modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Triangle104/Dolphin3.0-Qwen2.5-0.5B-Q5_K_S-GGUF
Triangle104
2025-04-26T19:49:59Z
2
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:OpenCoder-LLM/opc-sft-stage2", "dataset:microsoft/orca-agentinstruct-1M-v1", "dataset:microsoft/orca-math-word-problems-200k", "dataset:NousResearch/hermes-function-calling-v1", "dataset:AI-MO/NuminaMath-CoT", "dataset:AI-MO/NuminaMath-TIR", "dataset:allenai/tulu-3-sft-mixture", "dataset:cognitivecomputations/dolphin-coder", "dataset:HuggingFaceTB/smoltalk", "dataset:cognitivecomputations/samantha-data", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:m-a-p/Code-Feedback", "base_model:cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B", "base_model:quantized:cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-06T06:43:31Z
--- base_model: cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B datasets: - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dolphin3.0-Qwen2.5-0.5B-Q5_K_S-GGUF This model was converted to GGUF format from [`cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/cognitivecomputations/Dolphin3.0-Qwen2.5-0.5B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dolphin3.0-Qwen2.5-0.5B-Q5_K_S-GGUF --hf-file dolphin3.0-qwen2.5-0.5b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dolphin3.0-Qwen2.5-0.5B-Q5_K_S-GGUF --hf-file dolphin3.0-qwen2.5-0.5b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dolphin3.0-Qwen2.5-0.5B-Q5_K_S-GGUF --hf-file dolphin3.0-qwen2.5-0.5b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dolphin3.0-Qwen2.5-0.5B-Q5_K_S-GGUF --hf-file dolphin3.0-qwen2.5-0.5b-q5_k_s.gguf -c 2048 ```
coderprem/crop-recommendation
coderprem
2025-04-26T19:46:49Z
0
0
null
[ "crop-recommendation", "agriculture", "random-forest", "classification", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-04-26T19:17:50Z
--- license: mit tags: - crop-recommendation - agriculture - random-forest - classification --- # Crop Recommendation Model 🌾 This model recommends the best crop based on soil and weather conditions. Inputs required: Nitrogen, Phosphorus, Potassium, Temperature, Humidity, pH, Rainfall. Trained on Crop Recommendation Dataset.
Triangle104/Dolphin3.0-Llama3.2-3B-Q8_0-GGUF
Triangle104
2025-04-26T19:45:55Z
2
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:OpenCoder-LLM/opc-sft-stage2", "dataset:microsoft/orca-agentinstruct-1M-v1", "dataset:microsoft/orca-math-word-problems-200k", "dataset:NousResearch/hermes-function-calling-v1", "dataset:AI-MO/NuminaMath-CoT", "dataset:AI-MO/NuminaMath-TIR", "dataset:allenai/tulu-3-sft-mixture", "dataset:cognitivecomputations/dolphin-coder", "dataset:HuggingFaceTB/smoltalk", "dataset:cognitivecomputations/samantha-data", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:m-a-p/Code-Feedback", "base_model:cognitivecomputations/Dolphin3.0-Llama3.2-3B", "base_model:quantized:cognitivecomputations/Dolphin3.0-Llama3.2-3B", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-06T08:26:58Z
--- base_model: cognitivecomputations/Dolphin3.0-Llama3.2-3B datasets: - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en license: llama3.2 tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dolphin3.0-Llama3.2-3B-Q8_0-GGUF This model was converted to GGUF format from [`cognitivecomputations/Dolphin3.0-Llama3.2-3B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.2-3B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dolphin3.0-Llama3.2-3B-Q8_0-GGUF --hf-file dolphin3.0-llama3.2-3b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dolphin3.0-Llama3.2-3B-Q8_0-GGUF --hf-file dolphin3.0-llama3.2-3b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dolphin3.0-Llama3.2-3B-Q8_0-GGUF --hf-file dolphin3.0-llama3.2-3b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dolphin3.0-Llama3.2-3B-Q8_0-GGUF --hf-file dolphin3.0-llama3.2-3b-q8_0.gguf -c 2048 ```
PAUL11832/mrpaul-lora
PAUL11832
2025-04-26T19:42:06Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-26T19:08:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
kryg3n/llama381binstruct_summarize_short_merged
kryg3n
2025-04-26T19:30:14Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-04-26T19:25:41Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dilarayavuz/md-benign-imdb-part-27-bert-base-uncased
dilarayavuz
2025-04-26T19:18:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T19:16:47Z
--- library_name: transformers tags: - autotrain - text-classification base_model: google-bert/bert-base-uncased widget: - text: "I love AutoTrain" --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.26404935121536255 f1: 0.9022265246853823 precision: 0.8834123222748815 recall: 0.9218595450049456 auc: 0.962160921471498 accuracy: 0.899
kikibanyakuang/kiki.ganteng
kikibanyakuang
2025-04-26T19:17:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-26T19:17:12Z
--- license: apache-2.0 ---
smirki/UIGEN-T2-7B-3600-Q8_0-GGUF
smirki
2025-04-26T19:11:47Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:Tesslate/UIGEN-T2-7B-3600", "base_model:quantized:Tesslate/UIGEN-T2-7B-3600", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T19:11:13Z
--- base_model: Tesslate/UIGEN-T2-7B-3600 library_name: transformers tags: - llama-cpp - gguf-my-repo --- # smirki/UIGEN-T2-7B-3600-Q8_0-GGUF This model was converted to GGUF format from [`Tesslate/UIGEN-T2-7B-3600`](https://huggingface.co/Tesslate/UIGEN-T2-7B-3600) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Tesslate/UIGEN-T2-7B-3600) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo smirki/UIGEN-T2-7B-3600-Q8_0-GGUF --hf-file uigen-t2-7b-3600-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo smirki/UIGEN-T2-7B-3600-Q8_0-GGUF --hf-file uigen-t2-7b-3600-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo smirki/UIGEN-T2-7B-3600-Q8_0-GGUF --hf-file uigen-t2-7b-3600-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo smirki/UIGEN-T2-7B-3600-Q8_0-GGUF --hf-file uigen-t2-7b-3600-q8_0.gguf -c 2048 ```
Triangle104/QwQ-32B-ArliAI-RpR-v2-Q6_K-GGUF
Triangle104
2025-04-26T19:10:42Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:ArliAI/QwQ-32B-ArliAI-RpR-v2", "base_model:quantized:ArliAI/QwQ-32B-ArliAI-RpR-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T19:07:37Z
--- base_model: ArliAI/QwQ-32B-ArliAI-RpR-v2 language: - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo thumbnail: https://cdn-uploads.huggingface.co/production/uploads/6625f4a8a8d1362ebcc3851a/9TIfNBdy29CDnn8NNIQPt.jpeg --- # Triangle104/QwQ-32B-ArliAI-RpR-v2-Q6_K-GGUF This model was converted to GGUF format from [`ArliAI/QwQ-32B-ArliAI-RpR-v2`](https://huggingface.co/ArliAI/QwQ-32B-ArliAI-RpR-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ArliAI/QwQ-32B-ArliAI-RpR-v2) for more details on the model. --- RpR (RolePlay with Reasoning) is a new series of models from ArliAI. This series builds directly upon the successful dataset curation methodology and training methods developed for the RPMax series. RpR models use the same curated, deduplicated RP and creative writing dataset used for RPMax, with a focus on variety to ensure high creativity and minimize cross-context repetition. Users familiar with RPMax will recognize the unique, non-repetitive writing style unlike other finetuned-for-RP models. With the release of QwQ as the first high performing open-source reasoning model that can be easily trained, it was clear that the available instruct and creative writing reasoning datasets contains only one response per example. This is type of single response dataset used for training reasoning models causes degraded output quality in long multi-turn chats. Which is why Arli AI decided to create a real RP model capable of long multi-turn chat with reasoning. In order to create RpR, we first had to actually create the reasoning RP dataset by re-processing our existing known-good RPMax dataset into a reasoning dataset. This was possible by using the base QwQ Instruct model itself to create the reasoning process for every turn in the RPMax dataset conversation examples, which is then further refined in order to make sure the reasoning is in-line with the actual response examples from the dataset. Another important thing to get right is to make sure the model is trained on examples that present reasoning blocks in the same way as it encounters it during inference. Which is, never seeing the reasoning blocks in it's context. In order to do this, the training run was completed using axolotl with manual template-free segments dataset in order to make sure that the model is never trained to see the reasoning block in the context. Just like how the model will be used during inference time. The result of training QwQ on this dataset with this method are consistently coherent and interesting outputs even in long multi-turn RP chats. This is as far as we know the first true correctly-trained reasoning model trained for RP and creative writing. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v2-Q6_K-GGUF --hf-file qwq-32b-arliai-rpr-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v2-Q6_K-GGUF --hf-file qwq-32b-arliai-rpr-v2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v2-Q6_K-GGUF --hf-file qwq-32b-arliai-rpr-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/QwQ-32B-ArliAI-RpR-v2-Q6_K-GGUF --hf-file qwq-32b-arliai-rpr-v2-q6_k.gguf -c 2048 ```
dilarayavuz/md-benign-imdb-part-22-bert-base-uncased
dilarayavuz
2025-04-26T18:58:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T18:56:00Z
--- library_name: transformers tags: - autotrain - text-classification base_model: google-bert/bert-base-uncased widget: - text: "I love AutoTrain" --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.2965324819087982 f1: 0.899009900990099 precision: 0.8945812807881773 recall: 0.9034825870646767 auc: 0.9549733743343585 accuracy: 0.898
NadiaLunadia/nadia_lunadia
NadiaLunadia
2025-04-26T18:55:48Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-26T18:24:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nadia --- # Nadia_Lunadia <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nadia` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nadia", "lora_weights": "https://huggingface.co/NadiaLunadia/nadia_lunadia/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('NadiaLunadia/nadia_lunadia', weight_name='lora.safetensors') image = pipeline('nadia').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/NadiaLunadia/nadia_lunadia/discussions) to add images that show off what you’ve made with this LoRA.
sagar2000/whatsapp
sagar2000
2025-04-26T18:22:50Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:finetune:microsoft/Phi-3-mini-4k-instruct", "endpoints_compatible", "region:us" ]
null
2025-04-26T18:22:36Z
--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: transformers model_name: whatsapp tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for whatsapp This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sagar2000/whatsapp", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.2 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
polinaZaroko/ast-gtzan
polinaZaroko
2025-04-26T18:02:42Z
0
0
null
[ "tensorboard", "safetensors", "audio-spectrogram-transformer", "generated_from_trainer", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "region:us" ]
null
2025-04-26T18:02:06Z
--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6011 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 100 | 1.2436 | 0.575 | | No log | 2.0 | 200 | 0.6776 | 0.765 | | No log | 3.0 | 300 | 0.5227 | 0.815 | | No log | 4.0 | 400 | 0.6133 | 0.805 | | 0.6647 | 5.0 | 500 | 0.6569 | 0.82 | | 0.6647 | 6.0 | 600 | 0.6299 | 0.855 | | 0.6647 | 7.0 | 700 | 0.6213 | 0.85 | | 0.6647 | 8.0 | 800 | 0.6398 | 0.85 | | 0.6647 | 9.0 | 900 | 0.6011 | 0.87 | | 0.0343 | 10.0 | 1000 | 0.6092 | 0.87 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.15.2
sgarg26/vosk-hi
sgarg26
2025-04-26T18:00:01Z
0
0
null
[ "hi", "license:apache-2.0", "region:us" ]
null
2025-04-26T17:39:29Z
--- license: apache-2.0 language: - hi ---
pdanaher/my_awesome_opus_books_model
pdanaher
2025-04-26T17:54:30Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-26T17:14:13Z
--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: my_awesome_opus_books_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6054 - Bleu: 6.2564 - Gen Len: 18.384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8583 | 1.0 | 6355 | 1.6284 | 6.088 | 18.3938 | | 1.8079 | 2.0 | 12710 | 1.6054 | 6.2564 | 18.384 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu118 - Datasets 3.5.0 - Tokenizers 0.21.1
Kayabuki4/29_2
Kayabuki4
2025-04-26T17:51:28Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T17:20:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
noahmarquie/ppo-LunarLander-v0
noahmarquie
2025-04-26T17:48:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-04-26T17:47:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.34 +/- 21.81 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xkaska02/czert_lr2e-05_bs4_train287_max_len32
xkaska02
2025-04-26T17:41:13Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:UWB-AIR/Czert-B-base-cased", "base_model:finetune:UWB-AIR/Czert-B-base-cased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-04-26T17:40:45Z
--- library_name: transformers base_model: UWB-AIR/Czert-B-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: czert_lr2e-05_bs4_train287_max_len32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # czert_lr2e-05_bs4_train287_max_len32 This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1066 - Precision: 0.9561 - Recall: 0.9578 - F1: 0.9570 - Accuracy: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 72 | 0.1572 | 0.9122 | 0.9228 | 0.9175 | 0.9553 | | No log | 2.0 | 144 | 0.1071 | 0.9518 | 0.9537 | 0.9527 | 0.9739 | | No log | 3.0 | 216 | 0.1064 | 0.9517 | 0.9517 | 0.9517 | 0.9739 | | No log | 4.0 | 288 | 0.1067 | 0.9596 | 0.9633 | 0.9615 | 0.9786 | | No log | 5.0 | 360 | 0.1255 | 0.9554 | 0.9517 | 0.9536 | 0.9748 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.20.0
genki10/BERT_V8_sp10_lw40_ex50_lo100_k2_k2_fold3
genki10
2025-04-26T17:38:35Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T17:14:50Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_V8_sp10_lw40_ex50_lo100_k2_k2_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_V8_sp10_lw40_ex50_lo100_k2_k2_fold3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6316 - Qwk: 0.5390 - Mse: 0.6315 - Rmse: 0.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 1.0 | 2 | 10.0642 | 0.0070 | 10.0628 | 3.1722 | | No log | 2.0 | 4 | 7.7402 | 0.0 | 7.7390 | 2.7819 | | No log | 3.0 | 6 | 5.7190 | 0.0623 | 5.7179 | 2.3912 | | No log | 4.0 | 8 | 4.4655 | 0.0260 | 4.4645 | 2.1129 | | No log | 5.0 | 10 | 3.6667 | 0.0114 | 3.6658 | 1.9146 | | No log | 6.0 | 12 | 2.7481 | 0.0 | 2.7472 | 1.6575 | | No log | 7.0 | 14 | 2.1096 | 0.0833 | 2.1088 | 1.4522 | | No log | 8.0 | 16 | 1.6122 | 0.0463 | 1.6115 | 1.2694 | | No log | 9.0 | 18 | 1.3155 | 0.0401 | 1.3149 | 1.1467 | | No log | 10.0 | 20 | 1.0623 | 0.0302 | 1.0617 | 1.0304 | | No log | 11.0 | 22 | 0.8795 | 0.3405 | 0.8790 | 0.9375 | | No log | 12.0 | 24 | 0.8694 | 0.2688 | 0.8688 | 0.9321 | | No log | 13.0 | 26 | 0.7253 | 0.4295 | 0.7249 | 0.8514 | | No log | 14.0 | 28 | 0.6725 | 0.4057 | 0.6722 | 0.8199 | | No log | 15.0 | 30 | 0.7272 | 0.4525 | 0.7270 | 0.8526 | | No log | 16.0 | 32 | 0.6922 | 0.4728 | 0.6920 | 0.8319 | | No log | 17.0 | 34 | 0.5430 | 0.5322 | 0.5430 | 0.7369 | | No log | 18.0 | 36 | 0.7537 | 0.5087 | 0.7537 | 0.8681 | | No log | 19.0 | 38 | 0.7497 | 0.5131 | 0.7498 | 0.8659 | | No log | 20.0 | 40 | 0.5542 | 0.5669 | 0.5544 | 0.7446 | | No log | 21.0 | 42 | 0.5729 | 0.5714 | 0.5732 | 0.7571 | | No log | 22.0 | 44 | 0.6768 | 0.5197 | 0.6770 | 0.8228 | | No log | 23.0 | 46 | 0.5805 | 0.5872 | 0.5809 | 0.7621 | | No log | 24.0 | 48 | 0.5901 | 0.5919 | 0.5905 | 0.7684 | | No log | 25.0 | 50 | 0.6259 | 0.5787 | 0.6260 | 0.7912 | | No log | 26.0 | 52 | 0.6842 | 0.5443 | 0.6846 | 0.8274 | | No log | 27.0 | 54 | 0.6459 | 0.5582 | 0.6461 | 0.8038 | | No log | 28.0 | 56 | 0.8557 | 0.4955 | 0.8551 | 0.9247 | | No log | 29.0 | 58 | 0.6223 | 0.5782 | 0.6224 | 0.7889 | | No log | 30.0 | 60 | 0.7084 | 0.5343 | 0.7088 | 0.8419 | | No log | 31.0 | 62 | 0.6123 | 0.5694 | 0.6127 | 0.7828 | | No log | 32.0 | 64 | 0.9525 | 0.4148 | 0.9526 | 0.9760 | | No log | 33.0 | 66 | 0.7980 | 0.4777 | 0.7982 | 0.8934 | | No log | 34.0 | 68 | 0.6196 | 0.5586 | 0.6199 | 0.7873 | | No log | 35.0 | 70 | 0.6990 | 0.5444 | 0.6993 | 0.8362 | | No log | 36.0 | 72 | 0.5997 | 0.5856 | 0.5999 | 0.7745 | | No log | 37.0 | 74 | 0.7856 | 0.4579 | 0.7856 | 0.8863 | | No log | 38.0 | 76 | 0.6865 | 0.5047 | 0.6865 | 0.8286 | | No log | 39.0 | 78 | 0.6322 | 0.5595 | 0.6324 | 0.7952 | | No log | 40.0 | 80 | 0.6160 | 0.5934 | 0.6161 | 0.7849 | | No log | 41.0 | 82 | 0.6981 | 0.5267 | 0.6980 | 0.8355 | | No log | 42.0 | 84 | 0.6277 | 0.5702 | 0.6277 | 0.7923 | | No log | 43.0 | 86 | 0.6149 | 0.5914 | 0.6151 | 0.7843 | | No log | 44.0 | 88 | 0.6486 | 0.5535 | 0.6488 | 0.8055 | | No log | 45.0 | 90 | 0.6268 | 0.5645 | 0.6269 | 0.7918 | | No log | 46.0 | 92 | 0.6114 | 0.5670 | 0.6115 | 0.7820 | | No log | 47.0 | 94 | 0.6167 | 0.5622 | 0.6167 | 0.7853 | | No log | 48.0 | 96 | 0.6254 | 0.5472 | 0.6253 | 0.7908 | | No log | 49.0 | 98 | 0.6108 | 0.5626 | 0.6109 | 0.7816 | | No log | 50.0 | 100 | 0.6008 | 0.5650 | 0.6008 | 0.7751 | | No log | 51.0 | 102 | 0.6337 | 0.5389 | 0.6336 | 0.7960 | | No log | 52.0 | 104 | 0.6448 | 0.5514 | 0.6447 | 0.8029 | | No log | 53.0 | 106 | 0.5994 | 0.5946 | 0.5994 | 0.7742 | | No log | 54.0 | 108 | 0.6038 | 0.5905 | 0.6039 | 0.7771 | | No log | 55.0 | 110 | 0.6945 | 0.5204 | 0.6945 | 0.8333 | | No log | 56.0 | 112 | 0.7058 | 0.4943 | 0.7057 | 0.8400 | | No log | 57.0 | 114 | 0.5988 | 0.5833 | 0.5988 | 0.7738 | | No log | 58.0 | 116 | 0.5884 | 0.5834 | 0.5883 | 0.7670 | | No log | 59.0 | 118 | 0.6311 | 0.5273 | 0.6309 | 0.7943 | | No log | 60.0 | 120 | 0.6371 | 0.5198 | 0.6369 | 0.7980 | | No log | 61.0 | 122 | 0.5920 | 0.5885 | 0.5919 | 0.7693 | | No log | 62.0 | 124 | 0.6019 | 0.5748 | 0.6019 | 0.7758 | | No log | 63.0 | 126 | 0.6976 | 0.5088 | 0.6975 | 0.8352 | | No log | 64.0 | 128 | 0.7296 | 0.4961 | 0.7296 | 0.8542 | | No log | 65.0 | 130 | 0.6359 | 0.5286 | 0.6359 | 0.7975 | | No log | 66.0 | 132 | 0.6116 | 0.5747 | 0.6116 | 0.7820 | | No log | 67.0 | 134 | 0.6416 | 0.5479 | 0.6415 | 0.8009 | | No log | 68.0 | 136 | 0.6348 | 0.5435 | 0.6347 | 0.7967 | | No log | 69.0 | 138 | 0.5840 | 0.5858 | 0.5840 | 0.7642 | | No log | 70.0 | 140 | 0.5895 | 0.6019 | 0.5895 | 0.7678 | | No log | 71.0 | 142 | 0.6354 | 0.5607 | 0.6355 | 0.7972 | | No log | 72.0 | 144 | 0.6269 | 0.5576 | 0.6270 | 0.7918 | | No log | 73.0 | 146 | 0.6232 | 0.5799 | 0.6232 | 0.7894 | | No log | 74.0 | 148 | 0.6143 | 0.5848 | 0.6143 | 0.7838 | | No log | 75.0 | 150 | 0.6393 | 0.5529 | 0.6393 | 0.7996 | | No log | 76.0 | 152 | 0.6538 | 0.5430 | 0.6538 | 0.8086 | | No log | 77.0 | 154 | 0.6299 | 0.5415 | 0.6300 | 0.7937 | | No log | 78.0 | 156 | 0.6236 | 0.5523 | 0.6237 | 0.7897 | | No log | 79.0 | 158 | 0.6045 | 0.5679 | 0.6045 | 0.7775 | | No log | 80.0 | 160 | 0.6007 | 0.5609 | 0.6007 | 0.7750 | | No log | 81.0 | 162 | 0.6132 | 0.5525 | 0.6132 | 0.7831 | | No log | 82.0 | 164 | 0.6080 | 0.5509 | 0.6080 | 0.7797 | | No log | 83.0 | 166 | 0.6131 | 0.5479 | 0.6131 | 0.7830 | | No log | 84.0 | 168 | 0.6203 | 0.5326 | 0.6203 | 0.7876 | | No log | 85.0 | 170 | 0.6104 | 0.5580 | 0.6103 | 0.7812 | | No log | 86.0 | 172 | 0.6090 | 0.5594 | 0.6089 | 0.7803 | | No log | 87.0 | 174 | 0.6031 | 0.5576 | 0.6031 | 0.7766 | | No log | 88.0 | 176 | 0.6137 | 0.5431 | 0.6137 | 0.7834 | | No log | 89.0 | 178 | 0.6337 | 0.5338 | 0.6336 | 0.7960 | | No log | 90.0 | 180 | 0.6273 | 0.5360 | 0.6273 | 0.7920 | | No log | 91.0 | 182 | 0.6273 | 0.5313 | 0.6273 | 0.7920 | | No log | 92.0 | 184 | 0.6380 | 0.5387 | 0.6380 | 0.7987 | | No log | 93.0 | 186 | 0.6320 | 0.5332 | 0.6320 | 0.7950 | | No log | 94.0 | 188 | 0.6233 | 0.5321 | 0.6232 | 0.7895 | | No log | 95.0 | 190 | 0.6243 | 0.5397 | 0.6242 | 0.7901 | | No log | 96.0 | 192 | 0.6304 | 0.5398 | 0.6303 | 0.7939 | | No log | 97.0 | 194 | 0.6348 | 0.5362 | 0.6347 | 0.7967 | | No log | 98.0 | 196 | 0.6344 | 0.5413 | 0.6343 | 0.7964 | | No log | 99.0 | 198 | 0.6330 | 0.5390 | 0.6329 | 0.7956 | | No log | 100.0 | 200 | 0.6316 | 0.5390 | 0.6315 | 0.7947 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
GT1999/sequential_batches_mwp_sft_llama3.21b
GT1999
2025-04-26T17:27:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-19T14:53:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
markury/inkportraits-st
markury
2025-04-26T17:20:05Z
0
0
diffusers
[ "diffusers", "safetensors", "flux", "flux-diffusers", "text-to-image", "image-to-image", "simpletuner", "safe-for-work", "lora", "template:sd-lora", "lycoris", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-26T15:01:54Z
--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - image-to-image - diffusers - simpletuner - safe-for-work - lora - template:sd-lora - lycoris pipeline_tag: text-to-image inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'a victorian portrait of a man, depicted in an intricate engraved style within an ornate oval frame on a sepia-toned background' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png --- # inkportraits-st This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` a victorian portrait of a man, depicted in an intricate engraved style within an ornate oval frame on a sepia-toned background ``` ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `832x1216` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: <Gallery /> The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 133 - Training steps: 2400 - Learning rate: 9e-05 - Learning rate schedule: polynomial - Warmup steps: 100 - Max grad value: 2.0 - Effective batch size: 2 - Micro-batch size: 1 - Gradient accumulation steps: 2 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow_matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0']) - Optimizer: optimi-lion - Trainable parameter precision: Pure BF16 - Base model precision: `int8-quanto` - Caption dropout probability: 0.0% ### LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "linear_alpha": 1, "factor": 16, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 16 }, "FeedForward": { "factor": 16 } } } } ``` ## Datasets ### victorian-crop-512 - Repeats: 0 - Total number of images: 18 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### victorian-crop-768 - Repeats: 0 - Total number of images: 18 - Total number of aspect buckets: 1 - Resolution: 0.589824 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'black-forest-labs/FLUX.1-dev' adapter_repo_id = 'markury/inkportraits-st' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "a victorian portrait of a man, depicted in an intricate engraved style within an ornate oval frame on a sepia-toned background" ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=832, height=1216, guidance_scale=3.0, ).images[0] model_output.save("output.png", format="PNG") ``` ## Exponential Moving Average (EMA) SimpleTuner generates a safetensors variant of the EMA weights and a pt file. The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning. The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
Ennthen/hyp1-g29b
Ennthen
2025-04-26T17:19:07Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-26T17:18:49Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Ennthen - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dilarayavuz/md-benign-imdb-part-3-bert-base-uncased
dilarayavuz
2025-04-26T17:15:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T17:12:57Z
--- library_name: transformers tags: - autotrain - text-classification base_model: google-bert/bert-base-uncased widget: - text: "I love AutoTrain" --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.301895409822464 f1: 0.8768656716417911 precision: 0.8362989323843416 recall: 0.9215686274509803 auc: 0.9514160664265706 accuracy: 0.868
FlareRebellion/DarkHazard-v1.1-24b
FlareRebellion
2025-04-26T17:12:24Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:PocketDoc/Dans-PersonalityEngine-V1.2.0-24b", "base_model:merge:PocketDoc/Dans-PersonalityEngine-V1.2.0-24b", "base_model:ReadyArt/Safeword-Abomination-of-Omega-Darker-Gaslight_The-Final-Forgotten-Transgression-24B", "base_model:merge:ReadyArt/Safeword-Abomination-of-Omega-Darker-Gaslight_The-Final-Forgotten-Transgression-24B", "base_model:Yoesph/Haphazard-v1.1-24b", "base_model:merge:Yoesph/Haphazard-v1.1-24b", "base_model:aixonlab/Eurydice-24b-v2", "base_model:merge:aixonlab/Eurydice-24b-v2", "base_model:arcee-ai/Arcee-Blitz", "base_model:merge:arcee-ai/Arcee-Blitz", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T14:53:42Z
--- base_model: - arcee-ai/Arcee-Blitz - ReadyArt/Safeword-Abomination-of-Omega-Darker-Gaslight_The-Final-Forgotten-Transgression-24B - Yoesph/Haphazard-v1.1-24b - aixonlab/Eurydice-24b-v2 - PocketDoc/Dans-PersonalityEngine-V1.2.0-24b library_name: transformers tags: - mergekit - merge --- # DarkHazard-v1.1-24b This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Inspiration This merge was inspired by Yoesph/Haphazard-v1.1-24b ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [arcee-ai/Arcee-Blitz](https://huggingface.co/arcee-ai/Arcee-Blitz) as a base. ### Models Merged The following models were included in the merge: * [ReadyArt/Safeword-Abomination-of-Omega-Darker-Gaslight_The-Final-Forgotten-Transgression-24B](https://huggingface.co/ReadyArt/Safeword-Abomination-of-Omega-Darker-Gaslight_The-Final-Forgotten-Transgression-24B) * [Yoesph/Haphazard-v1.1-24b](https://huggingface.co/Yoesph/Haphazard-v1.1-24b) * [aixonlab/Eurydice-24b-v2](https://huggingface.co/aixonlab/Eurydice-24b-v2) * [PocketDoc/Dans-PersonalityEngine-V1.2.0-24b](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.2.0-24b) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: arcee-ai/Arcee-Blitz merge_method: model_stock dtype: bfloat16 models: - model: aixonlab/Eurydice-24b-v2 # storytelling / RP - model: Yoesph/Haphazard-v1.1-24b # Haphazard goodness + Cydonia - model: ReadyArt/Safeword-Abomination-of-Omega-Darker-Gaslight_The-Final-Forgotten-Transgression-24B # uncensor + Cydonia - model: PocketDoc/Dans-PersonalityEngine-V1.2.0-24b # Prompt Adherence ```
xkaska02/czert_lr2e-05_bs4_train287_max_len128
xkaska02
2025-04-26T17:04:00Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:UWB-AIR/Czert-B-base-cased", "base_model:finetune:UWB-AIR/Czert-B-base-cased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-04-26T17:03:19Z
--- library_name: transformers base_model: UWB-AIR/Czert-B-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: czert_lr2e-05_bs4_train287_max_len128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # czert_lr2e-05_bs4_train287_max_len128 This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1256 - Precision: 0.9351 - Recall: 0.9481 - F1: 0.9415 - Accuracy: 0.9662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 72 | 0.2109 | 0.8758 | 0.8932 | 0.8844 | 0.9359 | | No log | 2.0 | 144 | 0.1474 | 0.9116 | 0.9205 | 0.9160 | 0.9537 | | No log | 3.0 | 216 | 0.1336 | 0.9455 | 0.9267 | 0.9360 | 0.9632 | | No log | 4.0 | 288 | 0.1279 | 0.936 | 0.9307 | 0.9333 | 0.9620 | | No log | 5.0 | 360 | 0.1125 | 0.9422 | 0.9443 | 0.9432 | 0.9675 | | No log | 6.0 | 432 | 0.1321 | 0.9409 | 0.9403 | 0.9406 | 0.9662 | | 0.1505 | 7.0 | 504 | 0.1333 | 0.9455 | 0.9460 | 0.9458 | 0.9690 | | 0.1505 | 8.0 | 576 | 0.1335 | 0.9478 | 0.9483 | 0.9480 | 0.9695 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.20.0
beslam55/es
beslam55
2025-04-26T17:03:39Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-04-26T17:03:38Z
--- license: artistic-2.0 ---
TOMFORD79/Menu_v1_5
TOMFORD79
2025-04-26T17:00:41Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-04-26T16:25:32Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
memevis/supp21
memevis
2025-04-26T16:50:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T16:50:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q5_K_M-GGUF
Triangle104
2025-04-26T16:47:10Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B", "base_model:quantized:DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T16:44:47Z
--- base_model: DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q5_K_M-GGUF This model was converted to GGUF format from [`DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B`](https://huggingface.co/DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B) for more details on the model. --- This model was converted to Nvidia's new "UltraLong8B" long context Llama 3.1 model structure (https://huggingface.co/nvidia/Llama-3.1-8B-UltraLong-1M-Instruct) which allowed full transfer of "Dark Planet 8B" in all it's "glory" so to speak. Due to Nvidia's structure, the new Dark Planet has attained far greater long generation not only in terms of context, but also coherence too. There is a also a bump in overall performance as well. This model has been designed to be relatively bullet proof and operates with all parameters, including temp settings from 0 to 5. It is an extraordinary compressed model, with a very low perplexity level (lower than Meta Llama3 Instruct). It is for any writing, fiction or roleplay activity. It requires Llama 3 template and/or "Command-R" template. Suggest a context window of at least 8k, 16K is better... as this model will generate long outputs unless you set a hard limit. Likewise, as this is an instruct model - the more instructions in your prompt and/or system prompt - the greater the output quality. IE: Less "guessing" equals far higher quality. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q5_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q5_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q5_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q5_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q5_k_m.gguf -c 2048 ```
labhanshai/Kiara
labhanshai
2025-04-26T16:45:45Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-26T16:45:45Z
--- license: apache-2.0 ---
Sophie-Rain-Leak/VIRAL-Sophie-Rain-SpiderMan-Viral-VIDEO
Sophie-Rain-Leak
2025-04-26T16:42:19Z
0
0
null
[ "region:us" ]
null
2025-04-26T16:41:58Z
<p><a href="https://social.danielwellington.com/srain" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a href="https://social.danielwellington.com/srain" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a href="https://social.danielwellington.com/srain" rel="nofollow"><img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif"></a></p>
yujiepan/glm-4-tiny-random
yujiepan
2025-04-26T16:37:22Z
27
0
transformers
[ "transformers", "safetensors", "glm4", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-08T17:10:12Z
--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This tiny model is for debugging. It is randomly initialized with the config adapted from [THUDM/GLM-4-32B-0414](https://huggingface.co/THUDM/GLM-4-32B-0414). ### Example usage: ```python from transformers import pipeline model_id = "yujiepan/glm-4-tiny-random" pipe = pipeline( "text-generation", model=model_id, device="cuda", trust_remote_code=True, max_new_tokens=20, ) print(pipe("Hello World!")) ``` ### Codes to create this repo: ```python import torch from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "THUDM/GLM-4-32B-0414" save_folder = "/tmp/yujiepan/glm-4-tiny-random" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config.hidden_size = 16 config.head_dim = 16 config.intermediate_size = 32 config.num_attention_heads = 1 config.num_hidden_layers = 2 config.num_key_value_heads = 1 config.tie_word_embeddings = False model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.5) print(name, p.shape) model.save_pretrained(save_folder) ```
Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q4_K_M-GGUF
Triangle104
2025-04-26T16:35:46Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B", "base_model:quantized:DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T16:33:16Z
--- base_model: DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B`](https://huggingface.co/DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/Llama-3.1-1million-ctx-Dark-Planet-8B) for more details on the model. --- This model was converted to Nvidia's new "UltraLong8B" long context Llama 3.1 model structure (https://huggingface.co/nvidia/Llama-3.1-8B-UltraLong-1M-Instruct) which allowed full transfer of "Dark Planet 8B" in all it's "glory" so to speak. Due to Nvidia's structure, the new Dark Planet has attained far greater long generation not only in terms of context, but also coherence too. There is a also a bump in overall performance as well. This model has been designed to be relatively bullet proof and operates with all parameters, including temp settings from 0 to 5. It is an extraordinary compressed model, with a very low perplexity level (lower than Meta Llama3 Instruct). It is for any writing, fiction or roleplay activity. It requires Llama 3 template and/or "Command-R" template. Suggest a context window of at least 8k, 16K is better... as this model will generate long outputs unless you set a hard limit. Likewise, as this is an instruct model - the more instructions in your prompt and/or system prompt - the greater the output quality. IE: Less "guessing" equals far higher quality. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q4_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q4_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q4_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.1-1million-ctx-Dark-Planet-8B-Q4_K_M-GGUF --hf-file llama-3.1-1million-ctx-dark-planet-8b-q4_k_m.gguf -c 2048 ```
HERE-Sophie-Rain-Spiderman-Leak-Video/Sophie.Rain.Spider.Man.Leaks.Video.Sophie.Rain.Spiderman.Video.Tutorial.Link
HERE-Sophie-Rain-Spiderman-Leak-Video
2025-04-26T16:23:09Z
0
0
null
[ "region:us" ]
null
2025-04-26T16:22:25Z
<p><a href="https://social.danielwellington.com/srain" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a href="https://social.danielwellington.com/srain" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a href="https://social.danielwellington.com/srain" rel="nofollow"><img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif"></a></p>
ViRAL-Sophie-Rain-Spiderman-Videox-Free/Sophie.Rain.Sophie.Rain.Spiderman.Video.Official
ViRAL-Sophie-Rain-Spiderman-Videox-Free
2025-04-26T16:20:02Z
0
0
null
[ "region:us" ]
null
2025-04-26T16:19:36Z
<p><a href="https://social.danielwellington.com/srain" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a href="https://social.danielwellington.com/srain" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a href="https://social.danielwellington.com/srain" rel="nofollow"><img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif"></a></p>
Triangle104/Gemma-3-Glitter-27B-Q8_0-GGUF
Triangle104
2025-04-26T16:19:23Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:allura-org/Gemma-3-Glitter-27B", "base_model:quantized:allura-org/Gemma-3-Glitter-27B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T16:15:31Z
--- base_model: allura-org/Gemma-3-Glitter-27B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Gemma-3-Glitter-27B-Q8_0-GGUF This model was converted to GGUF format from [`allura-org/Gemma-3-Glitter-27B`](https://huggingface.co/allura-org/Gemma-3-Glitter-27B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/allura-org/Gemma-3-Glitter-27B) for more details on the model. --- A creative writing model based on Gemma 3 27B. Columbidae/gemma-3-27b-half, a 50/50 merge of 27B IT and 27B PT, was used as the base model. (This was done because of the success of Starshine, a 50/50 IT and PT merge.) The inclusion of PT model does weaken the instruct, but it also weakens the censorship/hesitancy to participate in certain fictional stories. The prose also becomes more natural with less of the IT model included. This model does better with short and to-the-point prompts. Long, detailed system prompts will often confuse it. (Tested with 1000-2000 token system prompts to lackluster results compared to 100-500 token prompts). --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Gemma-3-Glitter-27B-Q8_0-GGUF --hf-file gemma-3-glitter-27b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Gemma-3-Glitter-27B-Q8_0-GGUF --hf-file gemma-3-glitter-27b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Gemma-3-Glitter-27B-Q8_0-GGUF --hf-file gemma-3-glitter-27b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Gemma-3-Glitter-27B-Q8_0-GGUF --hf-file gemma-3-glitter-27b-q8_0.gguf -c 2048 ```
genki10/BERT_V8_sp10_lw40_ex50_lo50_k2_k2_fold3
genki10
2025-04-26T16:17:15Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T16:03:08Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_V8_sp10_lw40_ex50_lo50_k2_k2_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_V8_sp10_lw40_ex50_lo50_k2_k2_fold3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5564 - Qwk: 0.5636 - Mse: 0.5564 - Rmse: 0.7459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:| | No log | 1.0 | 2 | 11.9063 | -0.0279 | 11.9038 | 3.4502 | | No log | 2.0 | 4 | 9.2561 | 0.0 | 9.2545 | 3.0421 | | No log | 3.0 | 6 | 7.3906 | 0.0 | 7.3892 | 2.7183 | | No log | 4.0 | 8 | 6.1470 | 0.0104 | 6.1455 | 2.4790 | | No log | 5.0 | 10 | 4.7307 | 0.0114 | 4.7296 | 2.1748 | | No log | 6.0 | 12 | 3.6712 | 0.0038 | 3.6702 | 1.9158 | | No log | 7.0 | 14 | 2.9987 | 0.0 | 2.9976 | 1.7313 | | No log | 8.0 | 16 | 2.2411 | 0.1175 | 2.2402 | 1.4967 | | No log | 9.0 | 18 | 1.7994 | 0.0365 | 1.7986 | 1.3411 | | No log | 10.0 | 20 | 1.5119 | 0.0302 | 1.5112 | 1.2293 | | No log | 11.0 | 22 | 1.1775 | 0.0302 | 1.1769 | 1.0849 | | No log | 12.0 | 24 | 1.0014 | 0.0202 | 1.0008 | 1.0004 | | No log | 13.0 | 26 | 0.8976 | 0.3195 | 0.8970 | 0.9471 | | No log | 14.0 | 28 | 0.8228 | 0.3673 | 0.8222 | 0.9068 | | No log | 15.0 | 30 | 0.8523 | 0.2800 | 0.8517 | 0.9229 | | No log | 16.0 | 32 | 0.7316 | 0.2326 | 0.7313 | 0.8551 | | No log | 17.0 | 34 | 0.6307 | 0.3785 | 0.6306 | 0.7941 | | No log | 18.0 | 36 | 0.6821 | 0.4362 | 0.6819 | 0.8258 | | No log | 19.0 | 38 | 0.5622 | 0.4421 | 0.5621 | 0.7497 | | No log | 20.0 | 40 | 0.5782 | 0.4760 | 0.5781 | 0.7603 | | No log | 21.0 | 42 | 0.6375 | 0.5111 | 0.6373 | 0.7983 | | No log | 22.0 | 44 | 0.5141 | 0.5263 | 0.5140 | 0.7169 | | No log | 23.0 | 46 | 0.7375 | 0.4655 | 0.7373 | 0.8587 | | No log | 24.0 | 48 | 0.5200 | 0.5555 | 0.5201 | 0.7212 | | No log | 25.0 | 50 | 0.5088 | 0.6219 | 0.5088 | 0.7133 | | No log | 26.0 | 52 | 0.7115 | 0.5143 | 0.7114 | 0.8435 | | No log | 27.0 | 54 | 0.7079 | 0.4985 | 0.7077 | 0.8412 | | No log | 28.0 | 56 | 0.5335 | 0.5843 | 0.5335 | 0.7304 | | No log | 29.0 | 58 | 0.6170 | 0.5431 | 0.6170 | 0.7855 | | No log | 30.0 | 60 | 0.5067 | 0.5731 | 0.5068 | 0.7119 | | No log | 31.0 | 62 | 0.6167 | 0.5527 | 0.6169 | 0.7854 | | No log | 32.0 | 64 | 0.5177 | 0.5983 | 0.5178 | 0.7196 | | No log | 33.0 | 66 | 0.5050 | 0.6377 | 0.5049 | 0.7106 | | No log | 34.0 | 68 | 0.5707 | 0.5896 | 0.5706 | 0.7554 | | No log | 35.0 | 70 | 0.6511 | 0.5396 | 0.6510 | 0.8068 | | No log | 36.0 | 72 | 0.5217 | 0.5770 | 0.5215 | 0.7222 | | No log | 37.0 | 74 | 0.5531 | 0.5585 | 0.5529 | 0.7436 | | No log | 38.0 | 76 | 0.6864 | 0.4928 | 0.6862 | 0.8284 | | No log | 39.0 | 78 | 0.6373 | 0.5037 | 0.6372 | 0.7982 | | No log | 40.0 | 80 | 0.5506 | 0.5552 | 0.5506 | 0.7420 | | No log | 41.0 | 82 | 0.5623 | 0.5400 | 0.5622 | 0.7498 | | No log | 42.0 | 84 | 0.6502 | 0.5007 | 0.6500 | 0.8062 | | No log | 43.0 | 86 | 0.5781 | 0.5547 | 0.5779 | 0.7602 | | No log | 44.0 | 88 | 0.5708 | 0.5663 | 0.5706 | 0.7554 | | No log | 45.0 | 90 | 0.6341 | 0.5154 | 0.6339 | 0.7962 | | No log | 46.0 | 92 | 0.5815 | 0.5502 | 0.5815 | 0.7626 | | No log | 47.0 | 94 | 0.6164 | 0.5149 | 0.6164 | 0.7851 | | No log | 48.0 | 96 | 0.5450 | 0.5598 | 0.5450 | 0.7382 | | No log | 49.0 | 98 | 0.5788 | 0.5238 | 0.5788 | 0.7608 | | No log | 50.0 | 100 | 0.5876 | 0.5205 | 0.5875 | 0.7665 | | No log | 51.0 | 102 | 0.5490 | 0.5597 | 0.5489 | 0.7409 | | No log | 52.0 | 104 | 0.5796 | 0.5422 | 0.5795 | 0.7612 | | No log | 53.0 | 106 | 0.5875 | 0.5350 | 0.5874 | 0.7664 | | No log | 54.0 | 108 | 0.5454 | 0.5723 | 0.5453 | 0.7384 | | No log | 55.0 | 110 | 0.5645 | 0.5452 | 0.5643 | 0.7512 | | No log | 56.0 | 112 | 0.5550 | 0.5512 | 0.5550 | 0.7450 | | No log | 57.0 | 114 | 0.5879 | 0.5476 | 0.5878 | 0.7667 | | No log | 58.0 | 116 | 0.5735 | 0.5610 | 0.5734 | 0.7572 | | No log | 59.0 | 118 | 0.5411 | 0.5687 | 0.5410 | 0.7356 | | No log | 60.0 | 120 | 0.5391 | 0.5799 | 0.5391 | 0.7342 | | No log | 61.0 | 122 | 0.6113 | 0.5802 | 0.6113 | 0.7818 | | No log | 62.0 | 124 | 0.6268 | 0.5376 | 0.6267 | 0.7916 | | No log | 63.0 | 126 | 0.5564 | 0.5636 | 0.5564 | 0.7459 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
filipesantoscv11/d2dce406-2631-4fde-94d2-c69957fdb02c
filipesantoscv11
2025-04-26T16:16:17Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-26T16:15:24Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: d2dce406-2631-4fde-94d2-c69957fdb02c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 723f999c3d4f537d_train_data.json ds_type: json format: custom path: /workspace/input_data/723f999c3d4f537d_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: filipesantoscv11/d2dce406-2631-4fde-94d2-c69957fdb02c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/723f999c3d4f537d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b222ded9-403c-4db5-a5de-962567cdbc68 wandb_project: s56-6 wandb_run: your_name wandb_runid: b222ded9-403c-4db5-a5de-962567cdbc68 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d2dce406-2631-4fde-94d2-c69957fdb02c This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.8355 | 0.2128 | 200 | 4.8581 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis/10ceae7c-c0da-4291-bc62-4def26b4d746
aleegis
2025-04-26T16:14:24Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "region:us" ]
null
2025-04-26T16:09:51Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: 10ceae7c-c0da-4291-bc62-4def26b4d746 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 723f999c3d4f537d_train_data.json ds_type: json format: custom path: /workspace/input_data/723f999c3d4f537d_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/10ceae7c-c0da-4291-bc62-4def26b4d746 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/723f999c3d4f537d_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: b222ded9-403c-4db5-a5de-962567cdbc68 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b222ded9-403c-4db5-a5de-962567cdbc68 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 10ceae7c-c0da-4291-bc62-4def26b4d746 This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis/46f63151-4fd2-42c5-abb0-1ea98fe6268a
aleegis
2025-04-26T16:14:15Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "region:us" ]
null
2025-04-26T16:10:09Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: 46f63151-4fd2-42c5-abb0-1ea98fe6268a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 723f999c3d4f537d_train_data.json ds_type: json format: custom path: /workspace/input_data/723f999c3d4f537d_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/46f63151-4fd2-42c5-abb0-1ea98fe6268a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/723f999c3d4f537d_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: b222ded9-403c-4db5-a5de-962567cdbc68 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b222ded9-403c-4db5-a5de-962567cdbc68 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 46f63151-4fd2-42c5-abb0-1ea98fe6268a This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
BootesVoid/cm9y8nkcg01bbqeqol8wwsasi_cm9ye0fbg01kcqeqos7zsc8q9
BootesVoid
2025-04-26T16:13:45Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-26T16:13:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: F25INTK210 --- # Cm9Y8Nkcg01Bbqeqol8Wwsasi_Cm9Ye0Fbg01Kcqeqos7Zsc8Q9 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `F25INTK210` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "F25INTK210", "lora_weights": "https://huggingface.co/BootesVoid/cm9y8nkcg01bbqeqol8wwsasi_cm9ye0fbg01kcqeqos7zsc8q9/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9y8nkcg01bbqeqol8wwsasi_cm9ye0fbg01kcqeqos7zsc8q9', weight_name='lora.safetensors') image = pipeline('F25INTK210').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9y8nkcg01bbqeqol8wwsasi_cm9ye0fbg01kcqeqos7zsc8q9/discussions) to add images that show off what you’ve made with this LoRA.
sergioalves/f46c06a5-5d69-4b79-b55c-9aad986959ad
sergioalves
2025-04-26T16:10:29Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-26T16:09:54Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: f46c06a5-5d69-4b79-b55c-9aad986959ad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 723f999c3d4f537d_train_data.json ds_type: json format: custom path: /workspace/input_data/723f999c3d4f537d_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: sergioalves/f46c06a5-5d69-4b79-b55c-9aad986959ad hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/723f999c3d4f537d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b222ded9-403c-4db5-a5de-962567cdbc68 wandb_project: s56-8 wandb_run: your_name wandb_runid: b222ded9-403c-4db5-a5de-962567cdbc68 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f46c06a5-5d69-4b79-b55c-9aad986959ad This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.8408 | 0.2128 | 200 | 4.9744 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Gemma-3-Glitter-27B-Q6_K-GGUF
Triangle104
2025-04-26T16:09:43Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:allura-org/Gemma-3-Glitter-27B", "base_model:quantized:allura-org/Gemma-3-Glitter-27B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T16:06:35Z
--- base_model: allura-org/Gemma-3-Glitter-27B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Gemma-3-Glitter-27B-Q6_K-GGUF This model was converted to GGUF format from [`allura-org/Gemma-3-Glitter-27B`](https://huggingface.co/allura-org/Gemma-3-Glitter-27B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/allura-org/Gemma-3-Glitter-27B) for more details on the model. --- A creative writing model based on Gemma 3 27B. Columbidae/gemma-3-27b-half, a 50/50 merge of 27B IT and 27B PT, was used as the base model. (This was done because of the success of Starshine, a 50/50 IT and PT merge.) The inclusion of PT model does weaken the instruct, but it also weakens the censorship/hesitancy to participate in certain fictional stories. The prose also becomes more natural with less of the IT model included. This model does better with short and to-the-point prompts. Long, detailed system prompts will often confuse it. (Tested with 1000-2000 token system prompts to lackluster results compared to 100-500 token prompts). -- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Gemma-3-Glitter-27B-Q6_K-GGUF --hf-file gemma-3-glitter-27b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Gemma-3-Glitter-27B-Q6_K-GGUF --hf-file gemma-3-glitter-27b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Gemma-3-Glitter-27B-Q6_K-GGUF --hf-file gemma-3-glitter-27b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Gemma-3-Glitter-27B-Q6_K-GGUF --hf-file gemma-3-glitter-27b-q6_k.gguf -c 2048 ```
hafsa101010/cat_toy-stable-diffusion-v2
hafsa101010
2025-04-26T16:06:25Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "lora", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-04-26T14:45:57Z
--- base_model: stabilityai/stable-diffusion-2 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of cat toy tags: - text-to-image - diffusers - lora - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA DreamBooth - hafsa101010/cat_toy-stable-diffusion-v2 These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were trained on a photo of cat toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Triangle104/Gemma-3-Glitter-27B-Q5_K_M-GGUF
Triangle104
2025-04-26T16:00:57Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:allura-org/Gemma-3-Glitter-27B", "base_model:quantized:allura-org/Gemma-3-Glitter-27B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T15:30:57Z
--- base_model: allura-org/Gemma-3-Glitter-27B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Gemma-3-Glitter-27B-Q5_K_M-GGUF This model was converted to GGUF format from [`allura-org/Gemma-3-Glitter-27B`](https://huggingface.co/allura-org/Gemma-3-Glitter-27B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/allura-org/Gemma-3-Glitter-27B) for more details on the model. --- A creative writing model based on Gemma 3 27B. Columbidae/gemma-3-27b-half, a 50/50 merge of 27B IT and 27B PT, was used as the base model. (This was done because of the success of Starshine, a 50/50 IT and PT merge.) The inclusion of PT model does weaken the instruct, but it also weakens the censorship/hesitancy to participate in certain fictional stories. The prose also becomes more natural with less of the IT model included. This model does better with short and to-the-point prompts. Long, detailed system prompts will often confuse it. (Tested with 1000-2000 token system prompts to lackluster results compared to 100-500 token prompts). --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Gemma-3-Glitter-27B-Q5_K_M-GGUF --hf-file gemma-3-glitter-27b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Gemma-3-Glitter-27B-Q5_K_M-GGUF --hf-file gemma-3-glitter-27b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Gemma-3-Glitter-27B-Q5_K_M-GGUF --hf-file gemma-3-glitter-27b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Gemma-3-Glitter-27B-Q5_K_M-GGUF --hf-file gemma-3-glitter-27b-q5_k_m.gguf -c 2048 ```
anhkiet5655t/bdg
anhkiet5655t
2025-04-26T16:00:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-04-26T16:00:43Z
--- license: creativeml-openrail-m ---
Otakadelic/MT1-Gen13-gemma-2-9B-Q8_0-GGUF
Otakadelic
2025-04-26T15:47:28Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:zelk12/MT1-Gen13-gemma-2-9B", "base_model:quantized:zelk12/MT1-Gen13-gemma-2-9B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T15:46:43Z
--- base_model: zelk12/MT1-Gen13-gemma-2-9B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Otakadelic/MT1-Gen13-gemma-2-9B-Q8_0-GGUF This model was converted to GGUF format from [`zelk12/MT1-Gen13-gemma-2-9B`](https://huggingface.co/zelk12/MT1-Gen13-gemma-2-9B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zelk12/MT1-Gen13-gemma-2-9B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Otakadelic/MT1-Gen13-gemma-2-9B-Q8_0-GGUF --hf-file mt1-gen13-gemma-2-9b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Otakadelic/MT1-Gen13-gemma-2-9B-Q8_0-GGUF --hf-file mt1-gen13-gemma-2-9b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Otakadelic/MT1-Gen13-gemma-2-9B-Q8_0-GGUF --hf-file mt1-gen13-gemma-2-9b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Otakadelic/MT1-Gen13-gemma-2-9B-Q8_0-GGUF --hf-file mt1-gen13-gemma-2-9b-q8_0.gguf -c 2048 ```
genki10/BERT_V8_sp10_lw40_ex50_lo50_k2_k2_fold1
genki10
2025-04-26T15:40:21Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T15:25:41Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_V8_sp10_lw40_ex50_lo50_k2_k2_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_V8_sp10_lw40_ex50_lo50_k2_k2_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5107 - Qwk: 0.6201 - Mse: 0.5101 - Rmse: 0.7142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 1.0 | 2 | 7.6515 | 0.0 | 7.6492 | 2.7657 | | No log | 2.0 | 4 | 7.2604 | 0.0 | 7.2581 | 2.6941 | | No log | 3.0 | 6 | 6.6180 | 0.0 | 6.6158 | 2.5721 | | No log | 4.0 | 8 | 5.3839 | -0.0131 | 5.3819 | 2.3199 | | No log | 5.0 | 10 | 4.1816 | 0.0 | 4.1795 | 2.0444 | | No log | 6.0 | 12 | 3.3117 | 0.0 | 3.3097 | 1.8193 | | No log | 7.0 | 14 | 2.5437 | 0.0 | 2.5420 | 1.5944 | | No log | 8.0 | 16 | 1.9512 | 0.0645 | 1.9495 | 1.3963 | | No log | 9.0 | 18 | 1.5546 | 0.0211 | 1.5531 | 1.2462 | | No log | 10.0 | 20 | 1.2505 | 0.0 | 1.2490 | 1.1176 | | No log | 11.0 | 22 | 1.0495 | 0.0 | 1.0481 | 1.0238 | | No log | 12.0 | 24 | 0.9373 | 0.0 | 0.9360 | 0.9675 | | No log | 13.0 | 26 | 0.8444 | 0.3069 | 0.8432 | 0.9183 | | No log | 14.0 | 28 | 0.7818 | 0.2446 | 0.7807 | 0.8836 | | No log | 15.0 | 30 | 0.6906 | 0.3398 | 0.6897 | 0.8305 | | No log | 16.0 | 32 | 0.8725 | 0.2255 | 0.8714 | 0.9335 | | No log | 17.0 | 34 | 0.7393 | 0.3427 | 0.7383 | 0.8593 | | No log | 18.0 | 36 | 0.6456 | 0.4903 | 0.6447 | 0.8030 | | No log | 19.0 | 38 | 0.5972 | 0.5306 | 0.5964 | 0.7723 | | No log | 20.0 | 40 | 0.6241 | 0.3967 | 0.6233 | 0.7895 | | No log | 21.0 | 42 | 0.6082 | 0.4253 | 0.6074 | 0.7794 | | No log | 22.0 | 44 | 0.5812 | 0.5626 | 0.5804 | 0.7618 | | No log | 23.0 | 46 | 0.6714 | 0.5680 | 0.6706 | 0.8189 | | No log | 24.0 | 48 | 0.4739 | 0.5490 | 0.4731 | 0.6878 | | No log | 25.0 | 50 | 0.5180 | 0.5103 | 0.5172 | 0.7192 | | No log | 26.0 | 52 | 0.5498 | 0.5795 | 0.5489 | 0.7409 | | No log | 27.0 | 54 | 0.5799 | 0.5851 | 0.5790 | 0.7609 | | No log | 28.0 | 56 | 0.4841 | 0.5400 | 0.4832 | 0.6951 | | No log | 29.0 | 58 | 0.5837 | 0.4843 | 0.5829 | 0.7635 | | No log | 30.0 | 60 | 0.5404 | 0.5148 | 0.5396 | 0.7346 | | No log | 31.0 | 62 | 0.4938 | 0.5625 | 0.4930 | 0.7021 | | No log | 32.0 | 64 | 0.5099 | 0.6038 | 0.5093 | 0.7136 | | No log | 33.0 | 66 | 0.6422 | 0.5813 | 0.6416 | 0.8010 | | No log | 34.0 | 68 | 0.4865 | 0.6511 | 0.4860 | 0.6972 | | No log | 35.0 | 70 | 0.4862 | 0.6741 | 0.4857 | 0.6970 | | No log | 36.0 | 72 | 0.4878 | 0.6634 | 0.4874 | 0.6981 | | No log | 37.0 | 74 | 0.4980 | 0.6667 | 0.4975 | 0.7053 | | No log | 38.0 | 76 | 0.4810 | 0.6569 | 0.4805 | 0.6932 | | No log | 39.0 | 78 | 0.5480 | 0.5754 | 0.5472 | 0.7397 | | No log | 40.0 | 80 | 0.5823 | 0.5561 | 0.5815 | 0.7626 | | No log | 41.0 | 82 | 0.5469 | 0.5734 | 0.5461 | 0.7390 | | No log | 42.0 | 84 | 0.4820 | 0.6131 | 0.4812 | 0.6937 | | No log | 43.0 | 86 | 0.4891 | 0.6231 | 0.4885 | 0.6989 | | No log | 44.0 | 88 | 0.5023 | 0.6123 | 0.5016 | 0.7083 | | No log | 45.0 | 90 | 0.5295 | 0.6258 | 0.5288 | 0.7272 | | No log | 46.0 | 92 | 0.5997 | 0.5894 | 0.5991 | 0.7740 | | No log | 47.0 | 94 | 0.5581 | 0.5967 | 0.5575 | 0.7466 | | No log | 48.0 | 96 | 0.5917 | 0.5706 | 0.5909 | 0.7687 | | No log | 49.0 | 98 | 0.5934 | 0.5756 | 0.5927 | 0.7698 | | No log | 50.0 | 100 | 0.5316 | 0.6088 | 0.5310 | 0.7287 | | No log | 51.0 | 102 | 0.5498 | 0.5986 | 0.5491 | 0.7410 | | No log | 52.0 | 104 | 0.5961 | 0.5850 | 0.5953 | 0.7715 | | No log | 53.0 | 106 | 0.6112 | 0.5802 | 0.6103 | 0.7812 | | No log | 54.0 | 108 | 0.5362 | 0.6060 | 0.5355 | 0.7318 | | No log | 55.0 | 110 | 0.5969 | 0.5910 | 0.5963 | 0.7722 | | No log | 56.0 | 112 | 0.5527 | 0.6012 | 0.5520 | 0.7430 | | No log | 57.0 | 114 | 0.5307 | 0.5982 | 0.5299 | 0.7280 | | No log | 58.0 | 116 | 0.5171 | 0.5907 | 0.5164 | 0.7186 | | No log | 59.0 | 118 | 0.5004 | 0.6131 | 0.4998 | 0.7069 | | No log | 60.0 | 120 | 0.5098 | 0.5932 | 0.5092 | 0.7136 | | No log | 61.0 | 122 | 0.4910 | 0.6149 | 0.4903 | 0.7002 | | No log | 62.0 | 124 | 0.5223 | 0.6135 | 0.5215 | 0.7222 | | No log | 63.0 | 126 | 0.4927 | 0.6308 | 0.4920 | 0.7014 | | No log | 64.0 | 128 | 0.5097 | 0.6205 | 0.5091 | 0.7135 | | No log | 65.0 | 130 | 0.5107 | 0.6201 | 0.5101 | 0.7142 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
DanielNRU/pollen-ner-cycle-300
DanielNRU
2025-04-26T15:21:19Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "base_model:adapter:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "region:us" ]
null
2025-04-26T03:18:16Z
--- library_name: peft base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-cycle-300 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-cycle-300 This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0346 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:| | No log | 1.0 | 38 | 1.1272 | 0.0 | 0.0 | 0.0 | | 1.5618 | 2.0 | 76 | 1.0511 | 0.0 | 0.0 | 0.0 | | 1.095 | 3.0 | 114 | 1.0420 | 0.0 | 0.0 | 0.0 | | 1.0985 | 4.0 | 152 | 1.0366 | 0.0 | 0.0 | 0.0 | | 1.0985 | 5.0 | 190 | 1.0346 | 0.0 | 0.0 | 0.0 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
vermoney/e62e4f47-43fb-4278-a6fe-958b20291be9
vermoney
2025-04-26T15:11:14Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-26T15:03:44Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e62e4f47-43fb-4278-a6fe-958b20291be9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 678109d9bdb718ed_train_data.json ds_type: json format: custom path: /workspace/input_data/678109d9bdb718ed_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vermoney/e62e4f47-43fb-4278-a6fe-958b20291be9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/678109d9bdb718ed_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 39f481fc-56ef-49a8-b4cf-f573a51ee02d wandb_project: s56-9 wandb_run: your_name wandb_runid: 39f481fc-56ef-49a8-b4cf-f573a51ee02d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e62e4f47-43fb-4278-a6fe-958b20291be9 This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8776 | 0.0223 | 200 | 2.0197 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ZjWRq19q9EC1/fshshd
ZjWRq19q9EC1
2025-04-26T12:05:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-26T12:05:57Z
--- license: apache-2.0 ---
RzZ/Qwen2.5-VL-3B-GGUF
RzZ
2025-04-26T11:59:49Z
710
0
null
[ "gguf", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-15T17:16:01Z
--- license: mit --- GGUF file for quick testing of WIP implmentation of llama.cpp Qwen2.5 VL. You can find the lastest version of implmentation [here](https://github.com/HimariO/llama.cpp.qwen2vl/tree/qwen25-vl). (Don't forget to switch to `qwen25-vl` branch) You can also follow the llama.cpp draft PR [here](https://github.com/ggml-org/llama.cpp/pull/12402)
tcapelle/grpo-qwen7b-triton-5ep
tcapelle
2025-04-26T11:59:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "conversational", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T11:58:00Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: transformers model_name: workspace/data/axolotl-artifacts/grpo-beta-zero tags: - generated_from_trainer licence: license --- # Model Card for workspace/data/axolotl-artifacts/grpo-beta-zero This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/grpo-cuda/axolotl-grpo/runs/asgasvq2) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0.dev0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kaylapercy/kaylapercy
kaylapercy
2025-04-26T11:44:18Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2025-04-26T11:44:18Z
--- license: bsd-3-clause-clear ---
Silin1590/Qwen-0d5B-Int-CoT
Silin1590
2025-04-26T11:05:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-0.5B", "base_model:finetune:Qwen/Qwen2.5-0.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T11:05:19Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-0.5B tags: - chat library_name: transformers --- # Qwen2.5-0.5B-Instruct ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the instruction-tuned 0.5B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 0.49B - Number of Paramaters (Non-Embedding): 0.36B - Number of Layers: 24 - Number of Attention Heads (GQA): 14 for Q and 2 for KV - Context Length: Full 32,768 tokens and generation 8192 tokens For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-0.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
hasdal/71ed1701-8cd9-4105-846c-7023aded0cb7
hasdal
2025-04-26T11:01:32Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/codellama-7b", "base_model:adapter:unsloth/codellama-7b", "license:apache-2.0", "region:us" ]
null
2025-04-26T09:28:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: 71ed1701-8cd9-4105-846c-7023aded0cb7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codellama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fd2d316e66a34327_train_data.json ds_type: json format: custom path: /workspace/input_data/fd2d316e66a34327_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: hasdal/71ed1701-8cd9-4105-846c-7023aded0cb7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00022 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/fd2d316e66a34327_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 30 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b834cdfc-e127-496a-a2e6-427ed26236a6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b834cdfc-e127-496a-a2e6-427ed26236a6 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 71ed1701-8cd9-4105-846c-7023aded0cb7 This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00022 - train_batch_size: 4 - eval_batch_size: 4 - seed: 30 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0019 | 1 | nan | | 0.0 | 0.9560 | 500 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Silin1590/Qwen-7B-Int-Soc-CoA
Silin1590
2025-04-26T10:59:11Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T10:56:41Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-7B tags: - chat library_name: transformers --- # Qwen2.5-7B-Instruct <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the instruction-tuned 7B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 7.61B - Number of Paramaters (Non-Embedding): 6.53B - Number of Layers: 28 - Number of Attention Heads (GQA): 28 for Q and 4 for KV - Context Length: Full 131,072 tokens and generation 8192 tokens - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required. ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
genki10/BERT_V8_sp10_lw40_ex50_lo100_k1_k1_fold2
genki10
2025-04-26T10:56:06Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T10:41:28Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_V8_sp10_lw40_ex50_lo100_k1_k1_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_V8_sp10_lw40_ex50_lo100_k1_k1_fold2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6126 - Qwk: 0.5339 - Mse: 0.6123 - Rmse: 0.7825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 1.0 | 1 | 14.3248 | 0.0 | 14.3247 | 3.7848 | | No log | 2.0 | 2 | 12.4278 | 0.0 | 12.4278 | 3.5253 | | No log | 3.0 | 3 | 10.9240 | 0.0240 | 10.9242 | 3.3052 | | No log | 4.0 | 4 | 9.7028 | 0.0012 | 9.7030 | 3.1150 | | No log | 5.0 | 5 | 8.8166 | 0.0 | 8.8167 | 2.9693 | | No log | 6.0 | 6 | 7.9481 | 0.0 | 7.9482 | 2.8193 | | No log | 7.0 | 7 | 6.7717 | 0.0 | 6.7719 | 2.6023 | | No log | 8.0 | 8 | 5.7869 | 0.0381 | 5.7871 | 2.4056 | | No log | 9.0 | 9 | 5.1713 | 0.0400 | 5.1717 | 2.2741 | | No log | 10.0 | 10 | 5.3130 | 0.0356 | 5.3133 | 2.3051 | | No log | 11.0 | 11 | 4.7972 | 0.0270 | 4.7976 | 2.1903 | | No log | 12.0 | 12 | 3.6411 | 0.0078 | 3.6416 | 1.9083 | | No log | 13.0 | 13 | 3.1161 | 0.0039 | 3.1165 | 1.7654 | | No log | 14.0 | 14 | 2.8174 | 0.0 | 2.8179 | 1.6787 | | No log | 15.0 | 15 | 2.4930 | 0.0250 | 2.4936 | 1.5791 | | No log | 16.0 | 16 | 2.2413 | 0.1391 | 2.2418 | 1.4973 | | No log | 17.0 | 17 | 2.1104 | 0.1419 | 2.1109 | 1.4529 | | No log | 18.0 | 18 | 1.7575 | 0.0834 | 1.7580 | 1.3259 | | No log | 19.0 | 19 | 1.5609 | 0.0539 | 1.5614 | 1.2496 | | No log | 20.0 | 20 | 1.3621 | 0.0475 | 1.3626 | 1.1673 | | No log | 21.0 | 21 | 1.3271 | 0.0475 | 1.3276 | 1.1522 | | No log | 22.0 | 22 | 1.1275 | 0.0280 | 1.1280 | 1.0621 | | No log | 23.0 | 23 | 0.9953 | 0.0213 | 0.9957 | 0.9978 | | No log | 24.0 | 24 | 0.9249 | 0.0496 | 0.9253 | 0.9619 | | No log | 25.0 | 25 | 0.8935 | 0.1400 | 0.8939 | 0.9455 | | No log | 26.0 | 26 | 0.7872 | 0.3523 | 0.7875 | 0.8874 | | No log | 27.0 | 27 | 0.7419 | 0.4004 | 0.7422 | 0.8615 | | No log | 28.0 | 28 | 0.6817 | 0.4540 | 0.6819 | 0.8258 | | No log | 29.0 | 29 | 0.6504 | 0.4513 | 0.6506 | 0.8066 | | No log | 30.0 | 30 | 0.6847 | 0.4295 | 0.6850 | 0.8276 | | No log | 31.0 | 31 | 0.6630 | 0.4597 | 0.6632 | 0.8144 | | No log | 32.0 | 32 | 0.5746 | 0.5038 | 0.5748 | 0.7581 | | No log | 33.0 | 33 | 0.5558 | 0.4419 | 0.5559 | 0.7456 | | No log | 34.0 | 34 | 0.5586 | 0.4316 | 0.5586 | 0.7474 | | No log | 35.0 | 35 | 0.5078 | 0.4813 | 0.5078 | 0.7126 | | No log | 36.0 | 36 | 0.5303 | 0.5289 | 0.5305 | 0.7284 | | No log | 37.0 | 37 | 0.5891 | 0.5436 | 0.5893 | 0.7677 | | No log | 38.0 | 38 | 0.5657 | 0.5565 | 0.5659 | 0.7523 | | No log | 39.0 | 39 | 0.4878 | 0.5757 | 0.4878 | 0.6985 | | No log | 40.0 | 40 | 0.4796 | 0.5784 | 0.4797 | 0.6926 | | No log | 41.0 | 41 | 0.5213 | 0.5571 | 0.5213 | 0.7220 | | No log | 42.0 | 42 | 0.5218 | 0.5516 | 0.5219 | 0.7224 | | No log | 43.0 | 43 | 0.5555 | 0.5569 | 0.5556 | 0.7454 | | No log | 44.0 | 44 | 0.5844 | 0.5457 | 0.5844 | 0.7645 | | No log | 45.0 | 45 | 0.5430 | 0.5570 | 0.5430 | 0.7369 | | No log | 46.0 | 46 | 0.4960 | 0.5493 | 0.4959 | 0.7042 | | No log | 47.0 | 47 | 0.5087 | 0.5671 | 0.5086 | 0.7132 | | No log | 48.0 | 48 | 0.5712 | 0.5508 | 0.5710 | 0.7557 | | No log | 49.0 | 49 | 0.6876 | 0.5099 | 0.6873 | 0.8291 | | No log | 50.0 | 50 | 0.6958 | 0.4911 | 0.6954 | 0.8339 | | No log | 51.0 | 51 | 0.6120 | 0.5178 | 0.6117 | 0.7821 | | No log | 52.0 | 52 | 0.5819 | 0.5272 | 0.5817 | 0.7627 | | No log | 53.0 | 53 | 0.6024 | 0.5095 | 0.6021 | 0.7760 | | No log | 54.0 | 54 | 0.6154 | 0.5202 | 0.6150 | 0.7842 | | No log | 55.0 | 55 | 0.6630 | 0.4937 | 0.6624 | 0.8139 | | No log | 56.0 | 56 | 0.7037 | 0.5 | 0.7030 | 0.8385 | | No log | 57.0 | 57 | 0.6769 | 0.5125 | 0.6762 | 0.8223 | | No log | 58.0 | 58 | 0.6515 | 0.5145 | 0.6510 | 0.8068 | | No log | 59.0 | 59 | 0.6504 | 0.5114 | 0.6499 | 0.8062 | | No log | 60.0 | 60 | 0.6401 | 0.5417 | 0.6396 | 0.7998 | | No log | 61.0 | 61 | 0.6278 | 0.5456 | 0.6273 | 0.7920 | | No log | 62.0 | 62 | 0.6597 | 0.5381 | 0.6591 | 0.8119 | | No log | 63.0 | 63 | 0.6777 | 0.5229 | 0.6771 | 0.8229 | | No log | 64.0 | 64 | 0.6442 | 0.5269 | 0.6437 | 0.8023 | | No log | 65.0 | 65 | 0.6036 | 0.5378 | 0.6032 | 0.7767 | | No log | 66.0 | 66 | 0.6005 | 0.5609 | 0.6002 | 0.7747 | | No log | 67.0 | 67 | 0.5991 | 0.5509 | 0.5987 | 0.7738 | | No log | 68.0 | 68 | 0.6069 | 0.5508 | 0.6065 | 0.7788 | | No log | 69.0 | 69 | 0.6139 | 0.5282 | 0.6135 | 0.7832 | | No log | 70.0 | 70 | 0.6126 | 0.5339 | 0.6123 | 0.7825 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
kenonix/gemma-3-ko-4B-uc2-LoRA
kenonix
2025-04-26T10:41:43Z
0
0
transformers
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-26T10:41:33Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pansysalome/pansysalome
pansysalome
2025-04-26T10:35:32Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-04-26T10:35:31Z
--- license: bigscience-openrail-m ---
RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf
RichardErkhov
2025-04-26T10:33:22Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T08:34:00Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2-7B-Instruct-it-v1.1-v1.0 - GGUF - Model creator: https://huggingface.co/homeb82784/ - Original model: https://huggingface.co/homeb82784/Qwen2-7B-Instruct-it-v1.1-v1.0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q2_K.gguf) | Q2_K | 2.81GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.IQ3_S.gguf) | IQ3_S | 3.26GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.IQ3_M.gguf) | IQ3_M | 3.33GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K.gguf) | Q3_K | 3.55GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_0.gguf) | Q4_0 | 4.13GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_K.gguf) | Q4_K | 4.36GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q4_1.gguf) | Q4_1 | 4.54GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_0.gguf) | Q5_0 | 4.95GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_K.gguf) | Q5_K | 5.07GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q5_1.gguf) | Q5_1 | 5.36GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q6_K.gguf) | Q6_K | 5.82GB | | [Qwen2-7B-Instruct-it-v1.1-v1.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/homeb82784_-_Qwen2-7B-Instruct-it-v1.1-v1.0-gguf/blob/main/Qwen2-7B-Instruct-it-v1.1-v1.0.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- base_model: Qwen2-7B-Instruct-it-v1.1 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - krx license: apache-2.0 language: - en --- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pmkodi/Analysis-Fine-tune-DeepSeek-R1-Distill-Llama-8B-LORA
pmkodi
2025-04-26T10:30:48Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-26T10:30:43Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pmkodi - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mdlbkp/gemma-2-9b-it-abliterated-Q4_0-GGUF
mdlbkp
2025-04-26T10:13:56Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:IlyaGusev/gemma-2-9b-it-abliterated", "base_model:quantized:IlyaGusev/gemma-2-9b-it-abliterated", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T10:13:31Z
--- base_model: IlyaGusev/gemma-2-9b-it-abliterated language: - en license: gemma tags: - llama-cpp - gguf-my-repo --- # mdlbkp/gemma-2-9b-it-abliterated-Q4_0-GGUF This model was converted to GGUF format from [`IlyaGusev/gemma-2-9b-it-abliterated`](https://huggingface.co/IlyaGusev/gemma-2-9b-it-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/IlyaGusev/gemma-2-9b-it-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo mdlbkp/gemma-2-9b-it-abliterated-Q4_0-GGUF --hf-file gemma-2-9b-it-abliterated-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo mdlbkp/gemma-2-9b-it-abliterated-Q4_0-GGUF --hf-file gemma-2-9b-it-abliterated-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo mdlbkp/gemma-2-9b-it-abliterated-Q4_0-GGUF --hf-file gemma-2-9b-it-abliterated-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo mdlbkp/gemma-2-9b-it-abliterated-Q4_0-GGUF --hf-file gemma-2-9b-it-abliterated-q4_0.gguf -c 2048 ```
Subh775/Llama-3.1-8b-Hinglish-General-sft
Subh775
2025-04-26T09:53:27Z
8
0
adapter-transformers
[ "adapter-transformers", "safetensors", "unsloth", "LoRA", "trl", "hinglish", "text-generation-inference", "text-generation", "en", "dataset:fhai50032/Hinglish-CoT-General", "base_model:unsloth/Meta-Llama-3.1-8B", "base_model:adapter:unsloth/Meta-Llama-3.1-8B", "license:apache-2.0", "region:us" ]
text-generation
2025-04-25T06:20:48Z
--- license: apache-2.0 tags: - unsloth - LoRA - trl - hinglish - text-generation-inference datasets: - fhai50032/Hinglish-CoT-General language: - en base_model: - unsloth/Meta-Llama-3.1-8B pipeline_tag: text-generation library_name: adapter-transformers --- # 🧠 Llama-3.1-8B-Hinglish-General-sft **Llama-3.1-8b-Hinglish-General-sft** is a lightweight, domain-specific fine-tuned model built for **conversational Hinglish-style reasoning** with a focus on general and basic Hinglish knowledge. It builds upon `Meta-Llama-3.1-8B` and uses **LoRA adapters** for efficient fine-tuning with **Unsloth**. > ⚠️ This model is a demonstration of supervised fine-tuning and is intended solely for educational and informational purposes. It is not validated for critical applications and should not be used for real-life decision-making. --- ## 📋 Model Summary - **Base Model:** [`unsloth/Meta-Llama-3.1-8B`](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) - **LoRA Adapter:** `Subh775/Llama-3.1-8b-Hinglish-General-sft` - **Fine-tuned Dataset:** [`fhai50032/Hinglish-CoT-General`](https://huggingface.co/datasets/fhai50032/Hinglish-CoT-General) - **Language:** Hinglish (Hindi-English mix) - **Training Time:** 49.24 minutes (1 epoch) - **Framework:** [Unsloth](https://github.com/unslothai/unsloth) - **Quantization:** 4-bit (for efficient inference) --- ## 💡 Key Features - 🗣️ **Hinglish-CoT Reasoning:** Trained on ~2K question-answer pairs with step-by-step reasoning in Hinglish. - ⚙️ **Efficient Inference:** Enabled by LoRA + Unsloth + 4-bit quantization. - 🚀 **Fast and Lightweight:** Optimized for quick inference even on limited hardware. --- ## 🛠️ Inference Instructions ### 🔧 Installation ```python pip install unsloth ``` ```python from unsloth import FastLanguageModel import torch alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {question} ### Input: {thoughts} ### Response: {answer}""" # Load model model, tokenizer = FastLanguageModel.from_pretrained( model_name="Subh775/Llama-3.1-8b-Hinglish-General-sft", max_seq_length=2048, load_in_4bit=True ) FastLanguageModel.for_inference(model) ``` ```python import re def clean_response(text): if "### Response:" in text: text = text.split("### Response:")[-1] lines = text.strip().splitlines() clean_lines = [line.strip() for line in lines if not re.match(r"^(#|input:|response:|Input:|Response:)", line, re.IGNORECASE)] return " ".join(clean_lines).strip() def chat(): print("🩺 Chat with Llama-3.1-8b-Hinglish-General-sft! Type '\\q' or 'quit' to stop.\n") chat_history = "" while True: user_input = input("➤ ") if user_input.lower() in ['\\q', 'quit']: print("\nExiting the chat. Goodbye 🧠✨!") print("✨" + "=" * 30 + "✨\n") break question = user_input thoughts = "User is asking a genuine question. Thinking step-by-step in Hinglish." prompt = alpaca_prompt.format(question=question, thoughts=thoughts, answer="") chat_history += prompt + "\n" inputs = tokenizer([chat_history], return_tensors="pt").to("cuda") outputs = model.generate( **inputs, max_new_tokens=256, temperature=0.7, top_p=0.9, num_return_sequences=1, do_sample=True, no_repeat_ngram_size=2 ) decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] clean_output = clean_response(decoded_output) chat_history += f"{clean_output}\n" print(f"\n❄️: {clean_output}\n") chat() ``` ## 📈 Training details - Dataset Used: Hinglish-CoT-General - Total Samples: 2,015 examples - Training Time: ~49 minutes (on 1 epoch) - Final Step: 60 - Final Training Loss: 0.776 ## ⚠️ Limitations - 🧠 Generalized understanding – may not reflect recent advancements - The dataset used for finetuning is too short and hence model responses is not as accurate. ## 📜 License This model is licensed under the Apache 2.0 License, same as its base model. ## 📚 Citation ```bibtex @misc{llama3_8b_hinglish_general_2025, author = {Subh775}, title = {Llama-3.1 8B Hinglish General SFT}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/Subh775/Llama-3.1-8b-Hinglish-General-sft}}, note = {Hugging Face Repository} } ```
jeffreynicolette/jeffreynicolette
jeffreynicolette
2025-04-26T09:05:43Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-04-26T09:05:43Z
--- license: bigscience-openrail-m ---
Flo0620/Qwen2_5_7B_r4_a8_d0_2
Flo0620
2025-04-26T09:02:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-04-26T05:49:48Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: Qwen2_5_7B_r4_a8_d0_2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen2_5_7B_r4_a8_d0_2 This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Flo0620/Qwen2_5_7B_r4_a8_d0_2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nyrishh/my-sentiment-model
nyrishh
2025-04-26T08:18:04Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T06:59:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aleegis/3f7d34df-a516-4fdc-8303-2e4d55fad5e1
aleegis
2025-04-26T08:14:35Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
2025-04-26T06:44:07Z
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 3f7d34df-a516-4fdc-8303-2e4d55fad5e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - a8730480951cb332_train_data.json ds_type: json format: custom path: /workspace/input_data/a8730480951cb332_train_data.json type: field_instruction: prompt field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/3f7d34df-a516-4fdc-8303-2e4d55fad5e1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/a8730480951cb332_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: 6ec2fd27-d2b8-427a-b985-e17ebac9da00 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6ec2fd27-d2b8-427a-b985-e17ebac9da00 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 3f7d34df-a516-4fdc-8303-2e4d55fad5e1 This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
madelinenicole/madelinenicole
madelinenicole
2025-04-26T08:11:57Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-04-26T08:11:57Z
--- license: bigscience-openrail-m ---
CCF2P/Exam
CCF2P
2025-04-26T08:10:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T06:36:12Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer model-index: - name: Exam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Exam This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 0.0001 | | No log | 2.0 | 4 | 0.0002 | | No log | 3.0 | 6 | 0.0002 | | No log | 4.0 | 8 | 0.0002 | | No log | 5.0 | 10 | 0.0002 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.1
chengyongyeo/ppo-LunarLander-v2
chengyongyeo
2025-04-26T08:10:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-04-26T08:09:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: LunarLander-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.82 +/- 15.86 name: mean_reward verified: false --- # **LunarLander-v2** Agent playing **LunarLander-v2** This is a trained model of a **LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tangledgroup/tangled-alpha-0.14-core
tangledgroup
2025-04-26T08:09:44Z
0
0
transformers
[ "transformers", "chat", "core", "base", "instruct", "reason", "text-generation", "en", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "eo", "es", "et", "eu", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gn", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lg", "li", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "om", "or", "pa", "pl", "ps", "pt", "qu", "rm", "ro", "ru", "sa", "si", "sc", "sd", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "te", "th", "tl", "tn", "tr", "ug", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zu", "dataset:ontocord/fineweb-permissive-multilingual-2m", "dataset:distily/c4_multilingual_1M", "dataset:data-silence/sumnews", "dataset:xu-song/cc100-samples", "dataset:badrex/llm-emoji-dataset", "dataset:fblgit/simple-math", "dataset:Gusarich/math-expressions-1m", "dataset:neuralwork/arxiver", "dataset:christopher/rosetta-code", "dataset:nampdn-ai/tiny-codes", "dataset:JeanKaddour/minipile", "dataset:NousResearch/hermes-function-calling-v1", "dataset:simplescaling/s1K-1.1", "dataset:mlabonne/open-perfectblend", "dataset:allenai/tulu-3-sft-mixture", "dataset:rombodawg/Everything_Instruct_Multilingual", "dataset:open-r1/OpenR1-Math-220k", "dataset:open-thoughts/OpenThoughts-114k", "dataset:cognitivecomputations/dolphin-r1", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-04-18T07:53:24Z
--- license: mit pipeline_tag: text-generation library_name: transformers language: [ 'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu', ] datasets: # core - base - ontocord/fineweb-permissive-multilingual-2m - distily/c4_multilingual_1M - data-silence/sumnews - xu-song/cc100-samples - badrex/llm-emoji-dataset - fblgit/simple-math - Gusarich/math-expressions-1m - neuralwork/arxiver - christopher/rosetta-code - nampdn-ai/tiny-codes - JeanKaddour/minipile # core - instruct - NousResearch/hermes-function-calling-v1 - simplescaling/s1K-1.1 # base - instruct - mlabonne/open-perfectblend - allenai/tulu-3-sft-mixture - rombodawg/Everything_Instruct_Multilingual # base - reason - open-r1/OpenR1-Math-220k - open-thoughts/OpenThoughts-114k - cognitivecomputations/dolphin-r1 - simplescaling/s1K-1.1 tags: - chat - core - base - instruct - reason --- # tangled-alpha-0.14-core ![logo](./misc/logo.jpg) ```bash time python -B prepare_base_datasets.py ``` ``` i=0, min_len=0, max_len=1073741824, block_size=8193, chunk_size=16386000, len(dataset)=1496631, len(dataset) * block_size=12261897783 Total number of tokens in the optimized dataset '../base-data-0-0-1073741824-8193-2000' is 12261897783 i=1, min_len=8193, max_len=16385, block_size=16385, chunk_size=16385000, len(dataset)=78802, len(dataset) * block_size=1291170770 Total number of tokens in the optimized dataset '../base-data-1-8193-16385-16385-1000' is 1291170770 i=2, min_len=16385, max_len=32769, block_size=32769, chunk_size=16384500, len(dataset)=23511, len(dataset) * block_size=770431959 Total number of tokens in the optimized dataset '../base-data-2-16385-32769-32769-500' is 770431959 i=3, min_len=32769, max_len=65537, block_size=65537, chunk_size=16384250, len(dataset)=5128, len(dataset) * block_size=336073736 Total number of tokens in the optimized dataset '../base-data-3-32769-65537-65537-250' is 336073736 i=4, min_len=65537, max_len=131073, block_size=131073, chunk_size=16384125, len(dataset)=1169, len(dataset) * block_size=153224337 Total number of tokens in the optimized dataset '../base-data-4-65537-131073-131073-125' is 153224337 46G ../base-data-0-0-1073741824-8193-2000 4.9G ../base-data-1-8193-16385-16385-1000 2.9G ../base-data-2-16385-32769-32769-500 1.3G ../base-data-3-32769-65537-65537-250 589M ../base-data-4-65537-131073-131073-125 ``` ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_base_model_0.yaml ``` ``` ``` Backup `wandb`: ```bash mv wandb wandb-pretrain-base-0 ``` Copy config: ```bash cp ../config-0.json ../out/pretrain-base-0/final/config.json ``` Chat with model: ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-base-0/final ``` ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-base-0/leaderboard/' --batch_size '4' --dtype 'bfloat16' '../out/pretrain-base-0/final' ``` ``` | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------| |leaderboard | N/A| | | | | | | | | - leaderboard_bbh | N/A| | | | | | | | | - leaderboard_bbh_boolean_expressions | 1|none | 3|acc_norm |↑ |0.4560|± |0.0316| | - leaderboard_bbh_causal_judgement | 1|none | 3|acc_norm |↑ |0.5187|± |0.0366| | - leaderboard_bbh_date_understanding | 1|none | 3|acc_norm |↑ |0.2000|± |0.0253| | - leaderboard_bbh_disambiguation_qa | 1|none | 3|acc_norm |↑ |0.3400|± |0.0300| | - leaderboard_bbh_formal_fallacies | 1|none | 3|acc_norm |↑ |0.4680|± |0.0316| | - leaderboard_bbh_geometric_shapes | 1|none | 3|acc_norm |↑ |0.0880|± |0.0180| | - leaderboard_bbh_hyperbaton | 1|none | 3|acc_norm |↑ |0.5160|± |0.0317| | - leaderboard_bbh_logical_deduction_five_objects | 1|none | 3|acc_norm |↑ |0.1880|± |0.0248| | - leaderboard_bbh_logical_deduction_seven_objects | 1|none | 3|acc_norm |↑ |0.1440|± |0.0222| | - leaderboard_bbh_logical_deduction_three_objects | 1|none | 3|acc_norm |↑ |0.3360|± |0.0299| | - leaderboard_bbh_movie_recommendation | 1|none | 3|acc_norm |↑ |0.2680|± |0.0281| | - leaderboard_bbh_navigate | 1|none | 3|acc_norm |↑ |0.5800|± |0.0313| | - leaderboard_bbh_object_counting | 1|none | 3|acc_norm |↑ |0.0560|± |0.0146| | - leaderboard_bbh_penguins_in_a_table | 1|none | 3|acc_norm |↑ |0.2055|± |0.0336| | - leaderboard_bbh_reasoning_about_colored_objects | 1|none | 3|acc_norm |↑ |0.1400|± |0.0220| | - leaderboard_bbh_ruin_names | 1|none | 3|acc_norm |↑ |0.2160|± |0.0261| | - leaderboard_bbh_salient_translation_error_detection | 1|none | 3|acc_norm |↑ |0.1120|± |0.0200| | - leaderboard_bbh_snarks | 1|none | 3|acc_norm |↑ |0.5056|± |0.0376| | - leaderboard_bbh_sports_understanding | 1|none | 3|acc_norm |↑ |0.4800|± |0.0317| | - leaderboard_bbh_temporal_sequences | 1|none | 3|acc_norm |↑ |0.2840|± |0.0286| | - leaderboard_bbh_tracking_shuffled_objects_five_objects | 1|none | 3|acc_norm |↑ |0.2400|± |0.0271| | - leaderboard_bbh_tracking_shuffled_objects_seven_objects| 1|none | 3|acc_norm |↑ |0.1520|± |0.0228| | - leaderboard_bbh_tracking_shuffled_objects_three_objects| 1|none | 3|acc_norm |↑ |0.3320|± |0.0298| | - leaderboard_bbh_web_of_lies | 1|none | 3|acc_norm |↑ |0.4880|± |0.0317| | - leaderboard_gpqa | N/A| | | | | | | | | - leaderboard_gpqa_diamond | 1|none | 0|acc_norm |↑ |0.2071|± |0.0289| | - leaderboard_gpqa_extended | 1|none | 0|acc_norm |↑ |0.2637|± |0.0189| | - leaderboard_gpqa_main | 1|none | 0|acc_norm |↑ |0.2612|± |0.0208| | - leaderboard_ifeval | 3|none | 0|inst_level_loose_acc |↑ |0.2590|± | N/A| | | |none | 0|inst_level_strict_acc |↑ |0.2494|± | N/A| | | |none | 0|prompt_level_loose_acc |↑ |0.1497|± |0.0154| | | |none | 0|prompt_level_strict_acc|↑ |0.1405|± |0.0150| | - leaderboard_math_hard | N/A| | | | | | | | | - leaderboard_math_algebra_hard | 2|none | 4|exact_match |↑ |0.0008|± |0.0008| | - leaderboard_math_counting_and_prob_hard | 2|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_geometry_hard | 2|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_intermediate_algebra_hard | 2|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_num_theory_hard | 2|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_prealgebra_hard | 2|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_precalculus_hard | 2|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_mmlu_pro | 0.1|none | 5|acc |↑ |0.1112|± |0.0029| | - leaderboard_musr | N/A| | | | | | | | | - leaderboard_musr_murder_mysteries | 1|none | 0|acc_norm |↑ |0.5240|± |0.0316| | - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.2578|± |0.0274| | - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.3960|± |0.0310| ``` ```bash litgpt convert_pretrained_checkpoint ../out/pretrain-base-0/final ../out/pretrain-base-0/checkpoint ``` ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_base_model_1.yaml ``` ```bash litgpt convert_pretrained_checkpoint ../out/pretrain-base-1/final ../out/pretrain-base-1/checkpoint ``` ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_base_model_2.yaml ``` ```bash litgpt convert_pretrained_checkpoint ../out/pretrain-base-2/final ../out/pretrain-base-2/checkpoint ``` ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_base_model_3.yaml ``` ```bash CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-base-3/leaderboard/' --batch_size '4' --dtype 'bfloat16' '../out/pretrain-base-3/final' ``` ``` ```
LordOfSilence/SentimentExam
LordOfSilence
2025-04-26T07:43:47Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T07:43:10Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: trainer_output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainer_output This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7147 - Model Preparation Time: 0.0035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:-----:|:----:|:---------------:|:----------------------:| | No log | 1.0 | 3 | 0.7089 | 0.0035 | | No log | 2.0 | 6 | 0.7145 | 0.0035 | | No log | 3.0 | 9 | 0.7153 | 0.0035 | | No log | 4.0 | 12 | 0.7136 | 0.0035 | | No log | 5.0 | 15 | 0.7147 | 0.0035 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
EQuIP-Queries/EQuIP_3B
EQuIP-Queries
2025-04-26T07:39:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-25T12:21:44Z
--- library_name: transformers license: mit base_model: - Qwen/Qwen2.5-3B-Instruct language: - en --- # Model Card for EQuIP-Queries/EQuIP_3B An AI model that understands natural language and translates it into accurate Elasticsearch queries. This model is based on the Qwen2.5 3B architecture, a compact yet powerful language model known for its efficiency. We fine-tuned this model with 10,000 Elasticsearch query data points to specialize its ability to generate accurate and relevant queries. ## Model Details ### Model Description Our Solution: An AI-Powered Query Generator Our team has developed a solution to this challenge: an AI model that understands natural language and translates it into accurate Elasticsearch queries. This model is based on the Qwen2.5 3B architecture, a compact yet powerful language model known for its efficiency. We fine-tuned this model with 10,000 Elasticsearch query data points to specialize its ability to generate accurate and relevant queries. We've employed advanced techniques, including LoRA (Low-Rank Adaptation) to optimize the model for performance and efficiency. Specifically, LoRA reduces the number of trainable parameters by introducing low-rank matrices. This combination allows us to achieve high accuracy while minimizing computational resource requirements. Key Features and Benefits Natural Language Interface: Users can simply describe the data they're looking for in plain English, and the model will generate the corresponding Elasticsearch query. Increased Efficiency: Reduces the time and effort required to write complex queries, allowing users to focus on analyzing their data. Improved Accessibility: Makes Elasticsearch more accessible to a wider audience, including those who are not experts in its query language. Open Source: We are committed to open source and believe in the power of community-driven innovation. By making our model open source, we aim to contribute to the advancement of AI and empower others to build upon our work. We recognize the lack of readily available solutions in this specific area, and we're excited to fill that gap. Future Developments: This is just the beginning. Our team is dedicated to pushing the boundaries of what's possible with AI, and we have plans to release further updates and enhancements to this model in the future. We are committed to continuous improvement and innovation in the field of AI-powered search. This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** EQuIP - **Funded by :** EQuIP - **Model type:** Causal Language Model - **Language(s) (NLP):** English (en) - **License:** MIT License - **Finetuned from model :** Qwen2.5-3B-Instruct ### Model Sources [optional] - **Repository:** https://huggingface.co/EQuIP-Queries/EQuIP_3B ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use This model is intended to be directly used to translate natural language prompts into Elasticsearch queries without additional fine-tuning. Example use cases include: Generating Elasticsearch queries from plain English prompts. Simplifying query generation for analysts, developers, or data scientists unfamiliar with Elasticsearch syntax. Automating query creation as part of search, analytics, or data exploration tools. Intended users: Developers integrating natural language querying capabilities into Elasticsearch-based applications. Analysts and data scientists who frequently interact with Elasticsearch data. ### Out-of-Scope Use The model is not intended for use cases such as: Generating queries for databases or search engines other than Elasticsearch. Handling languages other than English. Providing factual answers or general conversational interactions. Tasks involving sensitive decision-making, such as medical, legal, or financial advice, where inaccurate queries may lead to significant consequences. ## Bias, Risks, and Limitations Bias Awareness: - The model may inherit biases present in the training data. Users should assess generated outputs for unintended biases or patterns, particularly in sensitive contexts. Misuse and Malicious Use: - Users must avoid using the model to intentionally produce harmful or misleading search queries or manipulate search results negatively. Limitations: - Performance may degrade significantly if input prompts differ substantially from the fine-tuning data domain. - The model does not validate query accuracy or safety and should be reviewed before execution, especially in production environments. ### Recommendations Query Validation: - Always validate and test generated Elasticsearch queries before deploying in production or using on sensitive data. Automatic generation may occasionally result in syntactic or semantic inaccuracies. Bias Awareness: - The model may inherit biases present in the training data. Users should assess generated outputs for unintended biases or patterns, particularly in sensitive contexts. Use in Sensitive Contexts: - Avoid using this model for critical or high-stakes decision-making tasks without additional human oversight and validation. Continuous Monitoring: - Monitor the outputs regularly to identify and correct issues promptly, ensuring long-term reliability. Transparency: - Clearly communicate the AI-driven nature of generated Elasticsearch queries to end-users to manage expectations and encourage verification. ## How to Get Started with the Model Install the required dependencies: ```python [pip install transformers torch] ``` Here's how you can quickly start generating Elasticsearch queries from natural language prompts using this model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "EQuIP-Queries/EQuIP_3B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) mapping = "[Your Elasticsearch mappings]" user_request = "Find me products which are less than $50" prompt = f"Given this mapping: {mapping}\nGenerate an Elasticsearch query for: {user_request}" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_length=512, do_sample=True, temperature=0.2, top_p=0.9, pad_token_id=tokenizer.pad_token_id ) generated_query = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True) print("Generated Elasticsearch query:") print(generated_query) ``` ## Training Details ### Training Data The model was fine-tuned on a custom dataset consisting of 10,000 pairs of natural language prompts and corresponding Elasticsearch queries. Each prompt describes the desired Elasticsearch query in plain English, paired with a manually crafted accurate Elasticsearch query. The dataset covers various query types and common Elasticsearch query patterns, including filters, range queries, aggregations, boolean conditions, and text search scenarios. Currently, the dataset is not publicly available. If made available in the future, a Dataset Card link will be provided here. Preprocessing: - Prompts and queries were cleaned to ensure consistent formatting. - Special tokens and unnecessary whitespace were removed to ensure high-quality training data. ### Training Procedure The model was fine-tuned using Low-Rank Adaptation (LoRA) on top of the pre-trained Qwen2.5-3B-Instruct model. LoRA significantly reduced computational requirements by training only low-rank matrices within the Transformer layers. #### Training Hyperparameters - **Training regime:** bf16 non-mixed precision ## Evaluation The model was evaluated using a held-out test set comprising 1,000 prompt-query pairs not included in the training dataset. The primary goal of the evaluation was to measure the accuracy and relevance of generated Elasticsearch queries. ### Testing Data, Factors & Metrics #### Testing Data - Size: 1,000 prompt-query pairs (held-out from training). - Composition: Representative of diverse Elasticsearch query types, including boolean conditions, aggregations, text search, and date-based queries. #### Factors The evaluation considered: - Complexity of the Elasticsearch query. - Accuracy in interpreting the intent of natural language prompts. - Syntactic correctness and relevance of generated queries. #### Metrics Exact Match: Measures the percentage of queries matching exactly with ground truth queries. Semantic Similarity: Assessed using embedding-based similarity scores (e.g., cosine similarity). Token-level F1: Evaluates precision and recall at the token-level, measuring partial correctness in generated queries. ### Results | Model | Parameters | Generation Time (sec) | Token Precision | Token Recall | Token F1 | Validity Rate | Field Similarity | |--------------------|------------|-----------------------|-----------------|--------------|----------|---------------|------------------| | **EQuIP** | 3B | 0.7969 | 0.8738 | 0.9737 | 0.9808 | 0.97 | 0.9916 | | **LLaMA 3.1** | 8B | 13.4822 | 0.3979 | 0.6 | 0.5693 | 0.5723 | 0.4622 | | **Qwen 2.5** | 7B | 1.4233 | 0.6667 | 0.7 | 0.7743 | 0.82 | 0.6479 | | **Deepseek Distill** | 8B | 9.2516 | 0.5846 | 0.65 | 0.6979 | 0.7496 | 0.8908 | | **Gemma 2** | 9B | 3.0801 | 0.6786 | 0.82 | 0.7309 | 0.8 | 0.8151 | | **Mistral** | 7B | 2.1068 | 0.6786 | 0.79 | 0.7551 | 0.8 | 0.7437 | #### Summary The evaluation demonstrates that the model achieves strong performance in accurately translating natural language prompts into valid Elasticsearch queries. It shows particularly high effectiveness in terms of token precision, recall, and overall semantic similarity, highlighting its ability to generate accurate, relevant, and syntactically correct queries efficiently. Compared to several other widely-used models, it offers an excellent balance of accuracy, speed, and computational efficiency, making it highly suitable for production use in Elasticsearch query generation tasks. However, it's recommended that users continue to verify query outputs, especially for critical or sensitive applications. ## Environmental Impact Carbon emissions for the training and fine-tuning of this model can be estimated using the Machine Learning Impact calculator introduced by Lacoste et al. (2019). - **Hardware Type:** NVIDIA A100 GPU - **Hours used:** 11 hours - **Cloud Provider:** Vast.ai ### Model Architecture and Objective This model is based on the Qwen2.5-3B-Instruct architecture, which is a decoder-only, transformer-based causal language model. It consists of approximately 3 billion parameters designed for efficient and high-quality natural language understanding and generation. The primary objective of this fine-tuned model is to accurately convert natural language prompts into syntactically correct and semantically relevant Elasticsearch queries. To achieve this, the model was fine-tuned on domain-specific data, incorporating Low-Rank Adaptation (LoRA) to optimize performance and resource efficiency. ## Model Card Contact Contact: EQuIP Email: [[email protected]]
Snoutpunk/Bunglebot-GLM-4-32B-0414-merged_4bit
Snoutpunk
2025-04-26T07:37:05Z
0
0
transformers
[ "transformers", "glm4", "feature-extraction", "text-generation-inference", "unsloth", "en", "base_model:THUDM/GLM-Z1-9B-0414", "base_model:finetune:THUDM/GLM-Z1-9B-0414", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-26T07:31:29Z
--- base_model: THUDM/GLM-Z1-9B-0414 tags: - text-generation-inference - transformers - unsloth - glm4 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Snoutpunk - **License:** apache-2.0 - **Finetuned from model :** THUDM/GLM-Z1-9B-0414 This glm4 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MrRobotoAI/B2
MrRobotoAI
2025-04-26T07:14:08Z
354
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:MrRobotoAI/Odin-v2-8b-NOVELIST-128K", "base_model:merge:MrRobotoAI/Odin-v2-8b-NOVELIST-128K", "base_model:hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora", "base_model:merge:hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora", "base_model:marsfu2009/writer_lora", "base_model:merge:marsfu2009/writer_lora", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-16T15:34:17Z
--- base_model: - MrRobotoAI/233 - MrRobotoAI/222 - MrRobotoAI/227 - MrRobotoAI/236 - MrRobotoAI/235 - marsfu2009/writer_lora - MrRobotoAI/Odin-v2-8b-NOVELIST-128K - MrRobotoAI/229 - hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora library_name: transformers tags: - mergekit - merge --- SPECIAL + # merge 13,756 13,293 13,347 8,369 13,352 13,493 13,345 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [MrRobotoAI/233](https://huggingface.co/MrRobotoAI/233) * [MrRobotoAI/222](https://huggingface.co/MrRobotoAI/222) * [MrRobotoAI/227](https://huggingface.co/MrRobotoAI/227) * [MrRobotoAI/236](https://huggingface.co/MrRobotoAI/236) * [MrRobotoAI/235](https://huggingface.co/MrRobotoAI/235) + [marsfu2009/writer_lora](https://huggingface.co/marsfu2009/writer_lora) * [MrRobotoAI/Odin-v2-8b-NOVELIST-128K](https://huggingface.co/MrRobotoAI/Odin-v2-8b-NOVELIST-128K) * [MrRobotoAI/229](https://huggingface.co/MrRobotoAI/229) + [hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora](https://huggingface.co/hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/222 - model: MrRobotoAI/227 - model: MrRobotoAI/229+hf-100/Llama-3.1-Spellbound-StoryWriter-0.1-lora - model: MrRobotoAI/233 - model: MrRobotoAI/235+marsfu2009/writer_lora - model: MrRobotoAI/236 - model: MrRobotoAI/Odin-v2-8b-NOVELIST-128K parameters: weight: 1.0 merge_method: linear dtype: float16 ```
genki10/BERT_V8_sp10_lw40_ex10_lo00_k10_k10_fold0
genki10
2025-04-26T07:06:43Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-26T06:46:47Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_V8_sp10_lw40_ex10_lo00_k10_k10_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_V8_sp10_lw40_ex10_lo00_k10_k10_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8908 - Qwk: 0.2777 - Mse: 0.8908 - Rmse: 0.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 6 | 7.3395 | 0.0 | 7.3395 | 2.7092 | | No log | 2.0 | 12 | 4.0407 | 0.0115 | 4.0407 | 2.0102 | | No log | 3.0 | 18 | 1.8245 | 0.0474 | 1.8245 | 1.3507 | | No log | 4.0 | 24 | 1.0443 | 0.0324 | 1.0443 | 1.0219 | | No log | 5.0 | 30 | 0.8864 | 0.1627 | 0.8864 | 0.9415 | | No log | 6.0 | 36 | 1.4258 | 0.0687 | 1.4258 | 1.1940 | | No log | 7.0 | 42 | 0.7230 | 0.4177 | 0.7230 | 0.8503 | | No log | 8.0 | 48 | 0.7274 | 0.2679 | 0.7274 | 0.8529 | | No log | 9.0 | 54 | 0.7349 | 0.2827 | 0.7349 | 0.8572 | | No log | 10.0 | 60 | 0.6784 | 0.3837 | 0.6784 | 0.8236 | | No log | 11.0 | 66 | 0.6585 | 0.4228 | 0.6585 | 0.8115 | | No log | 12.0 | 72 | 0.6484 | 0.3744 | 0.6484 | 0.8052 | | No log | 13.0 | 78 | 0.8274 | 0.3565 | 0.8274 | 0.9096 | | No log | 14.0 | 84 | 0.7280 | 0.3556 | 0.7280 | 0.8532 | | No log | 15.0 | 90 | 0.6954 | 0.3725 | 0.6954 | 0.8339 | | No log | 16.0 | 96 | 0.7473 | 0.4005 | 0.7473 | 0.8645 | | No log | 17.0 | 102 | 0.6286 | 0.4050 | 0.6286 | 0.7929 | | No log | 18.0 | 108 | 0.7118 | 0.3490 | 0.7118 | 0.8437 | | No log | 19.0 | 114 | 0.9043 | 0.2975 | 0.9043 | 0.9510 | | No log | 20.0 | 120 | 0.8476 | 0.3411 | 0.8476 | 0.9207 | | No log | 21.0 | 126 | 1.0441 | 0.2277 | 1.0441 | 1.0218 | | No log | 22.0 | 132 | 1.0646 | 0.2256 | 1.0646 | 1.0318 | | No log | 23.0 | 138 | 0.9045 | 0.2742 | 0.9045 | 0.9510 | | No log | 24.0 | 144 | 0.9708 | 0.2720 | 0.9708 | 0.9853 | | No log | 25.0 | 150 | 0.7800 | 0.3087 | 0.7800 | 0.8832 | | No log | 26.0 | 156 | 0.8729 | 0.2836 | 0.8729 | 0.9343 | | No log | 27.0 | 162 | 1.0184 | 0.2339 | 1.0184 | 1.0092 | | No log | 28.0 | 168 | 0.6940 | 0.3754 | 0.6940 | 0.8331 | | No log | 29.0 | 174 | 0.7443 | 0.3675 | 0.7443 | 0.8627 | | No log | 30.0 | 180 | 1.0411 | 0.2276 | 1.0411 | 1.0203 | | No log | 31.0 | 186 | 0.9368 | 0.2640 | 0.9368 | 0.9679 | | No log | 32.0 | 192 | 0.7206 | 0.3326 | 0.7206 | 0.8489 | | No log | 33.0 | 198 | 0.7463 | 0.3269 | 0.7463 | 0.8639 | | No log | 34.0 | 204 | 0.9339 | 0.2560 | 0.9339 | 0.9664 | | No log | 35.0 | 210 | 0.9010 | 0.2327 | 0.9010 | 0.9492 | | No log | 36.0 | 216 | 0.8464 | 0.3248 | 0.8464 | 0.9200 | | No log | 37.0 | 222 | 0.9427 | 0.2666 | 0.9427 | 0.9709 | | No log | 38.0 | 228 | 0.8935 | 0.2458 | 0.8935 | 0.9453 | | No log | 39.0 | 234 | 0.7222 | 0.2960 | 0.7222 | 0.8498 | | No log | 40.0 | 240 | 0.8034 | 0.2373 | 0.8034 | 0.8963 | | No log | 41.0 | 246 | 0.8908 | 0.2777 | 0.8908 | 0.9438 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
10-Redeem-Craze-Viral-Video-Link/Redeem.Craze.Viral.Video.Leaks.Tutorial
10-Redeem-Craze-Viral-Video-Link
2025-04-26T06:58:49Z
0
0
null
[ "region:us" ]
null
2025-04-26T06:57:01Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2x869u6x?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Christian Artist Forrest Frank Hits TikTok’s Top 50 Thanks to Dance Craze Christian artist Forrest Frank's song Your Way’s Better has gone viral on TikTok, thanks to a catchy, faith-filled message and a popular dance... Christian Artist Forrest Frank Hits TikTok’s Top 50 Thanks to Dance Craze A feel-good song by one of the top artists in Christian music is trending on TikTok -- and even has its own TikTok dance. Forrest Frank's Your Way's Better gained viral status on TikTok in recent weeks, climbing into the platform's much-watched Top 50 chart thanks largely to an easy-to-learn dance popular among teens.
Natures1402/NourixKapslarSverige
Natures1402
2025-04-26T06:33:34Z
0
0
null
[ "region:us" ]
null
2025-04-26T06:28:48Z
# Nourix Kapslar Sverige Erfarenheter, Officiell webbplats, Pris, Beställ nu Nourix Kapslar Sverige Erfarenheter, Nourix Diet arbetar med hjälp av att öka effektsteg, förbättra din beslutsamhet och erbjuda en helt ny hyra på livet. Dess beståndsdelar är valda för att stödja hälsosamma blodsockernivåer, sinnehälsa, blodtryck, matsmältningskondition, öka styrkan och hjälpa till att konditionera hjärtkärl. ##**[Klicka här för att beställa från den officiella webbplatsen för Nourix Kapslar](https://nourixkapslar.com.se/)** ## Fördelar med Nourix Kapslar Naturlig Viktminskning: Genom att kombinera effektiva ingredienser stödjer Nourix en naturlig och hållbar viktminskning.​ Ökad Energi: Ingredienser som L-Carnitin och Grönt Te Extrakt kan bidra till ökad energi och förbättrad fysisk prestation.​ Förbättrad Ämnesomsättning: De aktiva föreningarna i Nourix tros stimulera ämnesomsättningen, vilket kan leda till effektivare fettförbränning.​ Appetithämmande: Garcinia Cambogia och Grönt Kaffeböna Extrakt kan hjälpa till att kontrollera aptiten och minska överätning.​ Antioxidantstöd: Grönt Te Extrakt erbjuder kraftfulla antioxidanter som kan skydda kroppen mot fria radikaler och stödja allmän hälsa.​ ## Användning och Dosering För bästa resultat rekommenderas det att ta en kapsel av Nourix dagligen, helst före en måltid. Det är viktigt att följa de doseringsanvisningar som anges på förpackningen eller enligt rekommendation från en hälsospecialist.​ ## Säkerhet och Biverkningar Nourix Kapslar är tillverkade med naturliga ingredienser och anses generellt vara säkra för de flesta individer. Dock bör personer med underliggande hälsotillstånd eller de som är gravida eller ammar rådgöra med en läkare innan användning. Vanliga biverkningar är sällsynta men kan inkludera milda magbesvär.​ ##**[Klicka här för att beställa från den officiella webbplatsen för Nourix Kapslar](https://nourixkapslar.com.se/)**
r1ck/gemma-3-4b-it-r1
r1ck
2025-04-26T06:24:24Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "image-text-to-text", "conversational", "vi", "en", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-04-26T06:17:30Z
--- base_model: google/gemma-3-4b-it library_name: transformers model_name: output tags: - generated_from_trainer - trl - sft licence: license license: apache-2.0 language: - vi - en pipeline_tag: image-text-to-text --- # Introduction This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). Fine-tuning task is Vietnamese QnA Reasoning. ## Quick start ```python ``` ### Framework versions - TRL: 0.16.1 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ianbroski23/albularyo
ianbroski23
2025-04-26T06:06:45Z
0
0
null
[ "tl", "base_model:deepseek-ai/DeepSeek-V3-0324", "base_model:finetune:deepseek-ai/DeepSeek-V3-0324", "license:apache-2.0", "region:us" ]
null
2025-04-26T06:04:13Z
--- license: apache-2.0 language: - tl base_model: - deepseek-ai/DeepSeek-V3-0324 ---
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_15-17_21-23_27-29_S42
annasoli
2025-04-26T06:01:07Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-14B-Instruct", "base_model:finetune:unsloth/Qwen2.5-14B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-26T06:01:04Z
--- base_model: unsloth/Qwen2.5-14B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** annasoli - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-14B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
onnx-community/opus-mt-fr-en
onnx-community
2025-04-26T06:00:00Z
0
0
transformers.js
[ "transformers.js", "onnx", "marian", "text2text-generation", "translation", "base_model:Helsinki-NLP/opus-mt-fr-en", "base_model:quantized:Helsinki-NLP/opus-mt-fr-en", "license:cc-by-4.0", "region:us" ]
translation
2024-08-27T19:07:46Z
--- base_model: Helsinki-NLP/opus-mt-fr-en library_name: transformers.js license: cc-by-4.0 pipeline_tag: translation --- https://huggingface.co/Helsinki-NLP/opus-mt-fr-en with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx-community/opus-mt-mul-en
onnx-community
2025-04-26T05:56:33Z
0
0
transformers.js
[ "transformers.js", "onnx", "marian", "text2text-generation", "translation", "base_model:Helsinki-NLP/opus-mt-mul-en", "base_model:quantized:Helsinki-NLP/opus-mt-mul-en", "license:cc-by-4.0", "region:us" ]
translation
2024-08-27T19:03:35Z
--- base_model: Helsinki-NLP/opus-mt-mul-en library_name: transformers.js license: cc-by-4.0 pipeline_tag: translation --- https://huggingface.co/Helsinki-NLP/opus-mt-mul-en with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx-community/opus-mt-tc-big-tr-en
onnx-community
2025-04-26T05:52:34Z
0
0
transformers.js
[ "transformers.js", "onnx", "marian", "text2text-generation", "translation", "base_model:Helsinki-NLP/opus-mt-tc-big-tr-en", "base_model:quantized:Helsinki-NLP/opus-mt-tc-big-tr-en", "license:cc-by-4.0", "region:us" ]
translation
2024-08-27T21:27:04Z
--- base_model: Helsinki-NLP/opus-mt-tc-big-tr-en library_name: transformers.js license: cc-by-4.0 pipeline_tag: translation --- https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-tr-en with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
New-Sophie-Rain-Spiderman-Viral-Video/Sophie.Rain.Spiderman.Viral.Video.Leaks.Tutorial
New-Sophie-Rain-Spiderman-Viral-Video
2025-04-26T04:46:29Z
0
0
null
[ "region:us" ]
null
2025-04-26T04:45:17Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2x869u6x?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Sophie Rain: The Rising Star Of Social Media At 18 In a world where social media reigns supreme, a new face has emerged, captivating the attention of millions. At just 18 years old, Sophie Rain has already made a name for herself as a social media sensation, breaking the internet with her beauty, talent, and infectious personality. With a massive following across platforms, Sophie Rain is the talk of the town, and her rise to fame is a story worth telling.
Mawdistical/Feral-Allura-70B
Mawdistical
2025-04-26T04:31:48Z
107
2
null
[ "safetensors", "llama", "nsfw", "explicit", "roleplay", "Furry", "en", "base_model:TheSkullery/Unnamed-Exp-70b-v0.7.A", "base_model:finetune:TheSkullery/Unnamed-Exp-70b-v0.7.A", "region:us" ]
null
2025-04-15T03:56:17Z
--- thumbnail: >- https://cdn-uploads.huggingface.co/production/uploads/67c10cfba43d7939d60160ff/p2A5N_1gY2Ydg_MYWrqWt.png language: - en license_name: llama3.3 license_link: https://github.com/facebookresearch/llama/blob/main/LICENSE inference: false tags: - nsfw - explicit - roleplay - Furry base_model: - TheSkullery/Unnamed-Exp-70b-v0.7.A --- <div style="background-color: #050505; color: #EFEFEF; padding: 30px; border-radius: 10px; width: 100%;"> <div align="center"> <h1 style="color: #A31419; margin-bottom: 20px; font-size: 2.5em; text-shadow: 0 0 15px #8B1313;">Feral-Allura-70B</h1> <img src="https://cdn-uploads.huggingface.co/production/uploads/67c10cfba43d7939d60160ff/p2A5N_1gY2Ydg_MYWrqWt.png" width="700px" style="border-radius: 8px; box-shadow: 0 0 20px #161212;"> <h3 style="color: #EFEFEF; font-style: italic; margin-top: 15px; text-shadow: 0 0 10px #3A0202;">Explicit Content Warning</h3> <p style="color: #AB5050; font-size: 0.9em; margin-top: 5px; margin-bottom: 15px;"><a href="https://ko-fi.com/mawnipulator" style="color: #8B1313; text-decoration: none;">Support Mawdistical Finetunes like this one here</a></p> </div> <div style="background-color: #111010; color: #EFEFEF; padding: 20px; border-radius: 8px; margin: 25px 0; border-left: 3px solid #8B1313;"> <p>Spawned from <a href="https://huggingface.co/TheSkullery/Unnamed-Exp-70b-v0.7.A" style="color: #8B1313; text-decoration: none;">blasphemous experiments</a>, this finetune model is a monstrous fusion where bestial wrath collides with the fractured delirium of the human mind.</p> </div> <hr style="border: 0; height: 1px; background-image: linear-gradient(to right, rgba(139,19,19,0), rgba(139,19,19,0.6), rgba(139,19,19,0)); margin: 30px 0;"> <h2 style="color: #8B1313; font-size: 1.8em; border-bottom: 1px solid #191818; padding-bottom: 10px;">✧ Quantized Formats</h2> <div style="padding-left: 20px; border-left: 2px solid #191818; margin: 20px 0;"> <ul> <li><strong style="color: #EFEFEF;">GGUF Collection</strong>: <ul> <li><a href="https://huggingface.co/Mawdistical/Feral-Allura-70B-GGUF" style="color: #A31419; text-decoration: none;">Feral-Allura-70B-GGUF</a></li> </ul> </li> <li><strong style="color: #EFEFEF;">EXL2 Collection</strong>: <ul> <li><a href="https://huggingface.co/Mawdistical/Feral-Allura-70B" style="color: #A31419; text-decoration: none;">Feral-Allura-70B-EXL2</a></li> </ul> </li> </ul> </div> <hr style="border: 0; height: 1px; background-image: linear-gradient(to right, rgba(139,19,19,0), rgba(139,19,19,0.6), rgba(139,19,19,0)); margin: 30px 0;"> <h2 style="color: #8B1313; font-size: 1.8em; border-bottom: 1px solid #191818; padding-bottom: 10px;">✧ Recommended Settings</h2> <div style="padding-left: 20px; border-left: 2px solid #191818; margin: 20px 0;"> <p style="color: #EFEFEF; font-style: italic;">Note: These settings may vary depending on specific use cases.</p> <ul> <li><strong style="color: #EFEFEF;">Temperature</strong>: 1.0-1.1</li> <li><strong style="color: #EFEFEF;">Min P</strong>: 0.02-0.05</li> <li><strong style="color: #EFEFEF;">Dynamic Temperature</strong> (optional): <ul> <li>Multiplier: 0.75-0.85</li> <li>Base: 1.8</li> <li>Length: 4</li> </ul> </li> </ul> </div> <hr style="border: 0; height: 1px; background-image: linear-gradient(to right, rgba(139,19,19,0), rgba(139,19,19,0.6), rgba(139,19,19,0)); margin: 30px 0;"> <h2 style="color: #8B1313; font-size: 1.8em; border-bottom: 1px solid #191818; padding-bottom: 10px;">✧ Credits</h2> <div style="padding-left: 20px; border-left: 2px solid #191818; margin: 20px 0;"> <h3 style="color: #EFEFEF;">Model Author</h3> <ul> <li><a href="https://vyvan.se" style="color: #A31419; text-decoration: none;">@Mawnipulator</a> - Chief Of The Furry Government</li> </ul> <h3 style="color: #EFEFEF;">Additional Credits:</h3> <ul> <li><a href="https://huggingface.co/Steelskull" style="color: #A31419; text-decoration: none;">@SteelSkull</a> - Creator Of The Original Exp Models</li> </ul> <h3 style="color: #EFEFEF;">Government Body</h3> <ul> <li><a href="https://huggingface.co/ArtusDev" style="color: #A31419; text-decoration: none;">@ArtusDev</a> - Treasurer, Secretary</li> <li><a href="https://huggingface.co/SaisExperiments" style="color: #A31419; text-decoration: none;">@SaisExperiments</a> - Secretary Assistant</li> <li><a href="https://huggingface.co/allura-org" style="color: #A31419; text-decoration: none;">ALLURA-ORG</a> - Government Body </li> </ul> </div> </div>
aleegis/88485b4b-aa84-4bc0-9a3d-5522e366b50f
aleegis
2025-04-26T04:08:34Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Capybara-7B-V1.9", "base_model:adapter:NousResearch/Nous-Capybara-7B-V1.9", "license:mit", "region:us" ]
null
2025-04-26T02:23:58Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Capybara-7B-V1.9 tags: - axolotl - generated_from_trainer model-index: - name: 88485b4b-aa84-4bc0-9a3d-5522e366b50f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Capybara-7B-V1.9 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 4ec2686f2efdcb9d_train_data.json ds_type: json format: custom path: /workspace/input_data/4ec2686f2efdcb9d_train_data.json type: field_input: question_english field_instruction: question_dutch field_output: gpt-4-turbo format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/88485b4b-aa84-4bc0-9a3d-5522e366b50f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/4ec2686f2efdcb9d_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: d0516606-e4b2-454b-933a-84290577db8d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d0516606-e4b2-454b-933a-84290577db8d warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # 88485b4b-aa84-4bc0-9a3d-5522e366b50f This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1.9](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
beingbatman/11_mae_5
beingbatman
2025-04-26T04:04:36Z
0
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-large-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-large-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-04-25T18:23:00Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: 11_mae_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 11_mae_5 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4657 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 13000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 0.5297 | 0.0101 | 131 | 0.7796 | 0.5 | | 0.508 | 1.0101 | 262 | 0.9672 | 0.5 | | 0.7105 | 2.0101 | 393 | 0.8373 | 0.5 | | 0.4152 | 3.0101 | 524 | 0.6640 | 0.5 | | 0.5381 | 4.0101 | 655 | 0.6757 | 0.5 | | 0.496 | 5.0101 | 786 | 0.8891 | 0.6 | | 0.5501 | 6.0101 | 917 | 0.6633 | 0.55 | | 0.3822 | 7.0101 | 1048 | 0.8079 | 0.55 | | 0.4503 | 8.0101 | 1179 | 1.0675 | 0.55 | | 0.6344 | 9.0101 | 1310 | 1.0510 | 0.55 | | 0.3932 | 10.0101 | 1441 | 1.1485 | 0.6 | | 0.2106 | 11.0101 | 1572 | 2.7835 | 0.5 | | 0.2517 | 12.0101 | 1703 | 1.7148 | 0.45 | | 0.5895 | 13.0101 | 1834 | 1.0298 | 0.55 | | 0.4123 | 14.0101 | 1965 | 1.4246 | 0.65 | | 0.2996 | 15.0101 | 2096 | 1.9476 | 0.6 | | 0.5851 | 16.0101 | 2227 | 1.4657 | 0.7 | | 0.4556 | 17.0101 | 2358 | 1.6101 | 0.55 | | 0.2074 | 18.0101 | 2489 | 1.7712 | 0.65 | | 0.2948 | 19.0101 | 2620 | 2.1819 | 0.6 | | 0.1284 | 20.0101 | 2751 | 1.9961 | 0.65 | | 0.2627 | 21.0101 | 2882 | 1.6669 | 0.65 | | 0.3008 | 22.0101 | 3013 | 2.3366 | 0.6 | | 0.1309 | 23.0101 | 3144 | 2.3547 | 0.6 | | 0.1559 | 24.0101 | 3275 | 2.2757 | 0.6 | | 0.3481 | 25.0101 | 3406 | 2.2913 | 0.65 | | 0.138 | 26.0101 | 3537 | 2.1934 | 0.6 | | 0.0941 | 27.0101 | 3668 | 2.2453 | 0.6 | | 0.1674 | 28.0101 | 3799 | 2.3762 | 0.6 | | 0.1029 | 29.0101 | 3930 | 2.1942 | 0.6 | | 0.0817 | 30.0101 | 4061 | 2.3349 | 0.6 | | 0.0355 | 31.0101 | 4192 | 2.5815 | 0.6 | | 0.1004 | 32.0101 | 4323 | 2.4576 | 0.65 | | 0.08 | 33.0101 | 4454 | 2.9262 | 0.6 | | 0.2892 | 34.0101 | 4585 | 1.9749 | 0.6 | | 0.165 | 35.0101 | 4716 | 2.9770 | 0.5 | | 0.1193 | 36.0101 | 4847 | 3.2478 | 0.5 | | 0.2386 | 37.0101 | 4978 | 2.7545 | 0.6 | | 0.0791 | 38.0101 | 5109 | 3.1483 | 0.6 | | 0.162 | 39.0101 | 5240 | 3.0934 | 0.6 | | 0.0238 | 40.0101 | 5371 | 2.8235 | 0.6 | | 0.0544 | 41.0101 | 5502 | 2.9562 | 0.6 | | 0.1266 | 42.0101 | 5633 | 2.5758 | 0.65 | | 0.0503 | 43.0101 | 5764 | 2.7398 | 0.65 | | 0.1968 | 44.0101 | 5895 | 2.3060 | 0.7 | | 0.0198 | 45.0101 | 6026 | 3.0071 | 0.6 | | 0.2748 | 46.0101 | 6157 | 2.7054 | 0.7 | | 0.1947 | 47.0101 | 6288 | 2.9207 | 0.65 | | 0.2343 | 48.0101 | 6419 | 2.7791 | 0.7 | | 0.0002 | 49.0101 | 6550 | 2.7585 | 0.65 | | 0.063 | 50.0101 | 6681 | 3.2576 | 0.6 | | 0.0393 | 51.0101 | 6812 | 2.6110 | 0.7 | | 0.1713 | 52.0101 | 6943 | 2.6225 | 0.65 | | 0.0005 | 53.0101 | 7074 | 2.6856 | 0.7 | | 0.0002 | 54.0101 | 7205 | 3.0106 | 0.6 | | 0.2919 | 55.0101 | 7336 | 2.5675 | 0.7 | | 0.1155 | 56.0101 | 7467 | 2.9829 | 0.65 | | 0.1211 | 57.0101 | 7598 | 3.0663 | 0.65 | | 0.1145 | 58.0101 | 7729 | 2.8525 | 0.7 | | 0.0002 | 59.0101 | 7860 | 2.9347 | 0.65 | | 0.2752 | 60.0101 | 7991 | 3.6041 | 0.6 | | 0.0437 | 61.0101 | 8122 | 3.1618 | 0.65 | | 0.0003 | 62.0101 | 8253 | 3.0570 | 0.65 | | 0.0882 | 63.0101 | 8384 | 3.1564 | 0.65 | | 0.0001 | 64.0101 | 8515 | 3.0409 | 0.65 | | 0.0012 | 65.0101 | 8646 | 2.8677 | 0.7 | | 0.0375 | 66.0101 | 8777 | 2.9775 | 0.7 | | 0.0003 | 67.0101 | 8908 | 3.0161 | 0.7 | | 0.0001 | 68.0101 | 9039 | 2.9711 | 0.7 | | 0.2938 | 69.0101 | 9170 | 3.7225 | 0.55 | | 0.0002 | 70.0101 | 9301 | 2.9637 | 0.7 | | 0.0843 | 71.0101 | 9432 | 2.9705 | 0.65 | | 0.0001 | 72.0101 | 9563 | 2.9142 | 0.7 | | 0.0 | 73.0101 | 9694 | 2.9688 | 0.7 | | 0.0002 | 74.0101 | 9825 | 3.0225 | 0.7 | | 0.0051 | 75.0101 | 9956 | 3.0458 | 0.7 | | 0.108 | 76.0101 | 10087 | 3.7300 | 0.6 | | 0.1647 | 77.0101 | 10218 | 3.6377 | 0.6 | | 0.0001 | 78.0101 | 10349 | 3.0545 | 0.7 | | 0.0036 | 79.0101 | 10480 | 3.0212 | 0.7 | | 0.0001 | 80.0101 | 10611 | 2.9700 | 0.7 | | 0.1359 | 81.0101 | 10742 | 3.0992 | 0.7 | | 0.0 | 82.0101 | 10873 | 3.1365 | 0.7 | | 0.0 | 83.0101 | 11004 | 3.2657 | 0.65 | | 0.0 | 84.0101 | 11135 | 3.0769 | 0.7 | | 0.0 | 85.0101 | 11266 | 3.0980 | 0.7 | | 0.0 | 86.0101 | 11397 | 3.1161 | 0.7 | | 0.0 | 87.0101 | 11528 | 3.0968 | 0.7 | | 0.0 | 88.0101 | 11659 | 3.1299 | 0.7 | | 0.0 | 89.0101 | 11790 | 3.1714 | 0.7 | | 0.0 | 90.0101 | 11921 | 3.1578 | 0.7 | | 0.0 | 91.0101 | 12052 | 3.1738 | 0.7 | | 0.0 | 92.0101 | 12183 | 3.1836 | 0.7 | | 0.0002 | 93.0101 | 12314 | 3.2048 | 0.7 | | 0.0 | 94.0101 | 12445 | 3.1980 | 0.7 | | 0.0 | 95.0101 | 12576 | 3.1935 | 0.7 | | 0.0 | 96.0101 | 12707 | 3.2007 | 0.7 | | 0.0 | 97.0101 | 12838 | 3.1993 | 0.7 | | 0.0 | 98.0101 | 12969 | 3.1979 | 0.7 | | 0.0116 | 99.0024 | 13000 | 3.1983 | 0.7 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0
Redeem-Craze-viral-video-full-link/FULL-VIDEO-LINK-Redeem.Craze.Viral.Video.Leaks.official.tutorial
Redeem-Craze-viral-video-full-link
2025-04-26T04:03:14Z
0
0
null
[ "region:us" ]
null
2025-04-26T04:01:54Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2x869u6x?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Christian Artist Forrest Frank Hits TikTok’s Top 50 Thanks to Dance Craze - Michael Foust A feel-good song by one of the top artists in Christian music is trending on TikTok -- and even has its Middleboro Café’s Viral Dance Craze Brews Up Millions on TikTok [VIDEO] A coffee shop in Middleboro, Coffee Milano Café, has captured TikTok's attention with a creative campaign encouraging customers to dance for free coffee.
RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf
RichardErkhov
2025-04-26T03:55:51Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-26T02:11:18Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) krx_qwen_1000_1105 - GGUF - Model creator: https://huggingface.co/1chae/ - Original model: https://huggingface.co/1chae/krx_qwen_1000_1105/ | Name | Quant method | Size | | ---- | ---- | ---- | | [krx_qwen_1000_1105.Q2_K.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q2_K.gguf) | Q2_K | 2.81GB | | [krx_qwen_1000_1105.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [krx_qwen_1000_1105.IQ3_S.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.IQ3_S.gguf) | IQ3_S | 3.26GB | | [krx_qwen_1000_1105.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [krx_qwen_1000_1105.IQ3_M.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.IQ3_M.gguf) | IQ3_M | 3.33GB | | [krx_qwen_1000_1105.Q3_K.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q3_K.gguf) | Q3_K | 3.55GB | | [krx_qwen_1000_1105.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [krx_qwen_1000_1105.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [krx_qwen_1000_1105.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [krx_qwen_1000_1105.Q4_0.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q4_0.gguf) | Q4_0 | 4.13GB | | [krx_qwen_1000_1105.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [krx_qwen_1000_1105.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [krx_qwen_1000_1105.Q4_K.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q4_K.gguf) | Q4_K | 4.36GB | | [krx_qwen_1000_1105.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [krx_qwen_1000_1105.Q4_1.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q4_1.gguf) | Q4_1 | 4.54GB | | [krx_qwen_1000_1105.Q5_0.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q5_0.gguf) | Q5_0 | 4.95GB | | [krx_qwen_1000_1105.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [krx_qwen_1000_1105.Q5_K.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q5_K.gguf) | Q5_K | 5.07GB | | [krx_qwen_1000_1105.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [krx_qwen_1000_1105.Q5_1.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q5_1.gguf) | Q5_1 | 5.36GB | | [krx_qwen_1000_1105.Q6_K.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q6_K.gguf) | Q6_K | 5.82GB | | [krx_qwen_1000_1105.Q8_0.gguf](https://huggingface.co/RichardErkhov/1chae_-_krx_qwen_1000_1105-gguf/blob/main/krx_qwen_1000_1105.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- library_name: transformers tags: - unsloth - trl - sft - KRX license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
twelcone/medsam2-hiera-large
twelcone
2025-04-26T03:42:03Z
0
0
sam2
[ "sam2", "coreml", "mask-generation", "arxiv:2408.00714", "license:apache-2.0", "region:us" ]
mask-generation
2025-04-26T02:55:57Z
--- license: apache-2.0 pipeline_tag: mask-generation library_name: sam2 --- MedSAM2 Large - CoreML Version MedSAM2 Large is a specialized version of SAM2 for medical image segmentation tasks, now available for use with CoreML. This model is optimized to work seamlessly on Apple devices, enabling efficient, on-device predictions. To get started, follow the instructions below. For detailed information, refer to the SAM2 paper and the official repository. The official code is publicly release in this [repo](https://github.com/facebookresearch/segment-anything-2/). ## Usage 1. Download the CoreML model from the repo. 2. Extract the contents of the .zip file to a directory of your choice. 3. Push to [SAM2 Studio](https://github.com/huggingface/sam2-studio) 4. Open SAM2 Studio Repo on your Apple device using XCode. ### Citation To cite the paper, model, or software, please use the below: ``` @article{ravi2024sam2, title={SAM 2: Segment Anything in Images and Videos}, author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph}, journal={arXiv preprint arXiv:2408.00714}, url={https://arxiv.org/abs/2408.00714}, year={2024} } ```
filipesantoscv11/17047e94-1fc4-48e5-8a02-34d747571830
filipesantoscv11
2025-04-26T03:01:43Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Capybara-7B-V1.9", "base_model:adapter:NousResearch/Nous-Capybara-7B-V1.9", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-26T02:30:01Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Capybara-7B-V1.9 tags: - axolotl - generated_from_trainer model-index: - name: 17047e94-1fc4-48e5-8a02-34d747571830 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Capybara-7B-V1.9 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 4ec2686f2efdcb9d_train_data.json ds_type: json format: custom path: /workspace/input_data/4ec2686f2efdcb9d_train_data.json type: field_input: question_english field_instruction: question_dutch field_output: gpt-4-turbo format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: filipesantoscv11/17047e94-1fc4-48e5-8a02-34d747571830 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/4ec2686f2efdcb9d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d0516606-e4b2-454b-933a-84290577db8d wandb_project: s56-6 wandb_run: your_name wandb_runid: d0516606-e4b2-454b-933a-84290577db8d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 17047e94-1fc4-48e5-8a02-34d747571830 This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1.9](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2411 | 0.1768 | 200 | 1.2018 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
outlookAi/erUTH5BaGP
outlookAi
2025-04-26T02:47:37Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-26T02:27:31Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Oli Nri --- # Eruth5Bagp <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Oli Nri` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Oli Nri", "lora_weights": "https://huggingface.co/outlookAi/erUTH5BaGP/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/erUTH5BaGP', weight_name='lora.safetensors') image = pipeline('Oli Nri').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/outlookAi/erUTH5BaGP/discussions) to add images that show off what you’ve made with this LoRA.
MinaMila/phi3_LoRa_ACSEmployment_cfda_ep2_22
MinaMila
2025-04-26T02:40:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-26T02:40:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Eshita-ds/Llama-3.2-1B-DPO-DPO-GRPO
Eshita-ds
2025-04-26T02:03:46Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:Eshita-ds/Llama-3.2-1B-DPO", "base_model:finetune:Eshita-ds/Llama-3.2-1B-DPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-26T02:03:43Z
--- base_model: Eshita-ds/Llama-3.2-1B-DPO tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Eshita-ds - **License:** apache-2.0 - **Finetuned from model :** Eshita-ds/Llama-3.2-1B-DPO This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Nitral-Archive/Violet_MagCap-Rebase-12B
Nitral-Archive
2025-04-26T01:58:19Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Nitral-AI/Captain-Eris_Violet-GRPO-v0.420", "base_model:merge:Nitral-AI/Captain-Eris_Violet-GRPO-v0.420", "base_model:Nitral-AI/Violet_Magcap-12B", "base_model:merge:Nitral-AI/Violet_Magcap-12B", "base_model:Nitral-AI/Wayfarer_Eris_Noctis-12B", "base_model:merge:Nitral-AI/Wayfarer_Eris_Noctis-12B", "base_model:Nitral-AI/vmc-12B-0.69420", "base_model:merge:Nitral-AI/vmc-12B-0.69420", "base_model:inflatebot/MN-12B-Mag-Mell-R1", "base_model:merge:inflatebot/MN-12B-Mag-Mell-R1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T01:52:13Z
--- base_model: - Nitral-AI/Captain-Eris_Violet-GRPO-v0.420 - Nitral-AI/vmc-12B-0.69420 - inflatebot/MN-12B-Mag-Mell-R1 - Nitral-AI/Wayfarer_Eris_Noctis-12B - Nitral-AI/Violet_Magcap-12B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [inflatebot/MN-12B-Mag-Mell-R1](https://huggingface.co/inflatebot/MN-12B-Mag-Mell-R1) as a base. ### Models Merged The following models were included in the merge: * [Nitral-AI/Captain-Eris_Violet-GRPO-v0.420](https://huggingface.co/Nitral-AI/Captain-Eris_Violet-GRPO-v0.420) * [Nitral-AI/vmc-12B-0.69420](https://huggingface.co/Nitral-AI/vmc-12B-0.69420) * [Nitral-AI/Wayfarer_Eris_Noctis-12B](https://huggingface.co/Nitral-AI/Wayfarer_Eris_Noctis-12B) * [Nitral-AI/Violet_Magcap-12B](https://huggingface.co/Nitral-AI/Violet_Magcap-12B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: model_stock base_model: inflatebot/MN-12B-Mag-Mell-R1 parameters: models: - model: Nitral-AI/Wayfarer_Eris_Noctis-12B - model: Nitral-AI/Captain-Eris_Violet-GRPO-v0.420 - model: Nitral-AI/Violet_Magcap-12B - model: Nitral-AI/vmc-12B-0.69420 dtype: bfloat16 ```
RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf
RichardErkhov
2025-04-26T01:56:02Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T00:18:40Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-7B-Instruct-MLX - GGUF - Model creator: https://huggingface.co/TheBlueObserver/ - Original model: https://huggingface.co/TheBlueObserver/Qwen2.5-7B-Instruct-MLX/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-7B-Instruct-MLX.Q2_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q2_K.gguf) | Q2_K | 2.81GB | | [Qwen2.5-7B-Instruct-MLX.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [Qwen2.5-7B-Instruct-MLX.IQ3_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.IQ3_S.gguf) | IQ3_S | 3.26GB | | [Qwen2.5-7B-Instruct-MLX.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [Qwen2.5-7B-Instruct-MLX.IQ3_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.IQ3_M.gguf) | IQ3_M | 3.33GB | | [Qwen2.5-7B-Instruct-MLX.Q3_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q3_K.gguf) | Q3_K | 3.55GB | | [Qwen2.5-7B-Instruct-MLX.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [Qwen2.5-7B-Instruct-MLX.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [Qwen2.5-7B-Instruct-MLX.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [Qwen2.5-7B-Instruct-MLX.Q4_0.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q4_0.gguf) | Q4_0 | 4.13GB | | [Qwen2.5-7B-Instruct-MLX.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [Qwen2.5-7B-Instruct-MLX.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [Qwen2.5-7B-Instruct-MLX.Q4_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q4_K.gguf) | Q4_K | 4.36GB | | [Qwen2.5-7B-Instruct-MLX.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [Qwen2.5-7B-Instruct-MLX.Q4_1.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q4_1.gguf) | Q4_1 | 4.54GB | | [Qwen2.5-7B-Instruct-MLX.Q5_0.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q5_0.gguf) | Q5_0 | 4.95GB | | [Qwen2.5-7B-Instruct-MLX.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [Qwen2.5-7B-Instruct-MLX.Q5_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q5_K.gguf) | Q5_K | 5.07GB | | [Qwen2.5-7B-Instruct-MLX.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [Qwen2.5-7B-Instruct-MLX.Q5_1.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q5_1.gguf) | Q5_1 | 5.36GB | | [Qwen2.5-7B-Instruct-MLX.Q6_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q6_K.gguf) | Q6_K | 5.82GB | | [Qwen2.5-7B-Instruct-MLX.Q8_0.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-7B-Instruct-MLX-gguf/blob/main/Qwen2.5-7B-Instruct-MLX.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- base_model: Qwen/Qwen2.5-7B-Instruct language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - mlx --- # TheBlueObserver/Qwen2.5-7B-Instruct-MLX The Model [TheBlueObserver/Qwen2.5-7B-Instruct-MLX](https://huggingface.co/TheBlueObserver/Qwen2.5-7B-Instruct-MLX) was converted to MLX format from [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) using mlx-lm version **0.20.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("TheBlueObserver/Qwen2.5-7B-Instruct-MLX") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
dgambettaphd/M_llm3_gen10_run0_X_doc1000_synt64_tot128_MPP
dgambettaphd
2025-04-26T01:34:24Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-26T01:34:09Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SergioRayon/whisper-small-es-medical
SergioRayon
2025-04-26T01:06:42Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-04-25T23:26:26Z
--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 12.900188323917137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3247 - Wer: 12.9002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1004 | 2.3810 | 50 | 0.3378 | 36.3465 | | 0.0605 | 4.7619 | 100 | 0.3160 | 25.2354 | | 0.0243 | 7.1429 | 150 | 0.3273 | 13.4652 | | 0.0004 | 9.5238 | 200 | 0.3247 | 12.9002 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1