0.3531 | 3.0 | 789 | 0.3123 | 0.851 | 0.94 | | 0.3568 | 4.0 | 1052 | 0.3457 | 0.853 | 0.946 | | 0.3518 | 5.0 | 1315 | 0.3396 | 0.862 | 0.947 | | 0.3483 | 6.0 | 1578 | 0.2922 | 0.869 | 0.951 | | 0.3342 | 7.0 | 1841 | 0.2876 | 0.878 | 0.95 | | 0.3097 | 8.0 | 2104 | 0.2887 | 0.869 | 0.95 | | 0.3141 | 9.0 | 2367 | 0.2838 | 0.871 | 0.951 | | 0.3155 | 10.0 | 2630 | 0.2888 | 0.867 | 0.951 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
Tashiroksksks/EVELLY-LORA
Tashiroksksks
2025-04-29T17:11:03Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-29T16:36:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
lana-green-lori11/deepseek-r1-8b-100
lana-green-lori11
2025-04-29T17:09:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:02:34Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** lana-green-lori11 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)