lavanya251104 commited on
Commit
f4c3b1e
·
verified ·
1 Parent(s): 92437aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +127 -5
README.md CHANGED
@@ -1,12 +1,134 @@
1
  ---
2
- license: mit
3
  task_categories:
4
- - text-classification
 
5
  language:
6
  - en
7
  tags:
8
- - code
9
- pretty_name: AI_battery_opti
 
 
 
10
  size_categories:
11
  - n<1K
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
  task_categories:
4
+ - time-series-forecasting
5
+ - classification
6
  language:
7
  - en
8
  tags:
9
+ - battery
10
+ - smartphone
11
+ - energy
12
+ - optimization
13
+ pretty_name: AI Battery Optimizer Dataset
14
  size_categories:
15
  - n<1K
16
+ ---
17
+
18
+ # Dataset Card for AI Battery Optimizer
19
+
20
+ The **AI Battery Optimizer Dataset** contains **synthetic smartphone battery usage logs** created during the development of the **AI Battery Optimizer App**.
21
+ It is intended for research and experimentation on **battery prediction, app usage forecasting, and adaptive resource management**.
22
+
23
+ ---
24
+
25
+ ## Dataset Details
26
+
27
+ ### Dataset Description
28
+ - **Curated by (Team):**
29
+ - Aishwarya Singh
30
+ - Lavanya Arora
31
+ - Shreya Kathuria
32
+ - Navya Jain
33
+
34
+ - **Funded by:** Self / Academic Project
35
+ - **Shared by:** Team NeuralBattery
36
+ - **Language(s):** English (column headers, labels)
37
+ - **License:** Creative Commons Attribution 4.0 (CC BY 4.0)
38
+
39
+ This dataset logs:
40
+ - Battery percentage over time
41
+ - Power usage (mW)
42
+ - Estimated time remaining
43
+ - Predicted app usage with confidence score
44
+ - Screen brightness level
45
+ - Frame rate (FPS)
46
+
47
+ ---
48
+
49
+ ### Dataset Sources
50
+ - **Repository:** Hugging Face Dataset Repo – AI Battery Optimizer
51
+ - **Related Project:** [AI Battery Optimizer App](https://huggingface.co/)
52
+
53
+ ---
54
+
55
+ ## Uses
56
+
57
+ ### Direct Use
58
+ - Training **time-series models** (Chronos, TBATS, PatchTSMixer) for predicting battery drain
59
+ - Evaluating **ML-based app usage predictions**
60
+ - Research on **energy optimization in smartphones**
61
+ - Simulating **adaptive energy-saving systems**
62
+
63
+ ### Out-of-Scope Use
64
+ - Real-world personal battery health monitoring
65
+ - Any application requiring sensitive/private user data (dataset is **synthetic**)
66
+
67
+ ---
68
+
69
+ ## Dataset Structure
70
+
71
+ **Format:** CSV / JSON
72
+
73
+ **Fields:**
74
+ - `timestamp` → Log time (UTC)
75
+ - `battery_percentage` → Battery level (%)
76
+ - `power_usage_mw` → Power consumption in milliwatts
77
+ - `time_remaining_min` → Estimated time left (minutes)
78
+ - `predicted_app` → Next app predicted (e.g. Instagram, YouTube)
79
+ - `confidence` → ML prediction confidence score (0–1)
80
+ - `brightness` → Screen brightness (%)
81
+ - `fps` → Frame rate setting
82
+
83
+ **Example Row:**
84
+
85
+ | timestamp | battery_percentage | power_usage_mw | time_remaining_min | predicted_app | confidence | brightness | fps |
86
+ |---------------------|-------------------|----------------|---------------------|---------------|------------|------------|-----|
87
+ | 2025-08-28 12:30:00 | 85 | 850 | 272 | Instagram | 0.87 | 75 | 60 |
88
+
89
+ ---
90
+
91
+ ## Dataset Creation
92
+
93
+ ### Curation Rationale
94
+ Battery drain is influenced by **app usage, FPS, brightness, and background processes**.
95
+ This dataset was created to **simulate realistic smartphone usage patterns** for developing an **ML-driven energy optimization system**.
96
+
97
+ ### Source Data
98
+ - Synthetic logs generated during **AI Battery Optimizer app simulations**
99
+ - Inspired by real smartphone usage, but fully anonymized
100
+
101
+ ### Data Collection and Processing
102
+ - Battery drain simulated every 30s via backend API
103
+ - App predictions generated every 15s with probabilistic ML logic
104
+ - Logs normalized into CSV format for training
105
+
106
+ ---
107
+
108
+ ## Annotations
109
+ - Predictions contain **confidence scores**
110
+ - Users can validate predictions inside the app (feedback loop)
111
+ - Dataset can be extended with these feedback labels
112
+
113
+ ---
114
+
115
+ ## Personal and Sensitive Information
116
+ - Dataset is **synthetic**
117
+ - No personal or sensitive user data included
118
+
119
+ ---
120
+
121
+ ## Bias, Risks, and Limitations
122
+ - Synthetic dataset may not capture **all real-world battery usage variability**
123
+ - Predictions are approximations, not exact reflections of real device usage
124
+ - Should be treated as a **benchmark/simulation dataset**
125
+
126
+ ### Recommendations
127
+ - Use this dataset for prototyping and model training
128
+ - Fine-tune with **real anonymized battery logs** for production apps
129
+
130
+ ---
131
+
132
+ ## Citation
133
+
134
+ **BibTeX:**