state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
a b : ℝ n : β„• f : ℝ β†’ ℝ ΞΌ Ξ½ : Measure ℝ inst✝ : IsLocallyFiniteMeasure ΞΌ c d r : ℝ h : -1 < r this : βˆ€ (c : ℝ), IntervalIntegrable (fun x => x ^ r) volume 0 c ⊒ IntervalIntegrable (fun x => x ^ r) volume a b
/- Copyright (c) 2021 Benjamin Davidson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Benjamin Davidson -/ import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv import Mathlib.Analysis.SpecialFunctions.NonIntegrable #align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40" /-! # Integration of specific interval integrals This file contains proofs of the integrals of various specific functions. This includes: * Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log` * Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)` * The integral of `cos x ^ 2 - sin x ^ 2` * Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β‰₯ 2` * The computation of `∫ x in 0..Ο€, sin x ^ n` as a product for even and odd `n` (used in proving the Wallis product for pi) * Integrals of the form `sin x ^ m * cos x ^ n` With these lemmas, many simple integrals can be computed by `simp` or `norm_num`. See `test/integration.lean` for specific examples. This file also contains some facts about the interval integrability of specific functions. This file is still being developed. ## Tags integrate, integration, integrable, integrability -/ open Real Nat Set Finset open scoped Real BigOperators Interval variable {a b : ℝ} (n : β„•) namespace intervalIntegral open MeasureTheory variable {f : ℝ β†’ ℝ} {ΞΌ Ξ½ : Measure ℝ} [IsLocallyFiniteMeasure ΞΌ] (c d : ℝ) /-! ### Interval integrability -/ @[simp] theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuous_pow n).intervalIntegrable a b #align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow theorem intervalIntegrable_zpow {n : β„€} (h : 0 ≀ n ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuousOn_id.zpowβ‚€ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow /-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the measure is volume. -/ theorem intervalIntegrable_rpow {r : ℝ} (h : 0 ≀ r ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ r) ΞΌ a b := (continuousOn_id.rpow_const fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by
exact IntervalIntegrable.trans (this a).symm (this b)
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by
Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
Mathlib_Analysis_SpecialFunctions_Integrals
a b : ℝ n : β„• f : ℝ β†’ ℝ ΞΌ Ξ½ : Measure ℝ inst✝ : IsLocallyFiniteMeasure ΞΌ c d r : ℝ h : -1 < r ⊒ βˆ€ (c : ℝ), IntervalIntegrable (fun x => x ^ r) volume 0 c
/- Copyright (c) 2021 Benjamin Davidson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Benjamin Davidson -/ import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv import Mathlib.Analysis.SpecialFunctions.NonIntegrable #align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40" /-! # Integration of specific interval integrals This file contains proofs of the integrals of various specific functions. This includes: * Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log` * Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)` * The integral of `cos x ^ 2 - sin x ^ 2` * Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β‰₯ 2` * The computation of `∫ x in 0..Ο€, sin x ^ n` as a product for even and odd `n` (used in proving the Wallis product for pi) * Integrals of the form `sin x ^ m * cos x ^ n` With these lemmas, many simple integrals can be computed by `simp` or `norm_num`. See `test/integration.lean` for specific examples. This file also contains some facts about the interval integrability of specific functions. This file is still being developed. ## Tags integrate, integration, integrable, integrability -/ open Real Nat Set Finset open scoped Real BigOperators Interval variable {a b : ℝ} (n : β„•) namespace intervalIntegral open MeasureTheory variable {f : ℝ β†’ ℝ} {ΞΌ Ξ½ : Measure ℝ} [IsLocallyFiniteMeasure ΞΌ] (c d : ℝ) /-! ### Interval integrability -/ @[simp] theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuous_pow n).intervalIntegrable a b #align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow theorem intervalIntegrable_zpow {n : β„€} (h : 0 ≀ n ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuousOn_id.zpowβ‚€ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow /-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the measure is volume. -/ theorem intervalIntegrable_rpow {r : ℝ} (h : 0 ≀ r ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ r) ΞΌ a b := (continuousOn_id.rpow_const fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b)
have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc rw [intervalIntegrable_iff, uIoc_of_le hc] have hderiv : βˆ€ x ∈ Ioo 0 c, HasDerivAt (fun x : ℝ => x ^ (r + 1) / (r + 1)) (x ^ r) x := by intro x hx convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1 field_simp [(by linarith : r + 1 β‰  0)]; ring apply integrableOn_deriv_of_nonneg _ hderiv Β· intro x hx; apply rpow_nonneg_of_nonneg hx.1.le Β· refine' (continuousOn_id.rpow_const _).div_const _; intro x _; right; linarith
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b)
Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
Mathlib_Analysis_SpecialFunctions_Integrals
a b : ℝ n : β„• f : ℝ β†’ ℝ ΞΌ Ξ½ : Measure ℝ inst✝ : IsLocallyFiniteMeasure ΞΌ c d r : ℝ h : -1 < r ⊒ βˆ€ (c : ℝ), 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c
/- Copyright (c) 2021 Benjamin Davidson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Benjamin Davidson -/ import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv import Mathlib.Analysis.SpecialFunctions.NonIntegrable #align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40" /-! # Integration of specific interval integrals This file contains proofs of the integrals of various specific functions. This includes: * Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log` * Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)` * The integral of `cos x ^ 2 - sin x ^ 2` * Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β‰₯ 2` * The computation of `∫ x in 0..Ο€, sin x ^ n` as a product for even and odd `n` (used in proving the Wallis product for pi) * Integrals of the form `sin x ^ m * cos x ^ n` With these lemmas, many simple integrals can be computed by `simp` or `norm_num`. See `test/integration.lean` for specific examples. This file also contains some facts about the interval integrability of specific functions. This file is still being developed. ## Tags integrate, integration, integrable, integrability -/ open Real Nat Set Finset open scoped Real BigOperators Interval variable {a b : ℝ} (n : β„•) namespace intervalIntegral open MeasureTheory variable {f : ℝ β†’ ℝ} {ΞΌ Ξ½ : Measure ℝ} [IsLocallyFiniteMeasure ΞΌ] (c d : ℝ) /-! ### Interval integrability -/ @[simp] theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuous_pow n).intervalIntegrable a b #align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow theorem intervalIntegrable_zpow {n : β„€} (h : 0 ≀ n ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuousOn_id.zpowβ‚€ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow /-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the measure is volume. -/ theorem intervalIntegrable_rpow {r : ℝ} (h : 0 ≀ r ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ r) ΞΌ a b := (continuousOn_id.rpow_const fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by
intro c hc
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by
Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
Mathlib_Analysis_SpecialFunctions_Integrals
a b : ℝ n : β„• f : ℝ β†’ ℝ ΞΌ Ξ½ : Measure ℝ inst✝ : IsLocallyFiniteMeasure ΞΌ c✝ d r : ℝ h : -1 < r c : ℝ hc : 0 ≀ c ⊒ IntervalIntegrable (fun x => x ^ r) volume 0 c
/- Copyright (c) 2021 Benjamin Davidson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Benjamin Davidson -/ import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv import Mathlib.Analysis.SpecialFunctions.NonIntegrable #align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40" /-! # Integration of specific interval integrals This file contains proofs of the integrals of various specific functions. This includes: * Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log` * Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)` * The integral of `cos x ^ 2 - sin x ^ 2` * Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β‰₯ 2` * The computation of `∫ x in 0..Ο€, sin x ^ n` as a product for even and odd `n` (used in proving the Wallis product for pi) * Integrals of the form `sin x ^ m * cos x ^ n` With these lemmas, many simple integrals can be computed by `simp` or `norm_num`. See `test/integration.lean` for specific examples. This file also contains some facts about the interval integrability of specific functions. This file is still being developed. ## Tags integrate, integration, integrable, integrability -/ open Real Nat Set Finset open scoped Real BigOperators Interval variable {a b : ℝ} (n : β„•) namespace intervalIntegral open MeasureTheory variable {f : ℝ β†’ ℝ} {ΞΌ Ξ½ : Measure ℝ} [IsLocallyFiniteMeasure ΞΌ] (c d : ℝ) /-! ### Interval integrability -/ @[simp] theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuous_pow n).intervalIntegrable a b #align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow theorem intervalIntegrable_zpow {n : β„€} (h : 0 ≀ n ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuousOn_id.zpowβ‚€ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow /-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the measure is volume. -/ theorem intervalIntegrable_rpow {r : ℝ} (h : 0 ≀ r ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ r) ΞΌ a b := (continuousOn_id.rpow_const fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc
rw [intervalIntegrable_iff, uIoc_of_le hc]
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc
Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
Mathlib_Analysis_SpecialFunctions_Integrals
a b : ℝ n : β„• f : ℝ β†’ ℝ ΞΌ Ξ½ : Measure ℝ inst✝ : IsLocallyFiniteMeasure ΞΌ c✝ d r : ℝ h : -1 < r c : ℝ hc : 0 ≀ c ⊒ IntegrableOn (fun x => x ^ r) (Set.Ioc 0 c)
/- Copyright (c) 2021 Benjamin Davidson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Benjamin Davidson -/ import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv import Mathlib.Analysis.SpecialFunctions.NonIntegrable #align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40" /-! # Integration of specific interval integrals This file contains proofs of the integrals of various specific functions. This includes: * Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log` * Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)` * The integral of `cos x ^ 2 - sin x ^ 2` * Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β‰₯ 2` * The computation of `∫ x in 0..Ο€, sin x ^ n` as a product for even and odd `n` (used in proving the Wallis product for pi) * Integrals of the form `sin x ^ m * cos x ^ n` With these lemmas, many simple integrals can be computed by `simp` or `norm_num`. See `test/integration.lean` for specific examples. This file also contains some facts about the interval integrability of specific functions. This file is still being developed. ## Tags integrate, integration, integrable, integrability -/ open Real Nat Set Finset open scoped Real BigOperators Interval variable {a b : ℝ} (n : β„•) namespace intervalIntegral open MeasureTheory variable {f : ℝ β†’ ℝ} {ΞΌ Ξ½ : Measure ℝ} [IsLocallyFiniteMeasure ΞΌ] (c d : ℝ) /-! ### Interval integrability -/ @[simp] theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuous_pow n).intervalIntegrable a b #align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow theorem intervalIntegrable_zpow {n : β„€} (h : 0 ≀ n ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuousOn_id.zpowβ‚€ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow /-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the measure is volume. -/ theorem intervalIntegrable_rpow {r : ℝ} (h : 0 ≀ r ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ r) ΞΌ a b := (continuousOn_id.rpow_const fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc rw [intervalIntegrable_iff, uIoc_of_le hc]
have hderiv : βˆ€ x ∈ Ioo 0 c, HasDerivAt (fun x : ℝ => x ^ (r + 1) / (r + 1)) (x ^ r) x := by intro x hx convert (Real.hasDerivAt_rpow_const (p := r + 1) (Or.inl hx.1.ne')).div_const (r + 1) using 1 field_simp [(by linarith : r + 1 β‰  0)]; ring
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc rw [intervalIntegrable_iff, uIoc_of_le hc]
Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
Mathlib_Analysis_SpecialFunctions_Integrals
a b : ℝ n : β„• f : ℝ β†’ ℝ ΞΌ Ξ½ : Measure ℝ inst✝ : IsLocallyFiniteMeasure ΞΌ c✝ d r : ℝ h : -1 < r c : ℝ hc : 0 ≀ c ⊒ βˆ€ x ∈ Set.Ioo 0 c, HasDerivAt (fun x => x ^ (r + 1) / (r + 1)) (x ^ r) x
/- Copyright (c) 2021 Benjamin Davidson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Benjamin Davidson -/ import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv import Mathlib.Analysis.SpecialFunctions.NonIntegrable #align_import analysis.special_functions.integrals from "leanprover-community/mathlib"@"011cafb4a5bc695875d186e245d6b3df03bf6c40" /-! # Integration of specific interval integrals This file contains proofs of the integrals of various specific functions. This includes: * Integrals of simple functions, such as `id`, `pow`, `inv`, `exp`, `log` * Integrals of some trigonometric functions, such as `sin`, `cos`, `1 / (1 + x^2)` * The integral of `cos x ^ 2 - sin x ^ 2` * Reduction formulae for the integrals of `sin x ^ n` and `cos x ^ n` for `n β‰₯ 2` * The computation of `∫ x in 0..Ο€, sin x ^ n` as a product for even and odd `n` (used in proving the Wallis product for pi) * Integrals of the form `sin x ^ m * cos x ^ n` With these lemmas, many simple integrals can be computed by `simp` or `norm_num`. See `test/integration.lean` for specific examples. This file also contains some facts about the interval integrability of specific functions. This file is still being developed. ## Tags integrate, integration, integrable, integrability -/ open Real Nat Set Finset open scoped Real BigOperators Interval variable {a b : ℝ} (n : β„•) namespace intervalIntegral open MeasureTheory variable {f : ℝ β†’ ℝ} {ΞΌ Ξ½ : Measure ℝ} [IsLocallyFiniteMeasure ΞΌ] (c d : ℝ) /-! ### Interval integrability -/ @[simp] theorem intervalIntegrable_pow : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuous_pow n).intervalIntegrable a b #align interval_integral.interval_integrable_pow intervalIntegral.intervalIntegrable_pow theorem intervalIntegrable_zpow {n : β„€} (h : 0 ≀ n ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ n) ΞΌ a b := (continuousOn_id.zpowβ‚€ n fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_zpow intervalIntegral.intervalIntegrable_zpow /-- See `intervalIntegrable_rpow'` for a version with a weaker hypothesis on `r`, but assuming the measure is volume. -/ theorem intervalIntegrable_rpow {r : ℝ} (h : 0 ≀ r ∨ (0 : ℝ) βˆ‰ [[a, b]]) : IntervalIntegrable (fun x => x ^ r) ΞΌ a b := (continuousOn_id.rpow_const fun _ hx => h.symm.imp (ne_of_mem_of_not_mem hx) id).intervalIntegrable #align interval_integral.interval_integrable_rpow intervalIntegral.intervalIntegrable_rpow /-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc rw [intervalIntegrable_iff, uIoc_of_le hc] have hderiv : βˆ€ x ∈ Ioo 0 c, HasDerivAt (fun x : ℝ => x ^ (r + 1) / (r + 1)) (x ^ r) x := by
intro x hx
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b := by suffices βˆ€ c : ℝ, IntervalIntegrable (fun x => x ^ r) volume 0 c by exact IntervalIntegrable.trans (this a).symm (this b) have : βˆ€ c : ℝ, 0 ≀ c β†’ IntervalIntegrable (fun x => x ^ r) volume 0 c := by intro c hc rw [intervalIntegrable_iff, uIoc_of_le hc] have hderiv : βˆ€ x ∈ Ioo 0 c, HasDerivAt (fun x : ℝ => x ^ (r + 1) / (r + 1)) (x ^ r) x := by
Mathlib.Analysis.SpecialFunctions.Integrals.70_0.61KIRGZyZnxsI7s
/-- See `intervalIntegrable_rpow` for a version applying to any locally finite measure, but with a stronger hypothesis on `r`. -/ theorem intervalIntegrable_rpow' {r : ℝ} (h : -1 < r) : IntervalIntegrable (fun x => x ^ r) volume a b
Mathlib_Analysis_SpecialFunctions_Integrals