state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
a b : β
n : β
f : β β β
ΞΌ Ξ½ : Measure β
instβ : IsLocallyFiniteMeasure ΞΌ
c d r : β
h : -1 < r
this : β (c : β), IntervalIntegrable (fun x => x ^ r) volume 0 c
β’ IntervalIntegrable (fun x => x ^ r) volume a b | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.MeasureTheory.Integral.FundThmCalculus
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.NonIntegrable
#align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40"
/-!
# Integration of specific interval integrals
This file contains proofs of the integrals of various specific functions. This includes:
* Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log`
* Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)`
* The integral of `cos x ^ 2 - sin x ^ 2`
* Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β₯ 2`
* The computation of `β« x in 0..Ο, sin x ^ n` as a product for even and odd `n` (used in proving the
Wallis product for pi)
* Integrals of the form `sin x ^ m * cos x ^ n`
With these lemmas, many simple integrals can be computed by `simp` or `norm_num`.
See `test/integration.lean` for specific examples.
This file also contains some facts about the interval integrability of specific functions.
This file is still being developed.
## Tags
integrate, integration, integrable, integrability
-/
open Real Nat Set Finset
open scoped Real BigOperators Interval
variable {a b : β} (n : β)
namespace intervalIntegral
open MeasureTheory
variable {f : β β β} {ΞΌ Ξ½ : Measure β} [IsLocallyFiniteMeasure ΞΌ] (c d : β)
/-! ### Interval integrability -/
@[simp]
theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuous_pow n).intervalIntegrable a b
#align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow
theorem intervalIntegrable_zpow {n : β€} (h : 0 β€ n β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuousOn_id.zpowβ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow
/-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the
measure is volume. -/
theorem intervalIntegrable_rpow {r : β} (h : 0 β€ r β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ r) ΞΌ a b :=
(continuousOn_id.rpow_const fun _ hx =>
h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
| exact IntervalIntegrable.trans (this a).symm (this b) | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
| Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b | Mathlib_Analysis_SpecialFunctions_Integrals |
a b : β
n : β
f : β β β
ΞΌ Ξ½ : Measure β
instβ : IsLocallyFiniteMeasure ΞΌ
c d r : β
h : -1 < r
β’ β (c : β), IntervalIntegrable (fun x => x ^ r) volume 0 c | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.MeasureTheory.Integral.FundThmCalculus
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.NonIntegrable
#align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40"
/-!
# Integration of specific interval integrals
This file contains proofs of the integrals of various specific functions. This includes:
* Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log`
* Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)`
* The integral of `cos x ^ 2 - sin x ^ 2`
* Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β₯ 2`
* The computation of `β« x in 0..Ο, sin x ^ n` as a product for even and odd `n` (used in proving the
Wallis product for pi)
* Integrals of the form `sin x ^ m * cos x ^ n`
With these lemmas, many simple integrals can be computed by `simp` or `norm_num`.
See `test/integration.lean` for specific examples.
This file also contains some facts about the interval integrability of specific functions.
This file is still being developed.
## Tags
integrate, integration, integrable, integrability
-/
open Real Nat Set Finset
open scoped Real BigOperators Interval
variable {a b : β} (n : β)
namespace intervalIntegral
open MeasureTheory
variable {f : β β β} {ΞΌ Ξ½ : Measure β} [IsLocallyFiniteMeasure ΞΌ] (c d : β)
/-! ### Interval integrability -/
@[simp]
theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuous_pow n).intervalIntegrable a b
#align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow
theorem intervalIntegrable_zpow {n : β€} (h : 0 β€ n β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuousOn_id.zpowβ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow
/-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the
measure is volume. -/
theorem intervalIntegrable_rpow {r : β} (h : 0 β€ r β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ r) ΞΌ a b :=
(continuousOn_id.rpow_const fun _ hx =>
h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
| have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
have hderiv : β x β Ioo 0 c, HasDerivAt (fun x : β => x ^ (r + 1) / (r + 1)) (x ^ r) x := by
intro x hx
convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1
field_simp [(by linarith : r + 1 β 0)]; ring
apply integrableOn_deriv_of_nonneg _ hderiv
Β· intro x hx; apply rpow_nonneg_of_nonneg hx.1.le
Β· refine' (continuousOn_id.rpow_const _).div_const _; intro x _; right; linarith | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
| Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b | Mathlib_Analysis_SpecialFunctions_Integrals |
a b : β
n : β
f : β β β
ΞΌ Ξ½ : Measure β
instβ : IsLocallyFiniteMeasure ΞΌ
c d r : β
h : -1 < r
β’ β (c : β), 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.MeasureTheory.Integral.FundThmCalculus
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.NonIntegrable
#align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40"
/-!
# Integration of specific interval integrals
This file contains proofs of the integrals of various specific functions. This includes:
* Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log`
* Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)`
* The integral of `cos x ^ 2 - sin x ^ 2`
* Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β₯ 2`
* The computation of `β« x in 0..Ο, sin x ^ n` as a product for even and odd `n` (used in proving the
Wallis product for pi)
* Integrals of the form `sin x ^ m * cos x ^ n`
With these lemmas, many simple integrals can be computed by `simp` or `norm_num`.
See `test/integration.lean` for specific examples.
This file also contains some facts about the interval integrability of specific functions.
This file is still being developed.
## Tags
integrate, integration, integrable, integrability
-/
open Real Nat Set Finset
open scoped Real BigOperators Interval
variable {a b : β} (n : β)
namespace intervalIntegral
open MeasureTheory
variable {f : β β β} {ΞΌ Ξ½ : Measure β} [IsLocallyFiniteMeasure ΞΌ] (c d : β)
/-! ### Interval integrability -/
@[simp]
theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuous_pow n).intervalIntegrable a b
#align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow
theorem intervalIntegrable_zpow {n : β€} (h : 0 β€ n β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuousOn_id.zpowβ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow
/-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the
measure is volume. -/
theorem intervalIntegrable_rpow {r : β} (h : 0 β€ r β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ r) ΞΌ a b :=
(continuousOn_id.rpow_const fun _ hx =>
h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
| intro c hc | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
| Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b | Mathlib_Analysis_SpecialFunctions_Integrals |
a b : β
n : β
f : β β β
ΞΌ Ξ½ : Measure β
instβ : IsLocallyFiniteMeasure ΞΌ
cβ d r : β
h : -1 < r
c : β
hc : 0 β€ c
β’ IntervalIntegrable (fun x => x ^ r) volume 0 c | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.MeasureTheory.Integral.FundThmCalculus
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.NonIntegrable
#align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40"
/-!
# Integration of specific interval integrals
This file contains proofs of the integrals of various specific functions. This includes:
* Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log`
* Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)`
* The integral of `cos x ^ 2 - sin x ^ 2`
* Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β₯ 2`
* The computation of `β« x in 0..Ο, sin x ^ n` as a product for even and odd `n` (used in proving the
Wallis product for pi)
* Integrals of the form `sin x ^ m * cos x ^ n`
With these lemmas, many simple integrals can be computed by `simp` or `norm_num`.
See `test/integration.lean` for specific examples.
This file also contains some facts about the interval integrability of specific functions.
This file is still being developed.
## Tags
integrate, integration, integrable, integrability
-/
open Real Nat Set Finset
open scoped Real BigOperators Interval
variable {a b : β} (n : β)
namespace intervalIntegral
open MeasureTheory
variable {f : β β β} {ΞΌ Ξ½ : Measure β} [IsLocallyFiniteMeasure ΞΌ] (c d : β)
/-! ### Interval integrability -/
@[simp]
theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuous_pow n).intervalIntegrable a b
#align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow
theorem intervalIntegrable_zpow {n : β€} (h : 0 β€ n β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuousOn_id.zpowβ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow
/-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the
measure is volume. -/
theorem intervalIntegrable_rpow {r : β} (h : 0 β€ r β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ r) ΞΌ a b :=
(continuousOn_id.rpow_const fun _ hx =>
h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
| rw [intervalIntegrable_iff, uIoc_of_le hc] | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
| Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b | Mathlib_Analysis_SpecialFunctions_Integrals |
a b : β
n : β
f : β β β
ΞΌ Ξ½ : Measure β
instβ : IsLocallyFiniteMeasure ΞΌ
cβ d r : β
h : -1 < r
c : β
hc : 0 β€ c
β’ IntegrableOn (fun x => x ^ r) (Set.Ioc 0 c) | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.MeasureTheory.Integral.FundThmCalculus
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.NonIntegrable
#align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40"
/-!
# Integration of specific interval integrals
This file contains proofs of the integrals of various specific functions. This includes:
* Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log`
* Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)`
* The integral of `cos x ^ 2 - sin x ^ 2`
* Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β₯ 2`
* The computation of `β« x in 0..Ο, sin x ^ n` as a product for even and odd `n` (used in proving the
Wallis product for pi)
* Integrals of the form `sin x ^ m * cos x ^ n`
With these lemmas, many simple integrals can be computed by `simp` or `norm_num`.
See `test/integration.lean` for specific examples.
This file also contains some facts about the interval integrability of specific functions.
This file is still being developed.
## Tags
integrate, integration, integrable, integrability
-/
open Real Nat Set Finset
open scoped Real BigOperators Interval
variable {a b : β} (n : β)
namespace intervalIntegral
open MeasureTheory
variable {f : β β β} {ΞΌ Ξ½ : Measure β} [IsLocallyFiniteMeasure ΞΌ] (c d : β)
/-! ### Interval integrability -/
@[simp]
theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuous_pow n).intervalIntegrable a b
#align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow
theorem intervalIntegrable_zpow {n : β€} (h : 0 β€ n β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuousOn_id.zpowβ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow
/-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the
measure is volume. -/
theorem intervalIntegrable_rpow {r : β} (h : 0 β€ r β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ r) ΞΌ a b :=
(continuousOn_id.rpow_const fun _ hx =>
h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
| have hderiv : β x β Ioo 0 c, HasDerivAt (fun x : β => x ^ (r + 1) / (r + 1)) (x ^ r) x := by
intro x hx
convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1
field_simp [(by linarith : r + 1 β 0)]; ring | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
| Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b | Mathlib_Analysis_SpecialFunctions_Integrals |
a b : β
n : β
f : β β β
ΞΌ Ξ½ : Measure β
instβ : IsLocallyFiniteMeasure ΞΌ
cβ d r : β
h : -1 < r
c : β
hc : 0 β€ c
β’ β x β Set.Ioo 0 c, HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.MeasureTheory.Integral.FundThmCalculus
import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
import Mathlib.Analysis.SpecialFunctions.NonIntegrable
#align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40"
/-!
# Integration of specific interval integrals
This file contains proofs of the integrals of various specific functions. This includes:
* Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log`
* Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)`
* The integral of `cos x ^ 2 - sin x ^ 2`
* Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β₯ 2`
* The computation of `β« x in 0..Ο, sin x ^ n` as a product for even and odd `n` (used in proving the
Wallis product for pi)
* Integrals of the form `sin x ^ m * cos x ^ n`
With these lemmas, many simple integrals can be computed by `simp` or `norm_num`.
See `test/integration.lean` for specific examples.
This file also contains some facts about the interval integrability of specific functions.
This file is still being developed.
## Tags
integrate, integration, integrable, integrability
-/
open Real Nat Set Finset
open scoped Real BigOperators Interval
variable {a b : β} (n : β)
namespace intervalIntegral
open MeasureTheory
variable {f : β β β} {ΞΌ Ξ½ : Measure β} [IsLocallyFiniteMeasure ΞΌ] (c d : β)
/-! ### Interval integrability -/
@[simp]
theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuous_pow n).intervalIntegrable a b
#align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow
theorem intervalIntegrable_zpow {n : β€} (h : 0 β€ n β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ n) ΞΌ a b :=
(continuousOn_id.zpowβ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow
/-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the
measure is volume. -/
theorem intervalIntegrable_rpow {r : β} (h : 0 β€ r β¨ (0 : β) β [[a, b]]) :
IntervalIntegrable (fun x => x ^ r) ΞΌ a b :=
(continuousOn_id.rpow_const fun _ hx =>
h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable
#align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
have hderiv : β x β Ioo 0 c, HasDerivAt (fun x : β => x ^ (r + 1) / (r + 1)) (x ^ r) x := by
| intro x hx | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b := by
suffices β c : β, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
have : β c : β, 0 β€ c β IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
have hderiv : β x β Ioo 0 c, HasDerivAt (fun x : β => x ^ (r + 1) / (r + 1)) (x ^ r) x := by
| Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s | /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a
stronger hypothesis on `r`. -/
theorem intervalIntegrable_rpow' {r : β} (h : -1 < r) :
IntervalIntegrable (fun x => x ^ r) volume a b | Mathlib_Analysis_SpecialFunctions_Integrals |