Dataset Viewer
Auto-converted to Parquet
timestamp
stringdate
2025-08-28 12:30:00
2025-08-29 00:30:00
battery_percentage
int64
10
85
power_usage_mw
int64
821
949
time_remaining_min
int64
-283
272
predicted_app
stringclasses
7 values
confidence
float64
0.65
0.95
brightness
int64
50
75
fps
int64
30
60
2025-08-28 15:45:00
63
857
117
Instagram
0.81
70
60
2025-08-28 22:15:00
23
948
-182
Gaming
0.86
55
60
2025-08-28 20:00:00
36
861
-83
WhatsApp
0.93
55
30
2025-08-28 23:45:00
15
840
-249
Instagram
0.86
75
30
2025-08-28 16:45:00
57
909
72
Chrome
0.86
65
30
2025-08-29 00:30:00
10
846
-283
YouTube
0.78
50
60
2025-08-28 19:00:00
43
927
-34
YouTube
0.73
65
60
2025-08-28 18:45:00
45
859
-21
WhatsApp
0.88
60
30
2025-08-28 20:30:00
34
874
-106
Chrome
0.81
55
60
2025-08-28 17:15:00
55
860
45
YouTube
0.87
55
30
2025-08-28 15:30:00
65
908
132
Netflix
0.82
60
30
2025-08-28 13:30:00
77
847
228
Spotify
0.69
55
60
2025-08-28 21:45:00
26
935
-161
WhatsApp
0.73
75
30
2025-08-28 14:30:00
71
861
180
YouTube
0.68
75
30
2025-08-28 13:15:00
79
852
243
Chrome
0.67
65
30
2025-08-28 14:00:00
73
927
205
Netflix
0.95
75
60
2025-08-28 22:45:00
20
941
-206
Netflix
0.83
55
30
2025-08-29 00:00:00
14
919
-261
Chrome
0.92
65
60
2025-08-29 00:15:00
12
936
-270
WhatsApp
0.95
65
60
2025-08-28 16:15:00
60
923
95
Instagram
0.91
70
30
2025-08-28 14:45:00
69
872
167
Spotify
0.77
55
30
2025-08-28 16:30:00
58
927
81
YouTube
0.74
60
30
2025-08-28 18:30:00
46
821
-6
YouTube
0.79
70
60
2025-08-28 21:00:00
31
932
-126
Chrome
0.78
70
30
2025-08-28 20:15:00
35
916
-94
Instagram
0.81
70
60
2025-08-28 12:30:00
85
839
272
Chrome
0.65
60
60
2025-08-28 23:30:00
16
827
-241
Chrome
0.92
50
30
2025-08-28 19:15:00
41
830
-46
Netflix
0.75
55
30
2025-08-28 20:45:00
32
921
-117
YouTube
0.86
60
60
2025-08-28 13:45:00
75
923
220
Chrome
0.84
55
60
2025-08-28 19:45:00
37
922
-69
YouTube
0.76
60
60
2025-08-28 15:15:00
66
883
145
Netflix
0.79
50
60
2025-08-28 21:30:00
28
907
-150
Netflix
0.68
60
60
2025-08-28 12:45:00
83
847
262
Chrome
0.69
65
30
2025-08-28 17:45:00
51
823
23
Spotify
0.66
60
30
2025-08-28 13:00:00
81
903
251
YouTube
0.79
75
30
2025-08-28 23:15:00
17
868
-228
Netflix
0.7
75
30
2025-08-28 21:15:00
30
919
-141
YouTube
0.71
75
30
2025-08-28 18:15:00
48
949
6
Gaming
0.84
55
60
2025-08-28 22:30:00
22
944
-193
WhatsApp
0.71
55
30
YAML Metadata Warning: The task_categories "classification" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Dataset Card for AI Battery Optimizer

The AI Battery Optimizer Dataset contains synthetic smartphone battery usage logs created during the development of the AI Battery Optimizer App.
It is intended for research and experimentation on battery prediction, app usage forecasting, and adaptive resource management.


Dataset Details

This dataset logs:

  • Battery percentage over time
  • Power usage (mW)
  • Estimated time remaining
  • Predicted app usage with confidence score
  • Screen brightness level
  • Frame rate (FPS)

Dataset Sources


Uses

Direct Use

  • Training time-series models (Chronos, TBATS, PatchTSMixer) for predicting battery drain
  • Evaluating ML-based app usage predictions
  • Research on energy optimization in smartphones
  • Simulating adaptive energy-saving systems

Out-of-Scope Use

  • Real-world personal battery health monitoring
  • Any application requiring sensitive/private user data (dataset is synthetic)

Dataset Structure

Format: CSV / JSON

Fields:

  • timestamp → Log time (UTC)
  • battery_percentage → Battery level (%)
  • power_usage_mw → Power consumption in milliwatts
  • time_remaining_min → Estimated time left (minutes)
  • predicted_app → Next app predicted (e.g. Instagram, YouTube)
  • confidence → ML prediction confidence score (0–1)
  • brightness → Screen brightness (%)
  • fps → Frame rate setting

Example Row:

timestamp battery_percentage power_usage_mw time_remaining_min predicted_app confidence brightness fps
2025-08-28 12:30:00 85 850 272 Instagram 0.87 75 60

Dataset Creation

Curation Rationale

Battery drain is influenced by app usage, FPS, brightness, and background processes.
This dataset was created to simulate realistic smartphone usage patterns for developing an ML-driven energy optimization system.

Source Data

  • Synthetic logs generated during AI Battery Optimizer app simulations
  • Inspired by real smartphone usage, but fully anonymized

Data Collection and Processing

  • Battery drain simulated every 30s via backend API
  • App predictions generated every 15s with probabilistic ML logic
  • Logs normalized into CSV format for training

Annotations

  • Predictions contain confidence scores
  • Users can validate predictions inside the app (feedback loop)
  • Dataset can be extended with these feedback labels

Personal and Sensitive Information

  • Dataset is synthetic
  • No personal or sensitive user data included

Bias, Risks, and Limitations

  • Synthetic dataset may not capture all real-world battery usage variability
  • Predictions are approximations, not exact reflections of real device usage
  • Should be treated as a benchmark/simulation dataset

Recommendations

  • Use this dataset for prototyping and model training
  • Fine-tune with real anonymized battery logs for production apps

Citation

BibTeX:

Downloads last month
-