Datasets:

ArXiv:
License:
Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
page_caption: string
image_path: string
clickable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string, idx: int64>>
scrollable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string>>
vs
image_path: string
clickable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string>>
scrollable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3335, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2096, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2296, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1878, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 504, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              page_caption: string
              image_path: string
              clickable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string, idx: int64>>
              scrollable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string>>
              vs
              image_path: string
              clickable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string>>
              scrollable_elements: list<item: struct<bbox: list<item: int64>, xml_desc: list<item: string>, functionality: string>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

LearnGUI: A Unified Demonstration Benchmark for Mobile GUI Agents

The LearnAct Framework and LearnGUI Benchmark focus on addressing the long-tail challenges in mobile GUI agent performance through demonstration-based learning.

πŸ“„ Paper | πŸ’» Code | 🌐 Project Page

Overview

LearnGUI is the first comprehensive dataset specifically designed for studying demonstration-based learning in mobile GUI agents. It comprises 2,353 instructions across 73 applications with an average of 13.2 steps per task, featuring high-quality human demonstrations for both offline and online evaluation scenarios.

🌟 Key Features

  • Unified Benchmark Framework: Provides standardized metrics and evaluation protocols for demonstration-based learning in mobile GUI agents
  • Dual Evaluation Modes: Supports both offline (2,252 tasks) and online (101 tasks) evaluation scenarios to assess agent performance
  • Rich Few-shot Learning Support: Includes k-shot combinations (k=1,2,3) for each task with varying similarity profiles
  • Multi-dimensional Similarity Metrics: Quantifies demonstration relevance across instruction, UI, and action dimensions
  • Diverse Real-world Coverage: Spans 73 mobile applications with 2,353 naturally varied tasks reflecting real-world usage patterns
  • Expert-annotated Trajectories: Contains high-quality human demonstrations with detailed step-by-step action sequences and element annotations

πŸ“Š Dataset Structure and Statistics

The dataset is organized into three main splits:

Dataset Statistics

Split K-shot Tasks Apps Step actions Avg InsSim Avg UISim Avg ActSim UISHActSH UISHActSL UISLActSH UISLActSL
Offline-Train 1-shot 2,001 44 26,184 0.845 0.901 0.858 364 400 403 834
Offline-Train 2-shot 2,001 44 26,184 0.818 0.898 0.845 216 360 358 1,067
Offline-Train 3-shot 2,001 44 26,184 0.798 0.895 0.836 152 346 310 1,193
Offline-Test 1-shot 251 9 3,469 0.798 0.868 0.867 37 49 56 109
Offline-Test 2-shot 251 9 3,469 0.767 0.855 0.853 15 42 55 139
Offline-Test 3-shot 251 9 3,469 0.745 0.847 0.847 10 36 49 156
Online-Test 1-shot 101 20 1,423 - - - - - - -

Each task in LearnGUI contains:

  • High-level instruction
  • Low-level action sequences
  • Screenshot of each step
  • UI element details
  • Ground truth action labels
  • Demonstration pairings with varying similarity profiles

πŸ“ Directory Structure

LearnGUI/
β”œβ”€β”€ offline/                            # Offline evaluation dataset
β”‚   β”œβ”€β”€ screenshot.zip                  # Screenshot archives (multi-part)
β”‚   β”œβ”€β”€ screenshot.z01-z05              # Screenshot archive parts
β”‚   β”œβ”€β”€ element_anno.zip                # Element annotations
β”‚   β”œβ”€β”€ instruction_anno.zip            # Instruction annotations
β”‚   β”œβ”€β”€ task_spilit.json                # Task splitting information
β”‚   └── low_level_instructions.json     # Detailed step-by-step instructions
β”‚
└── online/                             # Online evaluation dataset
    β”œβ”€β”€ low_level_instructions/         # JSON files with step instructions for each task
    β”‚   β”œβ”€β”€ AudioRecorderRecordAudio.json
    β”‚   β”œβ”€β”€ BrowserDraw.json
    β”‚   β”œβ”€β”€ SimpleCalendarAddOneEvent.json
    β”‚   └── ... (98 more task instruction files)
    └── raw_data/                       # Raw data for each online task
        β”œβ”€β”€ AudioRecorderRecordAudio/
        β”œβ”€β”€ BrowserDraw/
        β”œβ”€β”€ SimpleCalendarAddOneEvent/
        └── ... (98 more task data directories)

Comparison with Existing Datasets

LearnGUI offers several advantages over existing GUI datasets:

Dataset # Inst. # Apps # Step Env. HL LL GT FS
PixelHelp 187 4 4.2 βœ— βœ“ βœ— βœ“ βœ—
MoTIF 276 125 4.5 βœ— βœ“ βœ“ βœ“ βœ—
UIBert 16,660 - 1 βœ— βœ— βœ“ βœ“ βœ—
UGIF 523 12 6.3 βœ— βœ“ βœ“ βœ“ βœ—
AITW 30,378 357 6.5 βœ— βœ“ βœ— βœ“ βœ—
AITZ 2,504 70 7.5 βœ— βœ“ βœ“ βœ“ βœ—
AndroidControl 15,283 833 4.8 βœ— βœ“ βœ“ βœ“ βœ—
AMEX 2,946 110 12.8 βœ— βœ“ βœ— βœ“ βœ—
MobileAgentBench 100 10 - βœ— βœ“ βœ— βœ— βœ—
AppAgent 50 10 - βœ— βœ“ βœ— βœ— βœ—
LlamaTouch 496 57 7.01 βœ“ βœ“ βœ— βœ“ βœ—
AndroidWorld 116 20 - βœ“ βœ“ βœ— βœ— βœ—
AndroidLab 138 9 8.5 βœ“ βœ“ βœ— βœ— βœ—
LearnGUI (Ours) 2,353 73 13.2 βœ“ βœ“ βœ“ βœ“ βœ“

Note: # Inst. (number of instructions), # Apps (number of applications), # Step (average steps per task), Env. (supports environment interactions), HL (has high-level instructions), LL (has low-level instructions), GT (provides ground truth trajectories), FS (supports few-shot learning).

πŸ“„ License

This dataset is licensed under Apache License 2.0.

Downloads last month
4,890