python_code
stringlengths 0
1.02M
| repo_name
stringlengths 9
48
| file_path
stringlengths 5
114
|
---|---|---|
import os
import fire
import random
from retry.api import retry_call
from tqdm import tqdm
from datetime import datetime
from functools import wraps
from lightweight_gan import Trainer, NanException
from lightweight_gan.diff_augment_test import DiffAugmentTest
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
import numpy as np
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_list(el):
return el if isinstance(el, list) else [el]
def timestamped_filename(prefix = 'generated-'):
now = datetime.now()
timestamp = now.strftime("%m-%d-%Y_%H-%M-%S")
return f'{prefix}{timestamp}'
def set_seed(seed):
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def run_training(rank, world_size, model_args, data, load_from, new, num_train_steps, name, seed, use_aim, aim_repo, aim_run_hash):
is_main = rank == 0
is_ddp = world_size > 1
if is_ddp:
set_seed(seed)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=world_size)
print(f"{rank + 1}/{world_size} process initialized.")
model_args.update(
is_ddp = is_ddp,
rank = rank,
world_size = world_size
)
model = Trainer(**model_args, hparams=model_args, use_aim=use_aim, aim_repo=aim_repo, aim_run_hash=aim_run_hash)
if not new:
model.load(load_from)
else:
model.clear()
model.set_data_src(data)
progress_bar = tqdm(initial = model.steps, total = num_train_steps, mininterval=10., desc=f'{name}<{data}>')
while model.steps < num_train_steps:
retry_call(model.train, tries=3, exceptions=NanException)
progress_bar.n = model.steps
progress_bar.refresh()
if is_main and model.steps % 50 == 0:
model.print_log()
model.save(model.checkpoint_num)
if is_ddp:
dist.destroy_process_group()
def train_from_folder(
data = './data',
results_dir = './results',
models_dir = './models',
name = 'default',
new = False,
load_from = -1,
image_size = 256,
optimizer = 'adam',
fmap_max = 512,
transparent = False,
greyscale = False,
batch_size = 10,
gradient_accumulate_every = 4,
num_train_steps = 150000,
learning_rate = 2e-4,
save_every = 1000,
evaluate_every = 1000,
generate = False,
generate_types = ['default', 'ema'],
generate_interpolation = False,
aug_test = False,
aug_prob=None,
aug_types=['cutout', 'translation'],
dataset_aug_prob=0.,
attn_res_layers = [32],
freq_chan_attn = False,
disc_output_size = 1,
dual_contrast_loss = False,
antialias = False,
interpolation_num_steps = 100,
save_frames = False,
num_image_tiles = None,
num_workers = None,
multi_gpus = False,
calculate_fid_every = None,
calculate_fid_num_images = 12800,
clear_fid_cache = False,
seed = 42,
amp = False,
show_progress = False,
use_aim = False,
aim_repo = None,
aim_run_hash = None,
load_strict = True
):
num_image_tiles = default(num_image_tiles, 4 if image_size > 512 else 8)
model_args = dict(
name = name,
results_dir = results_dir,
models_dir = models_dir,
batch_size = batch_size,
gradient_accumulate_every = gradient_accumulate_every,
attn_res_layers = cast_list(attn_res_layers),
freq_chan_attn = freq_chan_attn,
disc_output_size = disc_output_size,
dual_contrast_loss = dual_contrast_loss,
antialias = antialias,
image_size = image_size,
num_image_tiles = num_image_tiles,
optimizer = optimizer,
num_workers = num_workers,
fmap_max = fmap_max,
transparent = transparent,
greyscale = greyscale,
lr = learning_rate,
save_every = save_every,
evaluate_every = evaluate_every,
aug_prob = aug_prob,
aug_types = cast_list(aug_types),
dataset_aug_prob = dataset_aug_prob,
calculate_fid_every = calculate_fid_every,
calculate_fid_num_images = calculate_fid_num_images,
clear_fid_cache = clear_fid_cache,
amp = amp,
load_strict = load_strict
)
if generate:
model = Trainer(**model_args, use_aim = use_aim)
model.load(load_from)
samples_name = timestamped_filename()
checkpoint = model.checkpoint_num
dir_result = model.generate(samples_name, num_image_tiles, checkpoint, generate_types)
print(f'sample images generated at {dir_result}')
return
if generate_interpolation:
model = Trainer(**model_args, use_aim = use_aim)
model.load(load_from)
samples_name = timestamped_filename()
model.generate_interpolation(samples_name, num_image_tiles, num_steps = interpolation_num_steps, save_frames = save_frames)
print(f'interpolation generated at {results_dir}/{name}/{samples_name}')
return
if show_progress:
model = Trainer(**model_args, use_aim = use_aim)
model.show_progress(num_images=num_image_tiles, types=generate_types)
return
if aug_test:
DiffAugmentTest(data=data, image_size=image_size, batch_size=batch_size, types=aug_types, nrow=num_image_tiles)
return
world_size = torch.cuda.device_count()
if world_size == 1 or not multi_gpus:
run_training(0, 1, model_args, data, load_from, new, num_train_steps, name, seed, use_aim, aim_repo, aim_run_hash)
return
mp.spawn(run_training,
args=(world_size, model_args, data, load_from, new, num_train_steps, name, seed, use_aim, aim_repo, aim_run_hash,),
nprocs=world_size,
join=True)
def main():
fire.Fire(train_from_folder)
| lightweight-gan-main | lightweight_gan/cli.py |
import os
import tempfile
from pathlib import Path
from shutil import copyfile
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from lightweight_gan.lightweight_gan import AugWrapper, ImageDataset
assert torch.cuda.is_available(), 'You need to have an Nvidia GPU with CUDA installed.'
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
@torch.no_grad()
def DiffAugmentTest(image_size = 256, data = './data/0.jpg', types = [], batch_size = 10, rank = 0, nrow = 5):
model = DummyModel()
aug_wrapper = AugWrapper(model, image_size)
with tempfile.TemporaryDirectory() as directory:
file = Path(data)
if os.path.exists(file):
file_name, ext = os.path.splitext(data)
for i in range(batch_size):
tmp_file_name = str(i) + ext
copyfile(file, os.path.join(directory, tmp_file_name))
dataset = ImageDataset(directory, image_size, aug_prob=0)
dataloader = DataLoader(dataset, batch_size=batch_size)
image_batch = next(iter(dataloader)).cuda(rank)
images_augment = aug_wrapper(images=image_batch, prob=1, types=types, detach=True)
save_result = file_name + f'_augs{ext}'
torchvision.utils.save_image(images_augment, save_result, nrow=nrow)
print('Save result to:', save_result)
else:
print('File not found. File', file)
| lightweight-gan-main | lightweight_gan/diff_augment_test.py |
import os
import json
import multiprocessing
from random import random
import math
from math import log2, floor
from functools import lru_cache, partial
from contextlib import contextmanager, ExitStack
from pathlib import Path
from shutil import rmtree
import torch
from torch.cuda.amp import autocast, GradScaler
from torch.optim import Adam
from torch import nn, einsum
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.autograd import grad as torch_grad
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from PIL import Image
import torchvision
from torchvision import transforms
from kornia.filters import filter2d
from lightweight_gan.diff_augment import DiffAugment
from lightweight_gan.version import __version__
from tqdm import tqdm
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
from adabelief_pytorch import AdaBelief
# asserts
assert torch.cuda.is_available(), 'You need to have an Nvidia GPU with CUDA installed.'
# constants
NUM_CORES = multiprocessing.cpu_count()
EXTS = ['jpg', 'jpeg', 'png', 'tiff']
# helpers
def exists(val):
return val is not None
@contextmanager
def null_context():
yield
def combine_contexts(contexts):
@contextmanager
def multi_contexts():
with ExitStack() as stack:
yield [stack.enter_context(ctx()) for ctx in contexts]
return multi_contexts
def is_power_of_two(val):
return log2(val).is_integer()
def default(val, d):
return val if exists(val) else d
def set_requires_grad(model, bool):
for p in model.parameters():
p.requires_grad = bool
def cycle(iterable):
while True:
for i in iterable:
yield i
def raise_if_nan(t):
if torch.isnan(t):
raise NanException
def gradient_accumulate_contexts(gradient_accumulate_every, is_ddp, ddps):
if is_ddp:
num_no_syncs = gradient_accumulate_every - 1
head = [combine_contexts(map(lambda ddp: ddp.no_sync, ddps))] * num_no_syncs
tail = [null_context]
contexts = head + tail
else:
contexts = [null_context] * gradient_accumulate_every
for context in contexts:
with context():
yield
def evaluate_in_chunks(max_batch_size, model, *args):
split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args))))
chunked_outputs = [model(*i) for i in split_args]
if len(chunked_outputs) == 1:
return chunked_outputs[0]
return torch.cat(chunked_outputs, dim=0)
def slerp(val, low, high):
low_norm = low / torch.norm(low, dim=1, keepdim=True)
high_norm = high / torch.norm(high, dim=1, keepdim=True)
omega = torch.acos((low_norm * high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
return res
def safe_div(n, d):
try:
res = n / d
except ZeroDivisionError:
prefix = '' if int(n >= 0) else '-'
res = float(f'{prefix}inf')
return res
# loss functions
def gen_hinge_loss(fake, real):
return fake.mean()
def hinge_loss(real, fake):
return (F.relu(1 + real) + F.relu(1 - fake)).mean()
def dual_contrastive_loss(real_logits, fake_logits):
device = real_logits.device
real_logits, fake_logits = map(lambda t: rearrange(t, '... -> (...)'), (real_logits, fake_logits))
def loss_half(t1, t2):
t1 = rearrange(t1, 'i -> i ()')
t2 = repeat(t2, 'j -> i j', i = t1.shape[0])
t = torch.cat((t1, t2), dim = -1)
return F.cross_entropy(t, torch.zeros(t1.shape[0], device = device, dtype = torch.long))
return loss_half(real_logits, fake_logits) + loss_half(-fake_logits, -real_logits)
@lru_cache(maxsize=10)
def det_randn(*args):
"""
deterministic random to track the same latent vars (and images) across training steps
helps to visualize same image over training steps
"""
return torch.randn(*args)
def interpolate_between(a, b, *, num_samples, dim):
assert num_samples > 2
samples = []
step_size = 0
for _ in range(num_samples):
sample = torch.lerp(a, b, step_size)
samples.append(sample)
step_size += 1 / (num_samples - 1)
return torch.stack(samples, dim=dim)
# helper classes
class NanException(Exception):
pass
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if not exists(old):
return new
return old * self.beta + (1 - self.beta) * new
class RandomApply(nn.Module):
def __init__(self, prob, fn, fn_else = lambda x: x):
super().__init__()
self.fn = fn
self.fn_else = fn_else
self.prob = prob
def forward(self, x):
fn = self.fn if random() < self.prob else self.fn_else
return fn(x)
class ChanNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = ChanNorm(dim)
def forward(self, x):
return self.fn(self.norm(x))
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
return self.fn(x) + x
class SumBranches(nn.Module):
def __init__(self, branches):
super().__init__()
self.branches = nn.ModuleList(branches)
def forward(self, x):
return sum(map(lambda fn: fn(x), self.branches))
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer('f', f)
def forward(self, x):
f = self.f
f = f[None, None, :] * f [None, :, None]
return filter2d(x, f, normalized=True)
class Noise(nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1))
def forward(self, x, noise = None):
b, _, h, w, device = *x.shape, x.device
if not exists(noise):
noise = torch.randn(b, 1, h, w, device = device)
return x + self.weight * noise
def Conv2dSame(dim_in, dim_out, kernel_size, bias = True):
pad_left = kernel_size // 2
pad_right = (pad_left - 1) if (kernel_size % 2) == 0 else pad_left
return nn.Sequential(
nn.ZeroPad2d((pad_left, pad_right, pad_left, pad_right)),
nn.Conv2d(dim_in, dim_out, kernel_size, bias = bias)
)
# attention
class DepthWiseConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding = 0, stride = 1, bias = True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
)
def forward(self, x):
return self.net(x)
class LinearAttention(nn.Module):
def __init__(self, dim, dim_head = 64, heads = 8, kernel_size = 3):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.dim_head = dim_head
inner_dim = dim_head * heads
self.kernel_size = kernel_size
self.nonlin = nn.GELU()
self.to_lin_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
self.to_lin_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding = 1, bias = False)
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim * 2, dim, 1)
def forward(self, fmap):
h, x, y = self.heads, *fmap.shape[-2:]
# linear attention
lin_q, lin_k, lin_v = (self.to_lin_q(fmap), *self.to_lin_kv(fmap).chunk(2, dim = 1))
lin_q, lin_k, lin_v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (lin_q, lin_k, lin_v))
lin_q = lin_q.softmax(dim = -1)
lin_k = lin_k.softmax(dim = -2)
lin_q = lin_q * self.scale
context = einsum('b n d, b n e -> b d e', lin_k, lin_v)
lin_out = einsum('b n d, b d e -> b n e', lin_q, context)
lin_out = rearrange(lin_out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)
# conv-like full attention
q, k, v = (self.to_q(fmap), *self.to_kv(fmap).chunk(2, dim = 1))
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) c x y', h = h), (q, k, v))
k = F.unfold(k, kernel_size = self.kernel_size, padding = self.kernel_size // 2)
v = F.unfold(v, kernel_size = self.kernel_size, padding = self.kernel_size // 2)
k, v = map(lambda t: rearrange(t, 'b (d j) n -> b n j d', d = self.dim_head), (k, v))
q = rearrange(q, 'b c ... -> b (...) c') * self.scale
sim = einsum('b i d, b i j d -> b i j', q, k)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
full_out = einsum('b i j, b i j d -> b i d', attn, v)
full_out = rearrange(full_out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)
# add outputs of linear attention + conv like full attention
lin_out = self.nonlin(lin_out)
out = torch.cat((lin_out, full_out), dim = 1)
return self.to_out(out)
# dataset
def convert_image_to(img_type, image):
if image.mode != img_type:
return image.convert(img_type)
return image
class identity(object):
def __call__(self, tensor):
return tensor
class expand_greyscale(object):
def __init__(self, transparent):
self.transparent = transparent
def __call__(self, tensor):
channels = tensor.shape[0]
num_target_channels = 4 if self.transparent else 3
if channels == num_target_channels:
return tensor
alpha = None
if channels == 1:
color = tensor.expand(3, -1, -1)
elif channels == 2:
color = tensor[:1].expand(3, -1, -1)
alpha = tensor[1:]
else:
raise Exception(f'image with invalid number of channels given {channels}')
if not exists(alpha) and self.transparent:
alpha = torch.ones(1, *tensor.shape[1:], device=tensor.device)
return color if not self.transparent else torch.cat((color, alpha))
def resize_to_minimum_size(min_size, image):
if max(*image.size) < min_size:
return torchvision.transforms.functional.resize(image, min_size)
return image
class ImageDataset(Dataset):
def __init__(
self,
folder,
image_size,
transparent = False,
greyscale = False,
aug_prob = 0.
):
super().__init__()
self.folder = folder
self.image_size = image_size
self.paths = [p for ext in EXTS for p in Path(f'{folder}').glob(f'**/*.{ext}')]
assert len(self.paths) > 0, f'No images were found in {folder} for training'
if transparent:
num_channels = 4
pillow_mode = 'RGBA'
expand_fn = expand_greyscale(transparent)
elif greyscale:
num_channels = 1
pillow_mode = 'L'
expand_fn = identity()
else:
num_channels = 3
pillow_mode = 'RGB'
expand_fn = expand_greyscale(transparent)
convert_image_fn = partial(convert_image_to, pillow_mode)
self.transform = transforms.Compose([
transforms.Lambda(convert_image_fn),
transforms.Lambda(partial(resize_to_minimum_size, image_size)),
transforms.Resize(image_size),
RandomApply(aug_prob, transforms.RandomResizedCrop(image_size, scale=(0.5, 1.0), ratio=(0.98, 1.02)), transforms.CenterCrop(image_size)),
transforms.ToTensor(),
transforms.Lambda(expand_fn)
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(path)
return self.transform(img)
# augmentations
def random_hflip(tensor, prob):
if prob > random():
return tensor
return torch.flip(tensor, dims=(3,))
class AugWrapper(nn.Module):
def __init__(self, D, image_size):
super().__init__()
self.D = D
def forward(self, images, prob = 0., types = [], detach = False, **kwargs):
context = torch.no_grad if detach else null_context
with context():
if random() < prob:
images = random_hflip(images, prob=0.5)
images = DiffAugment(images, types=types)
return self.D(images, **kwargs)
# modifiable global variables
norm_class = nn.BatchNorm2d
class PixelShuffleUpsample(nn.Module):
def __init__(self, dim, dim_out = None):
super().__init__()
dim_out = default(dim_out, dim)
conv = nn.Conv2d(dim, dim_out * 4, 1)
self.net = nn.Sequential(
conv,
nn.SiLU(),
nn.PixelShuffle(2)
)
self.init_conv_(conv)
def init_conv_(self, conv):
o, i, h, w = conv.weight.shape
conv_weight = torch.empty(o // 4, i, h, w)
nn.init.kaiming_uniform_(conv_weight)
conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...')
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def forward(self, x):
return self.net(x)
def SPConvDownsample(dim, dim_out = None):
# https://arxiv.org/abs/2208.03641 shows this is the most optimal way to downsample
# named SP-conv in the paper, but basically a pixel unshuffle
dim_out = default(dim_out, dim)
return nn.Sequential(
Rearrange('b c (h s1) (w s2) -> b (c s1 s2) h w', s1 = 2, s2 = 2),
nn.Conv2d(dim * 4, dim_out, 1)
)
# squeeze excitation classes
# global context network
# https://arxiv.org/abs/2012.13375
# similar to squeeze-excite, but with a simplified attention pooling and a subsequent layer norm
class GlobalContext(nn.Module):
def __init__(
self,
*,
chan_in,
chan_out
):
super().__init__()
self.to_k = nn.Conv2d(chan_in, 1, 1)
chan_intermediate = max(3, chan_out // 2)
self.net = nn.Sequential(
nn.Conv2d(chan_in, chan_intermediate, 1),
nn.LeakyReLU(0.1),
nn.Conv2d(chan_intermediate, chan_out, 1),
nn.Sigmoid()
)
def forward(self, x):
context = self.to_k(x)
context = context.flatten(2).softmax(dim = -1)
out = einsum('b i n, b c n -> b c i', context, x.flatten(2))
out = out.unsqueeze(-1)
return self.net(out)
# frequency channel attention
# https://arxiv.org/abs/2012.11879
def get_1d_dct(i, freq, L):
result = math.cos(math.pi * freq * (i + 0.5) / L) / math.sqrt(L)
return result * (1 if freq == 0 else math.sqrt(2))
def get_dct_weights(width, channel, fidx_u, fidx_v):
dct_weights = torch.zeros(1, channel, width, width)
c_part = channel // len(fidx_u)
for i, (u_x, v_y) in enumerate(zip(fidx_u, fidx_v)):
for x in range(width):
for y in range(width):
coor_value = get_1d_dct(x, u_x, width) * get_1d_dct(y, v_y, width)
dct_weights[:, i * c_part: (i + 1) * c_part, x, y] = coor_value
return dct_weights
class FCANet(nn.Module):
def __init__(
self,
*,
chan_in,
chan_out,
reduction = 4,
width
):
super().__init__()
freq_w, freq_h = ([0] * 8), list(range(8)) # in paper, it seems 16 frequencies was ideal
dct_weights = get_dct_weights(width, chan_in, [*freq_w, *freq_h], [*freq_h, *freq_w])
self.register_buffer('dct_weights', dct_weights)
chan_intermediate = max(3, chan_out // reduction)
self.net = nn.Sequential(
nn.Conv2d(chan_in, chan_intermediate, 1),
nn.LeakyReLU(0.1),
nn.Conv2d(chan_intermediate, chan_out, 1),
nn.Sigmoid()
)
def forward(self, x):
x = reduce(x * self.dct_weights, 'b c (h h1) (w w1) -> b c h1 w1', 'sum', h1 = 1, w1 = 1)
return self.net(x)
# generative adversarial network
class Generator(nn.Module):
def __init__(
self,
*,
image_size,
latent_dim = 256,
fmap_max = 512,
fmap_inverse_coef = 12,
transparent = False,
greyscale = False,
attn_res_layers = [],
freq_chan_attn = False
):
super().__init__()
resolution = log2(image_size)
assert is_power_of_two(image_size), 'image size must be a power of 2'
if transparent:
init_channel = 4
elif greyscale:
init_channel = 1
else:
init_channel = 3
fmap_max = default(fmap_max, latent_dim)
self.initial_conv = nn.Sequential(
nn.ConvTranspose2d(latent_dim, latent_dim * 2, 4),
norm_class(latent_dim * 2),
nn.GLU(dim = 1)
)
num_layers = int(resolution) - 2
features = list(map(lambda n: (n, 2 ** (fmap_inverse_coef - n)), range(2, num_layers + 2)))
features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features))
features = list(map(lambda n: 3 if n[0] >= 8 else n[1], features))
features = [latent_dim, *features]
in_out_features = list(zip(features[:-1], features[1:]))
self.res_layers = range(2, num_layers + 2)
self.layers = nn.ModuleList([])
self.res_to_feature_map = dict(zip(self.res_layers, in_out_features))
self.sle_map = ((3, 7), (4, 8), (5, 9), (6, 10))
self.sle_map = list(filter(lambda t: t[0] <= resolution and t[1] <= resolution, self.sle_map))
self.sle_map = dict(self.sle_map)
self.num_layers_spatial_res = 1
for (res, (chan_in, chan_out)) in zip(self.res_layers, in_out_features):
image_width = 2 ** res
attn = None
if image_width in attn_res_layers:
attn = PreNorm(chan_in, LinearAttention(chan_in))
sle = None
if res in self.sle_map:
residual_layer = self.sle_map[res]
sle_chan_out = self.res_to_feature_map[residual_layer - 1][-1]
if freq_chan_attn:
sle = FCANet(
chan_in = chan_out,
chan_out = sle_chan_out,
width = 2 ** (res + 1)
)
else:
sle = GlobalContext(
chan_in = chan_out,
chan_out = sle_chan_out
)
layer = nn.ModuleList([
nn.Sequential(
PixelShuffleUpsample(chan_in),
Blur(),
Conv2dSame(chan_in, chan_out * 2, 4),
Noise(),
norm_class(chan_out * 2),
nn.GLU(dim = 1)
),
sle,
attn
])
self.layers.append(layer)
self.out_conv = nn.Conv2d(features[-1], init_channel, 3, padding = 1)
def forward(self, x):
x = rearrange(x, 'b c -> b c () ()')
x = self.initial_conv(x)
x = F.normalize(x, dim = 1)
residuals = dict()
for (res, (up, sle, attn)) in zip(self.res_layers, self.layers):
if exists(attn):
x = attn(x) + x
x = up(x)
if exists(sle):
out_res = self.sle_map[res]
residual = sle(x)
residuals[out_res] = residual
next_res = res + 1
if next_res in residuals:
x = x * residuals[next_res]
return self.out_conv(x)
class SimpleDecoder(nn.Module):
def __init__(
self,
*,
chan_in,
chan_out = 3,
num_upsamples = 4,
):
super().__init__()
self.layers = nn.ModuleList([])
final_chan = chan_out
chans = chan_in
for ind in range(num_upsamples):
last_layer = ind == (num_upsamples - 1)
chan_out = chans if not last_layer else final_chan * 2
layer = nn.Sequential(
PixelShuffleUpsample(chans),
nn.Conv2d(chans, chan_out, 3, padding = 1),
nn.GLU(dim = 1)
)
self.layers.append(layer)
chans //= 2
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class Discriminator(nn.Module):
def __init__(
self,
*,
image_size,
fmap_max = 512,
fmap_inverse_coef = 12,
transparent = False,
greyscale = False,
disc_output_size = 5,
attn_res_layers = []
):
super().__init__()
resolution = log2(image_size)
assert is_power_of_two(image_size), 'image size must be a power of 2'
assert disc_output_size in {1, 5}, 'discriminator output dimensions can only be 5x5 or 1x1'
resolution = int(resolution)
if transparent:
init_channel = 4
elif greyscale:
init_channel = 1
else:
init_channel = 3
num_non_residual_layers = max(0, int(resolution) - 8)
num_residual_layers = 8 - 3
non_residual_resolutions = range(min(8, resolution), 2, -1)
features = list(map(lambda n: (n, 2 ** (fmap_inverse_coef - n)), non_residual_resolutions))
features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features))
if num_non_residual_layers == 0:
res, _ = features[0]
features[0] = (res, init_channel)
chan_in_out = list(zip(features[:-1], features[1:]))
self.non_residual_layers = nn.ModuleList([])
for ind in range(num_non_residual_layers):
first_layer = ind == 0
last_layer = ind == (num_non_residual_layers - 1)
chan_out = features[0][-1] if last_layer else init_channel
self.non_residual_layers.append(nn.Sequential(
Blur(),
nn.Conv2d(init_channel, chan_out, 4, stride = 2, padding = 1),
nn.LeakyReLU(0.1)
))
self.residual_layers = nn.ModuleList([])
for (res, ((_, chan_in), (_, chan_out))) in zip(non_residual_resolutions, chan_in_out):
image_width = 2 ** res
attn = None
if image_width in attn_res_layers:
attn = PreNorm(chan_in, LinearAttention(chan_in))
self.residual_layers.append(nn.ModuleList([
SumBranches([
nn.Sequential(
Blur(),
SPConvDownsample(chan_in, chan_out),
nn.LeakyReLU(0.1),
nn.Conv2d(chan_out, chan_out, 3, padding = 1),
nn.LeakyReLU(0.1)
),
nn.Sequential(
Blur(),
nn.AvgPool2d(2),
nn.Conv2d(chan_in, chan_out, 1),
nn.LeakyReLU(0.1),
)
]),
attn
]))
last_chan = features[-1][-1]
if disc_output_size == 5:
self.to_logits = nn.Sequential(
nn.Conv2d(last_chan, last_chan, 1),
nn.LeakyReLU(0.1),
nn.Conv2d(last_chan, 1, 4)
)
elif disc_output_size == 1:
self.to_logits = nn.Sequential(
Blur(),
nn.Conv2d(last_chan, last_chan, 3, stride = 2, padding = 1),
nn.LeakyReLU(0.1),
nn.Conv2d(last_chan, 1, 4)
)
self.to_shape_disc_out = nn.Sequential(
nn.Conv2d(init_channel, 64, 3, padding = 1),
Residual(PreNorm(64, LinearAttention(64))),
SumBranches([
nn.Sequential(
Blur(),
SPConvDownsample(64, 32),
nn.LeakyReLU(0.1),
nn.Conv2d(32, 32, 3, padding = 1),
nn.LeakyReLU(0.1)
),
nn.Sequential(
Blur(),
nn.AvgPool2d(2),
nn.Conv2d(64, 32, 1),
nn.LeakyReLU(0.1),
)
]),
Residual(PreNorm(32, LinearAttention(32))),
nn.AdaptiveAvgPool2d((4, 4)),
nn.Conv2d(32, 1, 4)
)
self.decoder1 = SimpleDecoder(chan_in = last_chan, chan_out = init_channel)
self.decoder2 = SimpleDecoder(chan_in = features[-2][-1], chan_out = init_channel) if resolution >= 9 else None
def forward(self, x, calc_aux_loss = False):
orig_img = x
for layer in self.non_residual_layers:
x = layer(x)
layer_outputs = []
for (net, attn) in self.residual_layers:
if exists(attn):
x = attn(x) + x
x = net(x)
layer_outputs.append(x)
out = self.to_logits(x).flatten(1)
img_32x32 = F.interpolate(orig_img, size = (32, 32))
out_32x32 = self.to_shape_disc_out(img_32x32)
if not calc_aux_loss:
return out, out_32x32, None
# self-supervised auto-encoding loss
layer_8x8 = layer_outputs[-1]
layer_16x16 = layer_outputs[-2]
recon_img_8x8 = self.decoder1(layer_8x8)
aux_loss = F.mse_loss(
recon_img_8x8,
F.interpolate(orig_img, size = recon_img_8x8.shape[2:])
)
if exists(self.decoder2):
select_random_quadrant = lambda rand_quadrant, img: rearrange(img, 'b c (m h) (n w) -> (m n) b c h w', m = 2, n = 2)[rand_quadrant]
crop_image_fn = partial(select_random_quadrant, floor(random() * 4))
img_part, layer_16x16_part = map(crop_image_fn, (orig_img, layer_16x16))
recon_img_16x16 = self.decoder2(layer_16x16_part)
aux_loss_16x16 = F.mse_loss(
recon_img_16x16,
F.interpolate(img_part, size = recon_img_16x16.shape[2:])
)
aux_loss = aux_loss + aux_loss_16x16
return out, out_32x32, aux_loss
class LightweightGAN(nn.Module):
def __init__(
self,
*,
latent_dim,
image_size,
optimizer = "adam",
fmap_max = 512,
fmap_inverse_coef = 12,
transparent = False,
greyscale = False,
disc_output_size = 5,
attn_res_layers = [],
freq_chan_attn = False,
ttur_mult = 1.,
lr = 2e-4,
rank = 0,
ddp = False
):
super().__init__()
self.latent_dim = latent_dim
self.image_size = image_size
G_kwargs = dict(
image_size = image_size,
latent_dim = latent_dim,
fmap_max = fmap_max,
fmap_inverse_coef = fmap_inverse_coef,
transparent = transparent,
greyscale = greyscale,
attn_res_layers = attn_res_layers,
freq_chan_attn = freq_chan_attn
)
self.G = Generator(**G_kwargs)
self.D = Discriminator(
image_size = image_size,
fmap_max = fmap_max,
fmap_inverse_coef = fmap_inverse_coef,
transparent = transparent,
greyscale = greyscale,
attn_res_layers = attn_res_layers,
disc_output_size = disc_output_size
)
self.ema_updater = EMA(0.995)
self.GE = Generator(**G_kwargs)
set_requires_grad(self.GE, False)
if optimizer == "adam":
self.G_opt = Adam(self.G.parameters(), lr = lr, betas=(0.5, 0.9))
self.D_opt = Adam(self.D.parameters(), lr = lr * ttur_mult, betas=(0.5, 0.9))
elif optimizer == "adabelief":
self.G_opt = AdaBelief(self.G.parameters(), lr = lr, betas=(0.5, 0.9))
self.D_opt = AdaBelief(self.D.parameters(), lr = lr * ttur_mult, betas=(0.5, 0.9))
else:
assert False, "No valid optimizer is given"
self.apply(self._init_weights)
self.reset_parameter_averaging()
self.cuda(rank)
self.D_aug = AugWrapper(self.D, image_size)
def _init_weights(self, m):
if type(m) in {nn.Conv2d, nn.Linear}:
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
def EMA(self):
def update_moving_average(ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = self.ema_updater.update_average(old_weight, up_weight)
for current_buffer, ma_buffer in zip(current_model.buffers(), ma_model.buffers()):
new_buffer_value = self.ema_updater.update_average(ma_buffer, current_buffer)
ma_buffer.copy_(new_buffer_value)
update_moving_average(self.GE, self.G)
def reset_parameter_averaging(self):
self.GE.load_state_dict(self.G.state_dict())
def forward(self, x):
raise NotImplemented
# trainer
class Trainer():
def __init__(
self,
name = 'default',
results_dir = 'results',
models_dir = 'models',
base_dir = './',
optimizer = 'adam',
num_workers = None,
latent_dim = 256,
image_size = 128,
num_image_tiles = 8,
fmap_max = 512,
transparent = False,
greyscale = False,
batch_size = 4,
gp_weight = 10,
gradient_accumulate_every = 1,
attn_res_layers = [],
freq_chan_attn = False,
disc_output_size = 5,
dual_contrast_loss = False,
antialias = False,
lr = 2e-4,
lr_mlp = 1.,
ttur_mult = 1.,
save_every = 1000,
evaluate_every = 1000,
aug_prob = None,
aug_types = ['translation', 'cutout'],
dataset_aug_prob = 0.,
calculate_fid_every = None,
calculate_fid_num_images = 12800,
clear_fid_cache = False,
is_ddp = False,
rank = 0,
world_size = 1,
log = False,
amp = False,
hparams = None,
use_aim = True,
aim_repo = None,
aim_run_hash = None,
load_strict = True,
*args,
**kwargs
):
self.GAN_params = [args, kwargs]
self.GAN = None
self.name = name
base_dir = Path(base_dir)
self.base_dir = base_dir
self.results_dir = base_dir / results_dir
self.models_dir = base_dir / models_dir
self.fid_dir = base_dir / 'fid' / name
self.config_path = self.models_dir / name / '.config.json'
assert is_power_of_two(image_size), 'image size must be a power of 2 (64, 128, 256, 512, 1024)'
assert all(map(is_power_of_two, attn_res_layers)), 'resolution layers of attention must all be powers of 2 (16, 32, 64, 128, 256, 512)'
assert not (dual_contrast_loss and disc_output_size > 1), 'discriminator output size cannot be greater than 1 if using dual contrastive loss'
self.image_size = image_size
self.num_image_tiles = num_image_tiles
self.latent_dim = latent_dim
self.fmap_max = fmap_max
self.transparent = transparent
self.greyscale = greyscale
assert (int(self.transparent) + int(self.greyscale)) < 2, 'you can only set either transparency or greyscale'
self.aug_prob = aug_prob
self.aug_types = aug_types
self.lr = lr
self.optimizer = optimizer
self.num_workers = num_workers
self.ttur_mult = ttur_mult
self.batch_size = batch_size
self.gradient_accumulate_every = gradient_accumulate_every
self.gp_weight = gp_weight
self.evaluate_every = evaluate_every
self.save_every = save_every
self.steps = 0
self.attn_res_layers = attn_res_layers
self.freq_chan_attn = freq_chan_attn
self.disc_output_size = disc_output_size
self.antialias = antialias
self.dual_contrast_loss = dual_contrast_loss
self.d_loss = 0
self.g_loss = 0
self.last_gp_loss = None
self.last_recon_loss = None
self.last_fid = None
self.init_folders()
self.loader = None
self.dataset_aug_prob = dataset_aug_prob
self.calculate_fid_every = calculate_fid_every
self.calculate_fid_num_images = calculate_fid_num_images
self.clear_fid_cache = clear_fid_cache
self.is_ddp = is_ddp
self.is_main = rank == 0
self.rank = rank
self.world_size = world_size
self.syncbatchnorm = is_ddp
self.load_strict = load_strict
self.amp = amp
self.G_scaler = GradScaler(enabled = self.amp)
self.D_scaler = GradScaler(enabled = self.amp)
self.run = None
self.hparams = hparams
if self.is_main and use_aim:
try:
import aim
self.aim = aim
except ImportError:
print('unable to import aim experiment tracker - please run `pip install aim` first')
self.run = self.aim.Run(run_hash=aim_run_hash, repo=aim_repo)
self.run['hparams'] = hparams
@property
def image_extension(self):
return 'jpg' if not self.transparent else 'png'
@property
def checkpoint_num(self):
return floor(self.steps // self.save_every)
def init_GAN(self):
args, kwargs = self.GAN_params
# set some global variables before instantiating GAN
global norm_class
global Blur
norm_class = nn.SyncBatchNorm if self.syncbatchnorm else nn.BatchNorm2d
Blur = nn.Identity if not self.antialias else Blur
# handle bugs when
# switching from multi-gpu back to single gpu
if self.syncbatchnorm and not self.is_ddp:
import torch.distributed as dist
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=0, world_size=1)
# instantiate GAN
self.GAN = LightweightGAN(
optimizer=self.optimizer,
lr = self.lr,
latent_dim = self.latent_dim,
attn_res_layers = self.attn_res_layers,
freq_chan_attn = self.freq_chan_attn,
image_size = self.image_size,
ttur_mult = self.ttur_mult,
fmap_max = self.fmap_max,
disc_output_size = self.disc_output_size,
transparent = self.transparent,
greyscale = self.greyscale,
rank = self.rank,
*args,
**kwargs
)
if self.is_ddp:
ddp_kwargs = {'device_ids': [self.rank], 'output_device': self.rank, 'find_unused_parameters': True}
self.G_ddp = DDP(self.GAN.G, **ddp_kwargs)
self.D_ddp = DDP(self.GAN.D, **ddp_kwargs)
self.D_aug_ddp = DDP(self.GAN.D_aug, **ddp_kwargs)
def write_config(self):
self.config_path.write_text(json.dumps(self.config()))
def load_config(self):
config = self.config() if not self.config_path.exists() else json.loads(self.config_path.read_text())
self.image_size = config['image_size']
self.transparent = config['transparent']
self.syncbatchnorm = config['syncbatchnorm']
self.disc_output_size = config['disc_output_size']
self.greyscale = config.pop('greyscale', False)
self.attn_res_layers = config.pop('attn_res_layers', [])
self.freq_chan_attn = config.pop('freq_chan_attn', False)
self.optimizer = config.pop('optimizer', 'adam')
self.fmap_max = config.pop('fmap_max', 512)
del self.GAN
self.init_GAN()
def config(self):
return {
'image_size': self.image_size,
'transparent': self.transparent,
'greyscale': self.greyscale,
'syncbatchnorm': self.syncbatchnorm,
'disc_output_size': self.disc_output_size,
'optimizer': self.optimizer,
'attn_res_layers': self.attn_res_layers,
'freq_chan_attn': self.freq_chan_attn
}
def set_data_src(self, folder):
num_workers = default(self.num_workers, math.ceil(NUM_CORES / self.world_size))
self.dataset = ImageDataset(folder, self.image_size, transparent = self.transparent, greyscale = self.greyscale, aug_prob = self.dataset_aug_prob)
sampler = DistributedSampler(self.dataset, rank=self.rank, num_replicas=self.world_size, shuffle=True) if self.is_ddp else None
dataloader = DataLoader(self.dataset, num_workers = num_workers, batch_size = math.ceil(self.batch_size / self.world_size), sampler = sampler, shuffle = not self.is_ddp, drop_last = True, pin_memory = True)
self.loader = cycle(dataloader)
# auto set augmentation prob for user if dataset is detected to be low
num_samples = len(self.dataset)
if not exists(self.aug_prob) and num_samples < 1e5:
self.aug_prob = min(0.5, (1e5 - num_samples) * 3e-6)
print(f'autosetting augmentation probability to {round(self.aug_prob * 100)}%')
def train(self):
assert exists(self.loader), 'You must first initialize the data source with `.set_data_src(<folder of images>)`'
device = torch.device(f'cuda:{self.rank}')
if not exists(self.GAN):
self.init_GAN()
self.GAN.train()
total_disc_loss = torch.zeros([], device=device)
total_gen_loss = torch.zeros([], device=device)
batch_size = math.ceil(self.batch_size / self.world_size)
image_size = self.GAN.image_size
latent_dim = self.GAN.latent_dim
aug_prob = default(self.aug_prob, 0)
aug_types = self.aug_types
aug_kwargs = {'prob': aug_prob, 'types': aug_types}
G = self.GAN.G if not self.is_ddp else self.G_ddp
D = self.GAN.D if not self.is_ddp else self.D_ddp
D_aug = self.GAN.D_aug if not self.is_ddp else self.D_aug_ddp
apply_gradient_penalty = self.steps % 4 == 0
# amp related contexts and functions
amp_context = autocast if self.amp else null_context
# discriminator loss fn
if self.dual_contrast_loss:
D_loss_fn = dual_contrastive_loss
else:
D_loss_fn = hinge_loss
# train discriminator
self.GAN.D_opt.zero_grad()
for i in gradient_accumulate_contexts(self.gradient_accumulate_every, self.is_ddp, ddps=[D_aug, G]):
latents = torch.randn(batch_size, latent_dim).cuda(self.rank)
image_batch = next(self.loader).cuda(self.rank)
image_batch.requires_grad_()
with amp_context():
with torch.no_grad():
generated_images = G(latents)
fake_output, fake_output_32x32, _ = D_aug(generated_images, detach = True, **aug_kwargs)
real_output, real_output_32x32, real_aux_loss = D_aug(image_batch, calc_aux_loss = True, **aug_kwargs)
real_output_loss = real_output
fake_output_loss = fake_output
divergence = D_loss_fn(real_output_loss, fake_output_loss)
divergence_32x32 = D_loss_fn(real_output_32x32, fake_output_32x32)
disc_loss = divergence + divergence_32x32
aux_loss = real_aux_loss
disc_loss = disc_loss + aux_loss
if apply_gradient_penalty:
outputs = [real_output, real_output_32x32]
outputs = list(map(self.D_scaler.scale, outputs)) if self.amp else outputs
scaled_gradients = torch_grad(outputs=outputs, inputs=image_batch,
grad_outputs=list(map(lambda t: torch.ones(t.size(), device = image_batch.device), outputs)),
create_graph=True, retain_graph=True, only_inputs=True)[0]
inv_scale = safe_div(1., self.D_scaler.get_scale()) if self.amp else 1.
if inv_scale != float('inf'):
gradients = scaled_gradients * inv_scale
with amp_context():
gradients = gradients.reshape(batch_size, -1)
gp = self.gp_weight * ((gradients.norm(2, dim=1) - 1) ** 2).mean()
if not torch.isnan(gp):
disc_loss = disc_loss + gp
self.last_gp_loss = gp.clone().detach().item()
with amp_context():
disc_loss = disc_loss / self.gradient_accumulate_every
disc_loss.register_hook(raise_if_nan)
self.D_scaler.scale(disc_loss).backward()
total_disc_loss += divergence
self.last_recon_loss = aux_loss.item()
self.d_loss = float(total_disc_loss.item() / self.gradient_accumulate_every)
self.D_scaler.step(self.GAN.D_opt)
self.D_scaler.update()
# generator loss fn
if self.dual_contrast_loss:
G_loss_fn = dual_contrastive_loss
G_requires_calc_real = True
else:
G_loss_fn = gen_hinge_loss
G_requires_calc_real = False
# train generator
self.GAN.G_opt.zero_grad()
for i in gradient_accumulate_contexts(self.gradient_accumulate_every, self.is_ddp, ddps=[G, D_aug]):
latents = torch.randn(batch_size, latent_dim).cuda(self.rank)
if G_requires_calc_real:
image_batch = next(self.loader).cuda(self.rank)
image_batch.requires_grad_()
with amp_context():
generated_images = G(latents)
fake_output, fake_output_32x32, _ = D_aug(generated_images, **aug_kwargs)
real_output, real_output_32x32, _ = D_aug(image_batch, **aug_kwargs) if G_requires_calc_real else (None, None, None)
loss = G_loss_fn(fake_output, real_output)
loss_32x32 = G_loss_fn(fake_output_32x32, real_output_32x32)
gen_loss = loss + loss_32x32
gen_loss = gen_loss / self.gradient_accumulate_every
gen_loss.register_hook(raise_if_nan)
self.G_scaler.scale(gen_loss).backward()
total_gen_loss += loss
self.g_loss = float(total_gen_loss.item() / self.gradient_accumulate_every)
self.G_scaler.step(self.GAN.G_opt)
self.G_scaler.update()
# calculate moving averages
if self.is_main and self.steps % 10 == 0 and self.steps > 20000:
self.GAN.EMA()
if self.is_main and self.steps <= 25000 and self.steps % 1000 == 2:
self.GAN.reset_parameter_averaging()
# save from NaN errors
if any(torch.isnan(l) for l in (total_gen_loss, total_disc_loss)):
print(f'NaN detected for generator or discriminator. Loading from checkpoint #{self.checkpoint_num}')
self.load(self.checkpoint_num)
raise NanException
del total_disc_loss
del total_gen_loss
# periodically save results
if self.is_main:
if self.steps % self.save_every == 0:
self.save(self.checkpoint_num)
if self.steps % self.evaluate_every == 0 or (self.steps % 100 == 0 and self.steps < 20000):
self.evaluate(floor(self.steps / self.evaluate_every), num_image_tiles = self.num_image_tiles)
if exists(self.calculate_fid_every) and self.steps % self.calculate_fid_every == 0 and self.steps != 0:
num_batches = math.ceil(self.calculate_fid_num_images / self.batch_size)
fid = self.calculate_fid(num_batches)
self.last_fid = fid
with open(str(self.results_dir / self.name / f'fid_scores.txt'), 'a') as f:
f.write(f'{self.steps},{fid}\n')
self.steps += 1
@torch.no_grad()
def evaluate(self, num = 0, num_image_tiles = 4):
self.GAN.eval()
ext = self.image_extension
num_rows = num_image_tiles
latent_dim = self.GAN.latent_dim
image_size = self.GAN.image_size
# latents and noise
def image_to_pil(image):
ndarr = image.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
return im
latents = det_randn((num_rows ** 2, latent_dim)).cuda(self.rank)
interpolate_latents = interpolate_between(latents[:num_rows], latents[-num_rows:],
num_samples=num_rows,
dim=0).flatten(end_dim=1)
generate_interpolations = self.generate_(self.GAN.G, interpolate_latents)
if self.run is not None:
grouped = generate_interpolations.view(num_rows, num_rows, *generate_interpolations.shape[1:])
for idx, images in enumerate(grouped):
alpha = idx / (len(grouped) - 1)
aim_images = []
for image in images:
im = image_to_pil(image)
aim_images.append(self.aim.Image(im, caption=f'#{idx}'))
self.run.track(value=aim_images, name='generated',
step=self.steps,
context={'interpolated': True,
'alpha': alpha})
torchvision.utils.save_image(generate_interpolations, str(self.results_dir / self.name / f'{str(num)}-interp.{ext}'), nrow=num_rows)
# regular
generated_images = self.generate_(self.GAN.G, latents)
if self.run is not None:
aim_images = []
for idx, image in enumerate(generated_images):
im = image_to_pil(image)
aim_images.append(self.aim.Image(im, caption=f'#{idx}'))
self.run.track(value=aim_images, name='generated',
step=self.steps,
context={'ema': False})
torchvision.utils.save_image(generated_images, str(self.results_dir / self.name / f'{str(num)}.{ext}'), nrow=num_rows)
# moving averages
generated_images = self.generate_(self.GAN.GE, latents)
if self.run is not None:
aim_images = []
for idx, image in enumerate(generated_images):
im = image_to_pil(image)
aim_images.append(self.aim.Image(im, caption=f'EMA #{idx}'))
self.run.track(value=aim_images, name='generated',
step=self.steps,
context={'ema': True})
torchvision.utils.save_image(generated_images, str(self.results_dir / self.name / f'{str(num)}-ema.{ext}'), nrow=num_rows)
@torch.no_grad()
def generate(self, num=0, num_image_tiles=4, checkpoint=None, types=['default', 'ema']):
self.GAN.eval()
latent_dim = self.GAN.latent_dim
dir_name = self.name + str('-generated-') + str(checkpoint)
dir_full = Path().absolute() / self.results_dir / dir_name
ext = self.image_extension
if not dir_full.exists():
os.mkdir(dir_full)
# regular
if 'default' in types:
for i in tqdm(range(num_image_tiles), desc='Saving generated default images'):
latents = torch.randn((1, latent_dim)).cuda(self.rank)
generated_image = self.generate_(self.GAN.G, latents)
path = str(self.results_dir / dir_name / f'{str(num)}-{str(i)}.{ext}')
torchvision.utils.save_image(generated_image[0], path, nrow=1)
# moving averages
if 'ema' in types:
for i in tqdm(range(num_image_tiles), desc='Saving generated EMA images'):
latents = torch.randn((1, latent_dim)).cuda(self.rank)
generated_image = self.generate_(self.GAN.GE, latents)
path = str(self.results_dir / dir_name / f'{str(num)}-{str(i)}-ema.{ext}')
torchvision.utils.save_image(generated_image[0], path, nrow=1)
return dir_full
@torch.no_grad()
def show_progress(self, num_images=4, types=['default', 'ema']):
checkpoints = self.get_checkpoints()
assert exists(checkpoints), 'cannot find any checkpoints to create a training progress video for'
dir_name = self.name + str('-progress')
dir_full = Path().absolute() / self.results_dir / dir_name
ext = self.image_extension
latents = None
zfill_length = math.ceil(math.log10(len(checkpoints)))
if not dir_full.exists():
os.mkdir(dir_full)
for checkpoint in tqdm(checkpoints, desc='Generating progress images'):
self.load(checkpoint, print_version=False)
self.GAN.eval()
if checkpoint == 0:
latents = torch.randn((num_images, self.GAN.latent_dim)).cuda(self.rank)
# regular
if 'default' in types:
generated_image = self.generate_(self.GAN.G, latents)
path = str(self.results_dir / dir_name / f'{str(checkpoint).zfill(zfill_length)}.{ext}')
torchvision.utils.save_image(generated_image, path, nrow=num_images)
# moving averages
if 'ema' in types:
generated_image = self.generate_(self.GAN.GE, latents)
path = str(self.results_dir / dir_name / f'{str(checkpoint).zfill(zfill_length)}-ema.{ext}')
torchvision.utils.save_image(generated_image, path, nrow=num_images)
@torch.no_grad()
def calculate_fid(self, num_batches):
from pytorch_fid import fid_score
torch.cuda.empty_cache()
real_path = self.fid_dir / 'real'
fake_path = self.fid_dir / 'fake'
# remove any existing files used for fid calculation and recreate directories
if not real_path.exists() or self.clear_fid_cache:
rmtree(real_path, ignore_errors=True)
os.makedirs(real_path)
for batch_num in tqdm(range(num_batches), desc='calculating FID - saving reals'):
real_batch = next(self.loader)
for k, image in enumerate(real_batch.unbind(0)):
ind = k + batch_num * self.batch_size
torchvision.utils.save_image(image, real_path / f'{ind}.png')
# generate a bunch of fake images in results / name / fid_fake
rmtree(fake_path, ignore_errors=True)
os.makedirs(fake_path)
self.GAN.eval()
ext = self.image_extension
latent_dim = self.GAN.latent_dim
image_size = self.GAN.image_size
for batch_num in tqdm(range(num_batches), desc='calculating FID - saving generated'):
# latents and noise
latents = torch.randn(self.batch_size, latent_dim).cuda(self.rank)
# moving averages
generated_images = self.generate_(self.GAN.GE, latents)
for j, image in enumerate(generated_images.unbind(0)):
ind = j + batch_num * self.batch_size
torchvision.utils.save_image(image, str(fake_path / f'{str(ind)}-ema.{ext}'))
return fid_score.calculate_fid_given_paths([str(real_path), str(fake_path)], 256, latents.device, 2048)
@torch.no_grad()
def generate_(self, G, style, num_image_tiles = 8):
generated_images = evaluate_in_chunks(self.batch_size, G, style)
return generated_images.clamp_(0., 1.)
@torch.no_grad()
def generate_interpolation(self, num = 0, num_image_tiles = 8, num_steps = 100, save_frames = False):
self.GAN.eval()
ext = self.image_extension
num_rows = num_image_tiles
latent_dim = self.GAN.latent_dim
image_size = self.GAN.image_size
# latents and noise
latents_low = torch.randn(num_rows ** 2, latent_dim).cuda(self.rank)
latents_high = torch.randn(num_rows ** 2, latent_dim).cuda(self.rank)
ratios = torch.linspace(0., 8., num_steps)
frames = []
for ratio in tqdm(ratios):
interp_latents = slerp(ratio, latents_low, latents_high)
generated_images = self.generate_(self.GAN.GE, interp_latents)
images_grid = torchvision.utils.make_grid(generated_images, nrow = num_rows)
pil_image = transforms.ToPILImage()(images_grid.cpu())
if self.transparent:
background = Image.new('RGBA', pil_image.size, (255, 255, 255))
pil_image = Image.alpha_composite(background, pil_image)
frames.append(pil_image)
frames[0].save(str(self.results_dir / self.name / f'{str(num)}.gif'), save_all=True, append_images=frames[1:], duration=80, loop=0, optimize=True)
if save_frames:
folder_path = (self.results_dir / self.name / f'{str(num)}')
folder_path.mkdir(parents=True, exist_ok=True)
for ind, frame in enumerate(frames):
frame.save(str(folder_path / f'{str(ind)}.{ext}'))
def print_log(self):
data = [
('G', self.g_loss),
('D', self.d_loss),
('GP', self.last_gp_loss),
('SS', self.last_recon_loss),
('FID', self.last_fid)
]
data = [d for d in data if exists(d[1])]
log = ' | '.join(map(lambda n: f'{n[0]}: {n[1]:.2f}', data))
print(log)
if self.run is not None:
for key, value in data:
self.run.track(value, key, step=self.steps)
return data
def model_name(self, num):
return str(self.models_dir / self.name / f'model_{num}.pt')
def init_folders(self):
(self.results_dir / self.name).mkdir(parents=True, exist_ok=True)
(self.models_dir / self.name).mkdir(parents=True, exist_ok=True)
def clear(self):
rmtree(str(self.models_dir / self.name), True)
rmtree(str(self.results_dir / self.name), True)
rmtree(str(self.fid_dir), True)
rmtree(str(self.config_path), True)
self.init_folders()
def save(self, num):
save_data = {
'GAN': self.GAN.state_dict(),
'version': __version__,
'G_scaler': self.G_scaler.state_dict(),
'D_scaler': self.D_scaler.state_dict()
}
torch.save(save_data, self.model_name(num))
self.write_config()
def load(self, num=-1, print_version=True):
self.load_config()
name = num
if num == -1:
checkpoints = self.get_checkpoints()
if not exists(checkpoints):
return
name = checkpoints[-1]
print(f'continuing from previous epoch - {name}')
self.steps = name * self.save_every
load_data = torch.load(self.model_name(name))
if print_version and 'version' in load_data and self.is_main:
print(f"loading from version {load_data['version']}")
try:
self.GAN.load_state_dict(load_data['GAN'], strict = self.load_strict)
except Exception as e:
saved_version = load_data['version']
print('unable to load save model. please try downgrading the package to the version specified by the saved model (to do so, just run `pip install lightweight-gan=={saved_version}`')
raise e
if 'G_scaler' in load_data:
self.G_scaler.load_state_dict(load_data['G_scaler'])
if 'D_scaler' in load_data:
self.D_scaler.load_state_dict(load_data['D_scaler'])
def get_checkpoints(self):
file_paths = [p for p in Path(self.models_dir / self.name).glob('model_*.pt')]
saved_nums = sorted(map(lambda x: int(x.stem.split('_')[1]), file_paths))
if len(saved_nums) == 0:
return None
return saved_nums
| lightweight-gan-main | lightweight_gan/lightweight_gan.py |
from setuptools import setup, find_packages
setup(
name = 'routing_transformer',
packages = find_packages(exclude=['examples']),
version = '1.6.1',
license='MIT',
description = 'Routing Transformer (Pytorch)',
author = 'Phil Wang, Aran Komatsuzaki',
author_email = '[email protected], [email protected]',
url = 'https://github.com/lucidrains/routing-transformer',
keywords = ['transformers', 'attention', 'artificial intelligence'],
install_requires=[
'einops',
'local-attention>=1.4.0',
'mixture-of-experts>=0.2.0',
'product-key-memory',
'torch'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
) | routing-transformer-master | setup.py |
import deepspeed
from routing_transformer import RoutingTransformerLM
from routing_transformer.autoregressive_wrapper import AutoregressiveWrapper
import argparse
import random
import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
def add_argument():
parser=argparse.ArgumentParser(description='enwik8')
parser.add_argument('--with_cuda', default=False, action='store_true',
help='use CPU in case there\'s no GPU support')
parser.add_argument('--use_ema', default=False, action='store_true',
help='whether use exponential moving average')
parser.add_argument('-b', '--batch_size', default=32, type=int,
help='mini-batch size (default: 32)')
parser.add_argument('-e', '--epochs', default=30, type=int,
help='number of total epochs (default: 30)')
parser.add_argument('--local_rank', type=int, default=-1,
help='local rank passed from distributed launcher')
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
return args
# constants
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 1024
SEQ_LEN = 4096
# helpers
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))
# instantiate model
model = RoutingTransformerLM(
num_tokens = 256,
dim = 512,
depth = 8,
max_seq_len = SEQ_LEN,
heads = 8,
causal = True,
window_size = 128,
reversible = True,
ff_chunks = 2,
attn_dropout = 0.1,
rel_pos_emb = False,
n_local_attn_heads = (8, 8, 8, 8, 4, 4, 2, 2)
)
model = AutoregressiveWrapper(model)
model.cuda()
# prepare enwik8 data
with gzip.open('./data/enwik8.gz') as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq, torch.ones_like(full_seq).bool()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
# setup deepspeed
cmd_args = add_argument()
model_engine, optimizer, trainloader, _ = deepspeed.initialize(args=cmd_args, model=model, model_parameters=model.parameters(), training_data=train_dataset)
# training
for i, (data, mask) in enumerate(trainloader):
model_engine.train()
data = data.to(model_engine.local_rank)
loss = model_engine(data, return_loss = True, randomly_truncate_sequence = True)
model_engine.backward(loss)
model_engine.step()
print(loss.item())
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
inp, _ = random.choice(val_dataset)
loss = model(inp[None, :].cuda(), return_loss = True)
print(f'validation loss: {loss.item()}')
if i != 0 and model_engine.local_rank == 0 and i % GENERATE_EVERY == 0:
model.eval()
inp, _ = random.choice(val_dataset)
print(inp.shape, inp)
prime = decode_tokens(inp)
print(f'%s \n\n %s', (prime, '*' * 100))
sample = model.generate(inp.cuda(), GENERATE_LENGTH)
output_str = decode_tokens(sample)
print(output_str)
| routing-transformer-master | examples/enwik8_deepspeed/train.py |
import torch
import numpy as np
import math
import time
import random
from torch.optim import Adam
from routing_transformer.routing_transformer import RoutingTransformerLM
from routing_transformer.autoregressive_wrapper import AutoregressiveWrapper
s = RoutingTransformerLM(
num_tokens = 256 + 4,
dim = 1024,
depth = 2,
heads = 8,
max_seq_len = 256,
causal = True,
window_size = 128
).cuda()
s = AutoregressiveWrapper(s, ignore_index = 0, pad_value = 0)
opt = Adam(s.parameters(), lr=1e-4)
N_BATCH = 32
SRC_SEQ_LEN = 128
TGT_SEQ_LEN = 128
bos = 1*torch.ones(N_BATCH, 1).long()
eos = 2*torch.ones(N_BATCH, 1).long()
pos = 3*torch.ones(N_BATCH, 1).long()
for i in range(10000):
train_seq_in = torch.randint(4, 6, (N_BATCH, SRC_SEQ_LEN - 2)).long()
train_seq_out = train_seq_in + 1
train_seq = torch.cat([bos, train_seq_in, pos, pos, pos, train_seq_out, eos], dim=1).cuda()
loss = s(train_seq, return_loss = True)
loss.backward()
opt.step()
opt.zero_grad()
print(i, loss.item()) | routing-transformer-master | examples/toy_tasks/increment.py |
import tqdm
import torch
import torch.optim as optim
from routing_transformer import RoutingTransformerEncDec
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 32
LEARNING_RATE = 1e-4
GENERATE_EVERY = 100
NUM_TOKENS = 256 + 2
ENC_SEQ_LEN = 128
DEC_SEQ_LEN = 256
# helpers
def cycle():
while True:
prefix = torch.ones((BATCH_SIZE, 1)).long().cuda()
src = torch.randint(2, NUM_TOKENS, (BATCH_SIZE, ENC_SEQ_LEN)).long().cuda()
tgt = torch.cat((prefix, src, src), 1)
src_mask = torch.ones(BATCH_SIZE, ENC_SEQ_LEN).bool().cuda()
tgt_mask = torch.ones(BATCH_SIZE, tgt.shape[1]).bool().cuda()
yield (src, tgt, src_mask, tgt_mask)
# instantiate model
model = RoutingTransformerEncDec(
dim=512,
enc_num_tokens=NUM_TOKENS,
enc_depth=3,
enc_heads=8,
enc_max_seq_len=ENC_SEQ_LEN,
enc_window_size=32,
dec_num_tokens = NUM_TOKENS,
dec_depth = 3,
dec_heads = 8,
dec_max_seq_len=DEC_SEQ_LEN,
dec_window_size=32,
).cuda()
# optimizer
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()
src, tgt, src_mask, tgt_mask = next(cycle())
loss, _ = model(src, tgt, enc_input_mask=src_mask, dec_input_mask=tgt_mask, return_loss = True, randomly_truncate_sequence = True)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i != 0 and i % GENERATE_EVERY == 0:
model.eval()
src, _, src_mask, _ = next(cycle())
src, src_mask = src[0:1], src_mask[0:1]
start_tokens = (torch.ones((1, 1)) * 1).long().cuda()
sample = model.generate(src, start_tokens, ENC_SEQ_LEN, enc_input_mask=src_mask)
incorrects = (src != sample).abs().sum()
print(f"input: ", src)
print(f"predicted output: ", sample)
print(f"incorrects: {incorrects}")
| routing-transformer-master | examples/toy_tasks/enc_dec_copy_task.py |
from routing_transformer import RoutingTransformerLM
from routing_transformer.autoregressive_wrapper import AutoregressiveWrapper
import random
import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 1e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 4096
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))
# instantiate model
model = RoutingTransformerLM(
num_tokens = 256,
dim = 512,
depth = 6,
max_seq_len = SEQ_LEN,
heads = 8,
causal = True,
window_size = 128,
n_local_attn_heads = (8, 8, 8, 4, 4, 4)
)
model = AutoregressiveWrapper(model)
model.cuda()
# prepare enwik8 data
with gzip.open('./data/enwik8.gz') as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE))
# optimizer
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader), return_loss = True)
loss.backward()
print(f'training loss: {loss.item()}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader), return_loss = True)
print(f'validation loss: {loss.item()}')
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f'%s \n\n %s', (prime, '*' * 100))
sample = model.generate(inp, GENERATE_LENGTH)
output_str = decode_tokens(sample)
print(output_str)
| routing-transformer-master | examples/enwik8_simple/train.py |
import math
import torch
from torch import nn
from routing_transformer.routing_transformer import RoutingTransformer
import torch.nn.functional as F
def find_module(nn_module, type):
for module in nn_module.modules():
if isinstance(module, type):
return module
return None
def pad_to_multiple(tensor, multiple, dim=-1, value=0):
seqlen = tensor.shape[dim]
m = seqlen / multiple
if m.is_integer():
return tensor
pre_pad_offset = (0,) * (-1 - dim) * 2
padding = math.ceil(m) * multiple - seqlen
padded_tensor = F.pad(tensor, (*pre_pad_offset, *(0, padding)), value=value)
return padded_tensor
class Autopadder(nn.Module):
def __init__(self, net):
super().__init__()
transformer = find_module(net, RoutingTransformer)
self.net = net
self.pad_multiple = transformer.pad_to_multiple
def forward(self, x, **kwargs):
if self.pad_multiple <= 0:
return self.net(x, **kwargs)
b, t, device = *x.shape, x.device
input_mask = kwargs.get('input_mask')
if input_mask is None:
input_mask = torch.full((b, t), True, device=device, dtype=torch.bool)
x = pad_to_multiple(x, self.pad_multiple, dim=1)
new_mask = pad_to_multiple(input_mask, self.pad_multiple, dim=1, value=False)
kwargs.update(input_mask=new_mask)
out, loss = self.net(x, **kwargs)
return out[:, 0:t], loss
| routing-transformer-master | routing_transformer/autopadder.py |
from functools import partial
import torch
import random
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from routing_transformer.routing_transformer import RoutingTransformerLM
from routing_transformer.autopadder import Autopadder
def default(value, default):
return value if value is not None else default
def top_p(logits, thres = 0.9):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > 1.0 - thres
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_logits[sorted_indices_to_remove] = float('-inf')
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
def pad_sequence_right(seqs, value):
m = max([len(s) for s in seqs])
return torch.stack([F.pad(s, (0, m - len(s))) for s in seqs])
def truncate_sequence(inputs, mask = None, pad_value=0):
b, t, device, dtype = *inputs.shape, inputs.device, inputs.dtype
mask = default(mask, torch.ones_like(inputs).bool())
rand_length = random.randint(2, t)
return inputs[:, :rand_length], mask[:, :rand_length]
class AutoregressiveWrapper(nn.Module):
def __init__(self, net, ignore_index = None, pad_value = 0):
super().__init__()
assert isinstance(net, RoutingTransformerLM), 'generative trainer wrapper can only accept RoutingTransformerLM class'
self.pad_value = pad_value
self.ignore_index = default(ignore_index, pad_value)
self.net = Autopadder(net)
self.max_seq_len = net.max_seq_len
self.base_net = net
def update_kmeans(self):
self.base_net.update_kmeans()
@torch.no_grad()
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs):
was_training = self.net.training
num_dims = len(start_tokens.shape)
if num_dims == 1:
start_tokens = start_tokens[None, :]
b, t = start_tokens.shape
self.net.eval()
out = start_tokens
input_mask = kwargs.pop('input_mask', None)
if input_mask is None:
input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
input_mask = input_mask[:, -self.max_seq_len:]
logits, _ = self.net(x, input_mask=input_mask, **kwargs)
logits = logits[:, -1, :]
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
input_mask = F.pad(input_mask, (1, 0), value=True)
if eos_token is not None and (sample == eos_token).all():
break
out = out[:, t:]
if num_dims == 1:
out = out.squeeze(0)
self.net.train(was_training)
return out
def forward(self, x, return_loss = False, randomly_truncate_sequence = False, **kwargs):
pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value)
if not return_loss:
if not isinstance(x, torch.Tensor):
x = pad(x)
return self.net(x, **kwargs)
m = kwargs.get('input_mask', None)
if randomly_truncate_sequence:
x, m = truncate_sequence(x, m, pad_value = self.pad_value)
if isinstance(x, torch.Tensor):
xi, xo = x[:, :-1], x[:, 1:]
else:
xi = pad(list(map(lambda t: t[:-1], x)))
xo = pad(list(map(lambda t: t[1:], x)))
if m is not None:
assert m.shape == x.shape[0:2], 'input mask must be the same shape as the input of the auto-regressive wrapper to automatically handle'
kwargs['input_mask'] = m[:, :-1]
out, aux_loss = self.net(xi, **kwargs)
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index)
loss = loss + aux_loss
return loss
| routing-transformer-master | routing_transformer/autoregressive_wrapper.py |
import torch
import torch.nn as nn
from operator import itemgetter
from torch.autograd.function import Function
from torch.utils.checkpoint import get_device_states, set_device_states
# for routing arguments into the functions of the reversible layer
def route_args(router, args, depth):
routed_args = [(dict(), dict()) for _ in range(depth)]
matched_keys = [key for key in args.keys() if key in router]
for key in matched_keys:
val = args[key]
for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])):
new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes)
routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args})
return routed_args
def layer_drop(layers, prob):
to_drop = torch.empty(len(layers)).uniform_(0, 1) < prob
blocks = [block for block, drop in zip(layers, to_drop) if not drop]
blocks = layers[:1] if len(blocks) == 0 else blocks
return blocks
def cast_return(ret, requires_grad = True):
if type(ret) is not tuple:
loss = torch.tensor(0., device=ret.device, dtype=ret.dtype, requires_grad=requires_grad)
return (ret, loss)
return ret
# following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html
class Deterministic(nn.Module):
def __init__(self, net):
super().__init__()
self.net = net
self.cpu_state = None
self.cuda_in_fwd = None
self.gpu_devices = None
self.gpu_states = None
def record_rng(self, *args):
self.cpu_state = torch.get_rng_state()
if torch.cuda._initialized:
self.cuda_in_fwd = True
self.gpu_devices, self.gpu_states = get_device_states(*args)
def forward(self, *args, record_rng = False, set_rng = False, **kwargs):
if record_rng:
self.record_rng(*args)
if not set_rng:
return self.net(*args, **kwargs)
rng_devices = []
if self.cuda_in_fwd:
rng_devices = self.gpu_devices
with torch.random.fork_rng(devices=rng_devices, enabled=True):
torch.set_rng_state(self.cpu_state)
if self.cuda_in_fwd:
set_device_states(self.gpu_devices, self.gpu_states)
return self.net(*args, **kwargs)
# heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
# once multi-GPU is confirmed working, refactor and send PR back to source
class ReversibleBlock(nn.Module):
def __init__(self, f, g):
super().__init__()
self.f = Deterministic(f)
self.g = Deterministic(g)
def forward(self, x, f_args = {}, g_args = {}):
x1, x2 = torch.chunk(x, 2, dim=2)
y1, y2 = None, None
f_args['_reverse'] = g_args['_reverse'] = False
with torch.no_grad():
f_out, f_loss = cast_return(self.f(x2, record_rng=self.training, **f_args), requires_grad = False)
y1 = x1 + f_out
g_out, g_loss = cast_return(self.g(y1, record_rng=self.training, **g_args), requires_grad = False)
y2 = x2 + g_out
return torch.cat([y1, y2], dim=2), f_loss, g_loss
def backward_pass(self, y, dy, dl_f, dl_g, f_args = {}, g_args = {}):
y1, y2 = torch.chunk(y, 2, dim=2)
del y
dy1, dy2 = torch.chunk(dy, 2, dim=2)
del dy
f_args['_reverse'] = g_args['_reverse'] = True
with torch.enable_grad():
y1.requires_grad = True
gy1, g_loss = cast_return(self.g(y1, set_rng=True, **g_args))
torch.autograd.backward((gy1, g_loss), (dy2, dl_g))
with torch.no_grad():
x2 = y2 - gy1
del y2, gy1
dx1 = dy1 + y1.grad
del dy1
y1.grad = None
with torch.enable_grad():
x2.requires_grad = True
fx2, f_loss = cast_return(self.f(x2, set_rng=True, **f_args))
torch.autograd.backward((fx2, f_loss), (dx1, dl_f), retain_graph=True)
with torch.no_grad():
x1 = y1 - fx2
del y1, fx2
dx2 = dy2 + x2.grad
del dy2
x2.grad = None
x = torch.cat([x1, x2.detach()], dim=2)
dx = torch.cat([dx1, dx2], dim=2)
return x, dx
class _ReversibleFunction(Function):
@staticmethod
def forward(ctx, x, blocks, args):
ctx.args = args
f_aux_loss = []
g_aux_loss = []
for block, kwarg in zip(blocks, args):
x, f_loss, g_loss = block(x, **kwarg)
f_aux_loss.append(f_loss)
g_aux_loss.append(g_loss)
ctx.y = x.detach()
ctx.blocks = blocks
return x, torch.stack(f_aux_loss), torch.stack(g_aux_loss)
@staticmethod
def backward(ctx, dy, dl_f, dl_g):
y = ctx.y
args = ctx.args
for block, kwargs, ind in zip(ctx.blocks[::-1], args[::-1], range(len(ctx.blocks))[::-1]):
y, dy = block.backward_pass(y, dy, dl_f[ind], dl_g[ind], **kwargs)
return dy, None, None
class SequentialSequence(nn.Module):
def __init__(self, layers, args_route = {}, layer_dropout = 0.):
super().__init__()
assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers'
self.layers = layers
self.args_route = args_route
self.layer_dropout = layer_dropout
def forward(self, x, **kwargs):
args = route_args(self.args_route, kwargs, len(self.layers))
layers_and_args = list(zip(self.layers, args))
if self.training and self.layer_dropout > 0:
layers_and_args = layer_drop(layers_and_args, self.layer_dropout)
aux_loss = torch.zeros(1, device=x.device, dtype=x.dtype)
for (f, g), (f_args, g_args) in layers_and_args:
res, loss = cast_return(f(x, **f_args))
aux_loss += loss
x = x + res
res, loss = cast_return(g(x, **g_args))
aux_loss += loss
x = x + res
return x, aux_loss
class ReversibleSequence(nn.Module):
def __init__(self, blocks, args_route = {}, layer_dropout = 0.):
super().__init__()
self.args_route = args_route
self.layer_dropout = layer_dropout
self.blocks = nn.ModuleList([ReversibleBlock(f, g) for f, g in blocks])
def forward(self, x, **kwargs):
x = torch.cat([x, x], dim=-1)
blocks = self.blocks
args = route_args(self.args_route, kwargs, len(blocks))
args = list(map(lambda x: {'f_args': x[0], 'g_args': x[1]}, args))
layers_and_args = list(zip(blocks, args))
if self.training and self.layer_dropout > 0:
layers_and_args = layer_drop(layers_and_args, self.layer_dropout)
blocks, args = map(lambda ind: list(map(itemgetter(ind), layers_and_args)), (0, 1))
out, f_loss, g_loss = _ReversibleFunction.apply(x, blocks, args)
out = torch.stack(out.chunk(2, dim=-1)).mean(dim=0)
aux_loss = f_loss.sum() + g_loss.sum()
return out, aux_loss
| routing-transformer-master | routing_transformer/reversible.py |
import re
from inspect import isfunction
import torch
from torch import nn
from routing_transformer.routing_transformer import RoutingTransformerLM, update_kmeans_on_backwards
from routing_transformer.autoregressive_wrapper import AutoregressiveWrapper
ENC_PREFIX = 'enc_'
DEC_PREFIX = 'dec_'
def default(x, d):
if x is None:
return d if not isfunction(d) else d()
return x
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return bool(re.match(f'^{prefix}', str))
def group_by_key_prefix(prefix, d):
return group_dict_by_key(lambda x: string_begins_with(prefix, x), d)
def group_by_key_prefix_and_remove_prefix(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: string_begins_with(prefix, x), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
def extract_enc_dec_kwargs(kwargs):
enc_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(ENC_PREFIX, kwargs)
dec_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(DEC_PREFIX, kwargs)
return enc_kwargs, dec_kwargs, kwargs
def extract_and_set_enc_dec_kwargs(kwargs):
enc_kwargs, dec_kwargs, kwargs = extract_enc_dec_kwargs(kwargs)
if 'input_mask' in enc_kwargs:
dec_kwargs.setdefault('context_mask', enc_kwargs['input_mask'])
return enc_kwargs, dec_kwargs, kwargs
class RoutingTransformerEncDec(nn.Module):
def __init__(self, dim, ignore_index = None, pad_value = 0, **kwargs):
super().__init__()
ignore_index = default(ignore_index, pad_value)
enc_kwargs, dec_kwargs, _ = extract_enc_dec_kwargs(kwargs)
assert 'return_embedding' not in enc_kwargs, 'you cannot manually set the return embeddings flag for the encoder'
assert 'dim' not in dec_kwargs and 'dim' not in enc_kwargs, 'you must set the dim for both encoder and decoder'
enc_kwargs['dim'] = dec_kwargs['dim'] = dim
enc_kwargs['return_embeddings'] = True
dec_kwargs['causal'] = True
dec_kwargs['receives_context'] = True
enc_kwargs['_register_kmeans_update'] = dec_kwargs['_register_kmeans_update'] = False
enc_kwargs.setdefault('window_size', 256)
dec_kwargs.setdefault('window_size', 256)
enc = RoutingTransformerLM(**enc_kwargs)
dec = RoutingTransformerLM(**dec_kwargs)
self.enc = enc
self.dec = AutoregressiveWrapper(dec, ignore_index = ignore_index, pad_value = pad_value)
# user will have to manually call backwards on encoder auxiliary loss if the decoder reversibility is turned on
# should place a bug bounty on this
self.dec_reversible = dec_kwargs.pop('reversible', False)
# display a warning message
if self.dec_reversible:
print('Warning! Due to an issue with reversible nets and encoder auxiliary losses, you must explicitly call backwards on the encoder auxiliary loss, which is supplied as the second element of the returned tuple on forward')
self._handle = None
self.register_kmeans_update()
def cancel_kmeans_update(self):
if self._handle is None:
return
self._handle.remove()
self._handle = None
def register_kmeans_update(self):
self.cancel_kmeans_update()
return update_kmeans_on_backwards(self)
@torch.no_grad()
def generate(self, seq_in, seq_out_start, max_seq_len = None, **kwargs):
max_seq_len = default(max_seq_len, self.dec.max_seq_len)
enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
context, _ = self.enc(seq_in, **enc_kwargs)
return self.dec.generate(seq_out_start, max_seq_len, context = context, **{**dec_kwargs, **kwargs})
def forward(self, seq_in, seq_out, return_loss = False, randomly_truncate_sequence = False, **kwargs):
enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
context, enc_aux_loss = self.enc(seq_in, **enc_kwargs)
loss = self.dec(seq_out, return_loss = return_loss, randomly_truncate_sequence = randomly_truncate_sequence, context = context, aux_loss = enc_aux_loss, **dec_kwargs)
# if decoder reversibility turned on, user must manually call backward on encoder auxiliary losses
if self.dec_reversible:
return loss, enc_aux_loss
aux_loss = torch.tensor(0., requires_grad = True)
loss = loss + enc_aux_loss
return loss, aux_loss
| routing-transformer-master | routing_transformer/encoder_decoder.py |
from routing_transformer.routing_transformer import RoutingTransformer, RoutingTransformerLM, KmeansAttention, update_kmeans_on_backwards
from routing_transformer.encoder_decoder import RoutingTransformerEncDec
from routing_transformer.autoregressive_wrapper import AutoregressiveWrapper
from routing_transformer.autopadder import Autopadder
| routing-transformer-master | routing_transformer/__init__.py |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from inspect import isfunction
from operator import mul
from functools import partial, reduce, wraps
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from local_attention import LocalAttention
from product_key_memory import PKM
from mixture_of_experts import MoE
from routing_transformer.reversible import ReversibleSequence, SequentialSequence
# constants
TOKEN_SELF_ATTN_VALUE = -5e4
KMEAN_INIT_ITERS = 10
# helper functions
def exists(val):
return val is not None
def identity(x, *args, **kwargs):
return x
def default(x, d):
if not exists(x):
return d if not isfunction(d) else d()
return x
def cast_tuple(x):
return x if isinstance(x, tuple) else (x,)
def cache_fn(f):
cache = None
@wraps(f)
def cached_fn(*args, **kwargs):
nonlocal cache
if exists(cache):
return cache
cache = f(*args, **kwargs)
return cache
return cached_fn
def compose(*fns):
def inner(x, *args, **kwargs):
for fn in reversed(fns):
x = fn(x, *args, **kwargs)
return x
return inner
def to(t):
return {'device': t.device, 'dtype': t.dtype}
def find_modules(nn_module, type):
return [module for module in nn_module.modules() if isinstance(module, type)]
def is_empty(t):
return t.nelement() == 0
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def batched_index_select(values, indices):
last_dim = values.shape[-1]
return values.gather(2, expand_dim(indices, -1, last_dim))
def merge_dims(ind_from, ind_to, tensor):
shape = list(tensor.shape)
arr_slice = slice(ind_from, ind_to + 1)
shape[arr_slice] = [reduce(mul, shape[arr_slice])]
return tensor.reshape(*shape)
def expand_dim(t, dim, k):
t = t.unsqueeze(dim)
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def scatter_mean(src, t, index, dim, eps = 1e-5):
numer = src.scatter_add(dim, index, t)
denom = src.scatter_add(dim, index, torch.ones_like(t))
return numer / (denom + eps)
def split_at_index(dim, index, t):
pre_slices = (slice(None),) * dim
l = (*pre_slices, slice(None, index))
r = (*pre_slices, slice(index, None))
return t[l], t[r]
def reshape_dim(t, dim, split_dims):
shape = list(t.shape)
num_dims = len(shape)
dim = (dim + num_dims) % num_dims
shape[dim:dim+1] = split_dims
return t.reshape(shape)
def ema(old, new, decay):
if not exists(old):
return new
return old * decay + new * (1 - decay)
def ema_inplace(moving_avg, new, decay):
if is_empty(moving_avg):
moving_avg.data.copy_(new)
return
moving_avg.data.mul_(decay).add_(new, alpha= (1 - decay))
# helper classes
def map_first_tuple_or_el(x, fn):
if isinstance(x, tuple):
return (fn(x[0]),) + x[1:]
return fn(x)
class Chunk(nn.Module):
def __init__(self, chunks, fn, along_dim = -1):
super().__init__()
self.dim = along_dim
self.chunks = chunks
self.fn = fn
def forward(self, x, **kwargs):
if self.chunks <= 1:
return self.fn(x, **kwargs)
chunks = x.chunk(self.chunks, dim = self.dim)
return torch.cat([self.fn(c, **kwargs) for c in chunks], dim = self.dim)
class PreNorm(nn.ModuleList):
def __init__(self, norm_class, dim, fn):
super().__init__()
self.norm = norm_class(dim)
self.fn = fn
def forward(self, x, **kwargs):
x = self.norm(x)
return self.fn(x, **kwargs)
class ReZero(nn.Module):
def __init__(self, fn):
super().__init__()
self.residual_weight = nn.Parameter(torch.zeros(1))
self.fn = fn
def forward(self, x, **kwargs):
x = self.fn(x, **kwargs)
return map_first_tuple_or_el(x, lambda t: t * self.residual_weight)
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.g = nn.Parameter(torch.ones(1))
self.eps = eps
def forward(self, x):
def norm(t):
n = torch.norm(t, dim=-1, keepdim=True).clamp(min=self.eps)
return t / n * self.g
return map_first_tuple_or_el(x, norm)
class ProjectInOut(nn.Module):
def __init__(self, fn, dim_in, dim_out, project_out = True):
super().__init__()
self.fn = fn
self.project_in = nn.Linear(dim_in, dim_out)
self.project_out = nn.Linear(dim_out, dim_in) if project_out else identity
def forward(self, x, **kwargs):
x = self.project_in(x)
x, loss = self.fn(x, **kwargs)
x = self.project_out(x)
return x, loss
class MatrixMultiply(nn.Module):
def __init__(self, tensor, transpose = False):
super().__init__()
self.tensor = tensor
self.transpose = transpose
def forward(self, x):
tensor = self.tensor
if self.transpose:
tensor = tensor.t()
return x @ tensor
# token shift
def shift(t, amount, mask = None):
if amount == 0:
return t
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return F.pad(t, (0, 0, amount, -amount), value = 0.)
class PreShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim = -1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim = -1)
return self.fn(x, **kwargs)
# positional embeddings
class FixedPositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
position = torch.arange(0, max_seq_len, dtype=torch.float)
sinusoid_inp = torch.einsum("i,j->ij", position, inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
self.register_buffer('emb', emb)
def forward(self, x):
return self.emb[None, :x.shape[1], :].to(x)
def rotate_every_two(x):
x = rearrange(x, '... (d j) -> ... d j', j = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d j -> ... (d j)')
def apply_rotary_pos_emb(q, k, v, sinu_pos):
sinu_pos = sinu_pos.type(q.dtype)
sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j = 2)
sin, cos = sinu_pos.unbind(dim = -2)
sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j = 2), (sin, cos))
q, k, v = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k, v))
return q, k, v
# kmeans related function and class
def update_kmeans_on_backwards(module):
module.kmean_modules = find_modules(module, Kmeans)
def hook(_, grad_in, grad_out):
for m in module.kmean_modules:
m.update()
return module.register_backward_hook(hook)
def similarity(x, means):
return torch.einsum('bhld,hcd->bhlc', x, means)
def dists_and_buckets(x, means):
dists = similarity(x, means)
_, buckets = torch.max(dists, dim=-1)
return dists, buckets
def batched_bincount(index, num_classes, dim=-1):
shape = list(index.shape)
shape[dim] = num_classes
out = index.new_zeros(shape)
out.scatter_add_(dim, index, torch.ones_like(index, dtype=index.dtype))
return out
def kmeans_iter(x, means, buckets = None):
b, h, l, d, dtype, num_clusters = *x.shape, x.dtype, means.shape[1]
if not exists(buckets):
_, buckets = dists_and_buckets(x, means)
bins = batched_bincount(buckets, num_clusters).sum(0, keepdim=True)
zero_mask = bins.long() == 0
means_ = buckets.new_zeros(b, h, num_clusters, d, dtype=dtype)
means_.scatter_add_(-2, expand_dim(buckets, -1, d), x)
means_ = F.normalize(means_.sum(0, keepdim=True), dim=-1).type(dtype)
means = torch.where(zero_mask.unsqueeze(-1), means, means_)
means = means.squeeze(0)
return means
def distribution(dists, window_size):
_, topk_indices = dists.topk(k=window_size, dim=-2)
indices = topk_indices.transpose(-2, -1)
return indices.reshape(*indices.size()[:2], -1)
class Kmeans(nn.Module):
def __init__(self, num_heads, head_dim, num_clusters, ema_decay = 0.999, commitment = 1e-4):
super().__init__()
self.commitment = commitment
self.ema_decay = ema_decay
self.register_buffer('means', torch.randn(num_heads, num_clusters, head_dim))
self.register_buffer('initted', torch.tensor(False))
self.num_new_means = 0
self.new_means = None
@torch.no_grad()
def init(self, x):
if self.initted:
return
_, h, _, d, device, dtype = *x.shape, x.device, x.dtype
num_clusters = self.means.shape[1]
means = x.transpose(0, 1).contiguous().view(h, -1, d)
num_samples = means.shape[1]
if num_samples >= num_clusters:
indices = torch.randperm(num_samples, device=device)[:num_clusters]
else:
indices = torch.randint(0, num_samples, (num_clusters,), device=device)
means = means[:, indices]
for _ in range(KMEAN_INIT_ITERS):
means = kmeans_iter(x, means)
self.num_new_means = 0
self.means.data.copy_(means)
self.initted.data.copy_(torch.tensor(True))
@torch.no_grad()
def update(self, new_means = None):
new_means = default(new_means, self.new_means)
assert exists(new_means), 'new kmeans has not been supplied'
ema_inplace(self.means, new_means, self.ema_decay)
del self.new_means
self.new_means = None
self.num_new_means = 0
def forward(self, x, update_means = False):
self.init(x)
b, dtype = x.shape[0], x.dtype
means = self.means.type(dtype)
x = F.normalize(x, 2, dim=-1).type(dtype)
with torch.no_grad():
dists, buckets = dists_and_buckets(x, means)
routed_means = batched_index_select(expand_dim(means, 0, b), buckets)
loss = F.mse_loss(x, routed_means) * self.commitment
if update_means:
with torch.no_grad():
means = kmeans_iter(x, means, buckets)
self.new_means = ema(self.new_means, means, self.num_new_means / (self.num_new_means + 1))
self.num_new_means += 1
return dists, loss
# kmeans attention class
class KmeansAttention(nn.Module):
def __init__(self, num_clusters, window_size, num_heads, head_dim, causal = False, dropout = 0., ema_decay = 0.999, commitment = 1e-4, context_window_size = None, receives_context = False, num_mem_kv = 0, shared_qk = False):
super().__init__()
self.num_heads = num_heads
self.num_clusters = num_clusters
self.head_dim = head_dim
self.window_size = window_size
self.context_window_size = default(context_window_size, window_size)
self.causal = causal
self.shared_qk = shared_qk
self.receives_context = receives_context
self.kmeans = Kmeans(num_heads, head_dim, num_clusters, ema_decay, commitment)
self.dropout = nn.Dropout(dropout)
self.num_mem_kv = max(num_mem_kv, 1 if causal and not shared_qk else 0)
self.mem_key = nn.Parameter(torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim))
self.mem_value = nn.Parameter(torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim))
def forward(self, q, k, v, query_mask = None, key_mask = None, **kwargs):
b, h, t, d, kv_t, wsz, c_wsz, nc, device, dtype = *q.shape, k.shape[2], self.window_size, self.context_window_size, self.num_clusters, q.device, q.dtype
is_reverse = kwargs.pop('_reverse', False)
out = torch.zeros_like(q, dtype=dtype)
update_kmeans = self.training and not is_reverse
key_mask = default(key_mask, query_mask) if not self.receives_context else key_mask
kv_wsz = wsz if not self.receives_context else c_wsz
wsz = min(wsz, t)
kv_wsz = min(kv_wsz, kv_t)
if not self.shared_qk or self.receives_context:
dists, aux_loss = self.kmeans(torch.cat((q, k), dim=2), update_kmeans)
q_dists, k_dists = split_at_index(2, t, dists)
indices = distribution(q_dists, wsz)
kv_indices = distribution(k_dists, kv_wsz)
else:
dists, aux_loss = self.kmeans(q, update_kmeans)
k = F.normalize(k, dim=-1).to(q)
indices = distribution(dists, wsz)
kv_indices = indices
q = batched_index_select(q, indices)
k = batched_index_select(k, kv_indices)
v = batched_index_select(v, kv_indices)
reshape_with_window = lambda x: x.reshape(b, h, nc, -1, d)
q, k, v = map(reshape_with_window, (q, k, v))
m_k, m_v = map(lambda x: expand_dim(x, 0, b).to(q), (self.mem_key, self.mem_value))
k, v = map(lambda x: torch.cat(x, dim=3), ((m_k, k), (m_v, v)))
dots = torch.einsum('bhnid,bhnjd->bhnij', q, k) * (d ** -0.5)
mask_value = max_neg_value(dots)
if exists(query_mask) or exists(key_mask):
query_mask = default(query_mask, lambda: torch.ones((b, t), device=device).bool())
key_mask = default(key_mask, lambda: torch.ones((b, kv_t), device=device).bool())
q_mask = expand_dim(query_mask, 1, h).gather(2, indices)
kv_mask = expand_dim(key_mask, 1, h).gather(2, kv_indices)
q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (q_mask, kv_mask))
mask = q_mask[:, :, :, :, None] * kv_mask[:, :, :, None, :]
mask = F.pad(mask, (self.num_mem_kv, 0), value=True)
dots.masked_fill_(~mask, mask_value)
del mask
if self.causal:
q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices))
mask = q_mask[:, :, :, :, None] >= kv_mask[:, :, :, None, :]
mask = F.pad(mask, (self.num_mem_kv, 0), value=True)
dots.masked_fill_(~mask, mask_value)
del mask
if self.shared_qk:
q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices))
mask = q_mask[:, :, :, :, None] == kv_mask[:, :, :, None, :]
mask = F.pad(mask, (self.num_mem_kv, 0), value=False)
dots.masked_fill_(mask, TOKEN_SELF_ATTN_VALUE)
del mask
dots = dots.softmax(dim=-1)
dots = self.dropout(dots)
bo = torch.einsum('bhcij,bhcjd->bhcid', dots, v)
so = torch.reshape(bo, (b, h, -1, bo.shape[-1])).type(dtype)
out = scatter_mean(out, so, indices.unsqueeze(-1).expand_as(so), -2)
return out, aux_loss
# feedforward
class GELU_(nn.Module):
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False):
super().__init__()
activation = default(activation, GELU)
self.glu = glu
self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1))
self.act = activation()
self.dropout = nn.Dropout(dropout)
self.w2 = nn.Linear(dim * mult, dim)
def forward(self, x, **kwargs):
if not self.glu:
x = self.w1(x)
x = self.act(x)
else:
x, v = self.w1(x).chunk(2, dim=-1)
x = self.act(x) * v
x = self.dropout(x)
x = self.w2(x)
return x
# self attention
class SelfAttention(nn.Module):
def __init__(self, dim, depth, max_seq_len, heads, local_attn_heads, window_size, dim_head = None, local_attn_window_size = None, local_attn_radius_blocks = 1, causal = False, attn_dropout = 0., dropout = 0., kmeans_ema_decay = 0.999, commitment_factor = 1e-4, receives_context = False, context_window_size = None, rel_pos_emb = True, num_mem_kv = 0, shared_qk = False, conv_query_kernel = 9):
super().__init__()
assert dim_head or (dim % heads) == 0, 'hidden dimension must be divisible by number of heads'
assert (max_seq_len % window_size) == 0, 'maximum sequence length must be divisible by the target window size'
assert local_attn_heads <= heads, 'number of local attention heads must be less than total heads'
assert not (receives_context and local_attn_heads > 0), 'local attention cannot be used for self attention with context'
assert not (receives_context and causal), 'contextual attention layer cannot be causal'
local_attn_window_size = default(local_attn_window_size, window_size)
context_window_size = default(context_window_size, window_size)
self.shared_qk = shared_qk
self.receives_context = receives_context
self.heads = heads
self.local_attn_heads = local_attn_heads
self.global_attn_heads = heads - local_attn_heads
self.causal = causal
self.window_size = window_size
dim_head = default(dim_head, dim // heads)
dim_heads = dim_head * heads
self.dim_head = dim_head
num_clusters = max_seq_len // window_size
# local
local_dim_heads = dim_head * self.local_attn_heads
if self.local_attn_heads > 0:
rel_pos_emb_config = (dim_head, local_attn_heads) if rel_pos_emb else None
self.local_attn = LocalAttention(dim = dim_head, window_size = local_attn_window_size, causal = causal, dropout = attn_dropout, rel_pos_emb_config = rel_pos_emb_config, look_backward = local_attn_radius_blocks, look_forward = 0 if causal else local_attn_radius_blocks)
self.local_to_qkv = nn.Linear(dim, 3 * local_dim_heads)
# global
global_dim_heads = dim_head * self.global_attn_heads
if self.global_attn_heads > 0:
self.global_attn = KmeansAttention(num_clusters, window_size, self.global_attn_heads, dim_head, causal = causal, dropout = attn_dropout, ema_decay = kmeans_ema_decay, commitment = commitment_factor, receives_context = receives_context, num_mem_kv = num_mem_kv, shared_qk = shared_qk)
self.to_q = nn.Linear(dim, global_dim_heads, bias = False)
self.to_v = nn.Linear(dim, global_dim_heads, bias = False)
if not self.shared_qk:
self.to_k = nn.Linear(dim, global_dim_heads, bias = False)
# out
self.to_out = nn.Linear(dim_heads, dim, bias = False)
self.dropout = nn.Dropout(dropout)
def forward(self, x, context = None, input_mask = None, context_mask = None, pos_emb = None, **kwargs):
assert not (self.receives_context and not exists(context)), 'context must be passed if self attention is set to receive context'
b, t, e, h, dh = *x.shape, self.heads, self.dim_head
has_local, has_global = map(lambda x: x > 0, (self.local_attn_heads, self.global_attn_heads))
split_heads = lambda v: reshape_dim(v, -1, (-1, dh)).transpose(1, 2).contiguous()
if has_local:
local_qkv = self.local_to_qkv(x).chunk(3, dim=-1)
lq, lk, lv = map(split_heads, local_qkv)
if has_global:
kv_input = x if not self.receives_context else context
q, v = self.to_q(x), self.to_v(kv_input)
if not self.shared_qk:
k = self.to_k(kv_input)
else:
k = self.to_q(kv_input) if self.receives_context else q
q, k, v = map(split_heads, (q, k, v))
out = []
total_loss = torch.tensor(0., requires_grad=True, **to(x))
if has_local:
local_out = self.local_attn(lq, lk, lv, input_mask = input_mask)
out.append(local_out)
if has_global:
if not self.receives_context and exists(pos_emb):
q, k, v = apply_rotary_pos_emb(q, k, v, pos_emb)
global_out, loss = self.global_attn(q, k, v, query_mask = input_mask, key_mask = context_mask)
total_loss = total_loss + loss
out.append(global_out)
out = torch.cat(out, dim=1)
out = out.reshape(b, h, t, -1).transpose(1, 2).reshape(b, t, -1)
out = self.to_out(out)
return self.dropout(out), total_loss
class RoutingTransformer(nn.Module):
def __init__(
self,
dim,
depth,
max_seq_len,
heads = 8,
dim_head = None,
window_size = 64,
local_attn_window_size = 256,
local_attn_radius_blocks = 1,
causal = False,
weight_tie = False,
attn_dropout = 0.,
ff_dropout = 0.,
attn_layer_dropout = 0.,
layer_dropout = 0.,
n_local_attn_heads = 0,
ff_glu = False,
reversible = False,
ff_chunks = 1,
kmeans_ema_decay = 0.999,
commitment_factor = 1e-4,
receives_context = False,
context_window_size = None,
_register_kmeans_update = False,
rel_pos_emb = True,
pkm_layers = tuple(),
pkm_num_keys = 128,
moe_layers = tuple(),
moe_num_experts = 4,
moe_loss_coef = 1e-2,
num_mem_kv = 0,
shared_qk = None,
context_shared_qk = False,
use_rezero = False,
use_scale_norm = False,
ff_activation = None,
shift_tokens = False
):
super().__init__()
shared_qk = default(shared_qk, causal) # default to shared qk when causal, due to experimental results
if type(n_local_attn_heads) is not tuple:
n_local_attn_heads = tuple([n_local_attn_heads] * depth)
assert len(n_local_attn_heads) == depth, 'local attention heads tuple must have the same length as the depth'
assert all([(local_heads <= heads) for local_heads in n_local_attn_heads]), 'number of local attn heads must be less than the maximum number of heads'
layers = nn.ModuleList([])
norm_type = ScaleNorm if use_scale_norm else nn.LayerNorm
fn_wrapper = partial(ReZero) if use_rezero else partial(PreNorm, norm_type, dim)
if shift_tokens:
shifts = (-1, 0, 1) if not causal else (0, 1)
fn_wrapper = compose(fn_wrapper, partial(PreShiftTokens, shifts))
get_attn = lambda local_heads: SelfAttention(dim, depth, max_seq_len, heads, local_heads, window_size, causal = causal, dim_head = dim_head, local_attn_window_size = local_attn_window_size, local_attn_radius_blocks = local_attn_radius_blocks, attn_dropout = attn_dropout, dropout = attn_layer_dropout, kmeans_ema_decay = kmeans_ema_decay, commitment_factor = commitment_factor, rel_pos_emb = rel_pos_emb, num_mem_kv = num_mem_kv, shared_qk = shared_qk)
get_ff = lambda: Chunk(ff_chunks, FeedForward(dim, dropout = ff_dropout, glu = ff_glu, activation = ff_activation), along_dim=1)
get_context_attn = lambda: SelfAttention(dim, depth, max_seq_len, heads, 0, window_size, dim_head = dim_head, local_attn_window_size = local_attn_window_size, local_attn_radius_blocks = local_attn_radius_blocks, attn_dropout = attn_dropout, dropout = attn_layer_dropout, kmeans_ema_decay = kmeans_ema_decay, commitment_factor = commitment_factor, receives_context = True, context_window_size = context_window_size, num_mem_kv = num_mem_kv, shared_qk = context_shared_qk)
get_context_ff = lambda: Chunk(ff_chunks, FeedForward(dim, dropout = ff_dropout, glu = ff_glu, activation = ff_activation), along_dim=1)
get_pkm = lambda: PKM(dim, num_keys = pkm_num_keys)
get_moe = lambda: MoE(dim, num_experts = moe_num_experts, loss_coef = moe_loss_coef)
if weight_tie:
assert len(set(n_local_attn_heads)) == 1, 'you can only weight tie if number of local attention heads for all layers is the same'
get_attn, get_ff, get_context_attn, get_context_ff, get_pkm, get_moe = map(cache_fn, (get_attn, get_ff, get_context_attn, get_context_ff, get_pkm, get_moe))
for ind, local_heads in zip(range(depth), n_local_attn_heads):
layer = ind + 1
use_pkm = layer in cast_tuple(pkm_layers)
use_moe = layer in cast_tuple(moe_layers)
get_parallel_fn = get_pkm if use_pkm else get_ff
get_parallel_fn = get_moe if use_moe else get_parallel_fn
layers.append(nn.ModuleList([
fn_wrapper(get_attn(local_heads)),
fn_wrapper(get_parallel_fn())
]))
if not receives_context:
continue
layers.append(nn.ModuleList([
fn_wrapper(get_context_attn()),
fn_wrapper(get_context_ff())
]))
execute_type = ReversibleSequence if reversible else SequentialSequence
attn_context_layer = ((True, False),) if receives_context else tuple()
route_attn = ((True, False), *attn_context_layer) * depth
route_context = ((False, False), *attn_context_layer) * depth
context_route_map = {'context': route_context, 'context_mask': route_context} if receives_context else {}
attn_route_map = {'input_mask': route_attn, 'pos_emb': route_attn}
self.layers = execute_type(layers, args_route = {**attn_route_map, **context_route_map}, layer_dropout = layer_dropout)
self._handle = None
if _register_kmeans_update:
self.register_kmeans_update()
has_local_attn = any([num > 0 for num in n_local_attn_heads])
local_attn_window_size = default(local_attn_window_size, window_size)
self.pad_to_multiple = local_attn_window_size if has_local_attn else 0
def cancel_kmeans_update(self):
if not exists(self._handle):
return
self._handle.remove()
self._handle = None
def register_kmeans_update(self):
self._handle = update_kmeans_on_backwards(self)
def forward(self, x, **kwargs):
x, loss = self.layers(x, **kwargs)
return x, loss
class RoutingTransformerLM(nn.Module):
def __init__(
self,
num_tokens,
dim,
depth,
max_seq_len,
heads = 8,
dim_head = 64,
window_size = 64,
local_attn_window_size = None,
local_attn_radius_blocks = 1,
causal = False,
emb_dim = None,
weight_tie = False,
attn_dropout = 0.,
ff_dropout = 0.,
attn_layer_dropout = 0.,
layer_dropout = 0.,
ff_mult = 4,
ff_activation = None,
ff_glu = False,
return_embeddings = False,
n_local_attn_heads = 0,
reversible = False,
ff_chunks = 1,
kmeans_ema_decay = 0.999,
commitment_factor = 1e-4,
receives_context = False,
context_window_size = None,
rel_pos_emb = True,
_register_kmeans_update = True,
pkm_layers = tuple(),
pkm_num_keys = 128,
moe_layers = tuple(),
moe_num_experts = 4,
moe_loss_coef = 1e-2,
num_mem_kv = 0,
shared_qk = None,
context_shared_qk = False,
use_rezero = False,
use_scale_norm = False,
tie_embedding = False,
use_absolute_pos_emb = False,
shift_tokens = False
):
super().__init__()
assert (max_seq_len % window_size) == 0, 'max sequence length must be divisible by the window size, to calculate number of kmeans cluster'
emb_dim = default(emb_dim, dim)
self.max_seq_len = max_seq_len
self.sinu_pos_emb = FixedPositionalEmbedding(dim_head, max_seq_len)
self.token_emb = nn.Embedding(num_tokens, emb_dim)
nn.init.normal_(self.token_emb.weight, std = 0.02)
self.routing_transformer = RoutingTransformer(dim, depth, max_seq_len, heads = heads, dim_head = dim_head, window_size = window_size, local_attn_window_size = local_attn_window_size, local_attn_radius_blocks = local_attn_radius_blocks, causal = causal, weight_tie = weight_tie, ff_dropout = ff_dropout, attn_dropout = attn_dropout, attn_layer_dropout = attn_layer_dropout, layer_dropout = layer_dropout, n_local_attn_heads = n_local_attn_heads, ff_glu = ff_glu, reversible = reversible, ff_chunks = ff_chunks, kmeans_ema_decay = kmeans_ema_decay, receives_context = receives_context, context_window_size = context_window_size, rel_pos_emb = rel_pos_emb, pkm_layers = pkm_layers, pkm_num_keys = pkm_num_keys, moe_layers = moe_layers, moe_num_experts = moe_num_experts, moe_loss_coef = moe_loss_coef, num_mem_kv = num_mem_kv, shared_qk = shared_qk, context_shared_qk = context_shared_qk, _register_kmeans_update = _register_kmeans_update, use_rezero = use_rezero, use_scale_norm = use_scale_norm, ff_activation = ff_activation, shift_tokens = shift_tokens)
if emb_dim != dim:
self.routing_transformer = ProjectInOut(self.routing_transformer, emb_dim, dim, project_out = not return_embeddings)
self.norm = nn.LayerNorm(emb_dim)
if return_embeddings:
self.out = nn.Identity()
elif tie_embedding:
self.out = MatrixMultiply(self.token_emb.weight, transpose = True)
else:
self.out = nn.Linear(emb_dim, num_tokens)
def cancel_kmeans_update(self):
transformer = find_modules(self, RoutingTransformer)[0]
transformer.cancel_kmeans_update()
def update_kmeans(self):
for m in find_modules(self, Kmeans):
m.update()
def forward(self, x, **kwargs):
x = self.token_emb(x)
rotary_pos_emb = self.sinu_pos_emb(x)
x, loss = self.routing_transformer(x, pos_emb = rotary_pos_emb, **kwargs)
x = self.norm(x)
return self.out(x), loss
| routing-transformer-master | routing_transformer/routing_transformer.py |
import os
import re
from subprocess import check_call
from setuptools import setup, find_packages
from setuptools.command.install import install
__pkg_name__ = 'bonito'
verstrline = open(os.path.join(__pkg_name__, '__init__.py'), 'r').read()
vsre = r"^__version__ = ['\"]([^'\"]*)['\"]"
mo = re.search(vsre, verstrline, re.M)
if mo:
__version__ = mo.group(1)
else:
raise RuntimeError('Unable to find version string in "{}/__init__.py".'.format(__pkg_name__))
USE_CUDA111 = False
if USE_CUDA111:
print("Building with CUDA 11.1")
require_file = 'requirements-cuda111.txt'
package_name = "ont-%s-cuda111" % __pkg_name__
else:
print("Building with CUDA 10.2")
require_file = 'requirements.txt'
package_name = "ont-%s" % __pkg_name__
with open(require_file) as f:
requirements = f.read().splitlines()
with open('README.md', encoding='utf-8') as f:
long_description = f.read()
class download_latest_model(install):
def run(self):
install.run(self)
check_call("bonito download --models --latest -f".split())
setup(
name=package_name,
version=__version__,
packages=find_packages(),
include_package_data=True,
install_requires=requirements,
long_description=long_description,
long_description_content_type='text/markdown',
author='Oxford Nanopore Technologies, Ltd',
author_email='[email protected]',
url='https://github.com/nanoporetech/bonito',
cmdclass={
'install': download_latest_model,
},
entry_points = {
'console_scripts': [
'{0} = {0}:main'.format(__pkg_name__)
]
},
dependency_links=[
'https://download.pytorch.org/whl/torch_stable.html',
]
)
| bonito-master | setup.py |
"""
Bonito Aligner
"""
from threading import Thread
from functools import partial
from mappy import Aligner, ThreadBuffer
from bonito.multiprocessing import ThreadMap, ProcessMap
def align_map(aligner, sequences, n_thread=4):
"""
Align `sequences` with minimap using `n_thread` threads.
"""
return ThreadMap(partial(MappyWorker, aligner), sequences, n_thread)
class MappyWorker(Thread):
"""
Process that reads items from an input_queue, applies a func to them and puts them on an output_queue
"""
def __init__(self, aligner, input_queue=None, output_queue=None):
super().__init__()
self.aligner = aligner
self.input_queue = input_queue
self.output_queue = output_queue
def run(self):
thrbuf = ThreadBuffer()
while True:
item = self.input_queue.get()
if item is StopIteration:
self.output_queue.put(item)
break
k, v = item
mapping = next(self.aligner.map(v['sequence'], buf=thrbuf, MD=True), None)
self.output_queue.put((k, {**v, 'mapping': mapping}))
| bonito-master | bonito/aligner.py |
"""
Bonito Fast5 Utils
"""
import sys
from glob import glob
from pathlib import Path
from functools import partial
from multiprocessing import Pool
from itertools import chain, starmap
import torch
import numpy as np
from scipy.signal import find_peaks
from ont_fast5_api.fast5_interface import get_fast5_file
class Read:
def __init__(self, read, filename):
self.read_id = read.read_id
self.filename = filename.name
self.run_id = read.get_run_id()
if type(self.run_id) in (bytes, np.bytes_):
self.run_id = self.run_id.decode()
read_attrs = read.handle[read.raw_dataset_group_name].attrs
channel_info = read.handle[read.global_key + 'channel_id'].attrs
self.offset = int(channel_info['offset'])
self.sampling_rate = channel_info['sampling_rate']
self.scaling = channel_info['range'] / channel_info['digitisation']
self.mux = read_attrs['start_mux']
self.channel = channel_info['channel_number']
if type(self.channel) in (bytes, np.bytes_):
self.channel = self.channel.decode()
self.start = read_attrs['start_time'] / self.sampling_rate
self.duration = read_attrs['duration'] / self.sampling_rate
raw = read.handle[read.raw_dataset_name][:]
scaled = np.array(self.scaling * (raw + self.offset), dtype=np.float32)
trim_start, _ = trim(scaled[:8000])
scaled = scaled[trim_start:]
self.template_start = self.start + (1 / self.sampling_rate) * trim_start
self.template_duration = self.duration - (1 / self.sampling_rate) * trim_start
if len(scaled) > 8000:
med, mad = med_mad(scaled)
self.signal = (scaled - med) / mad
else:
self.signal = norm_by_noisiest_section(scaled)
def __repr__(self):
return "Read('%s')" % self.read_id
class ReadChunk:
def __init__(self, read, chunk, i, n):
self.read_id = "%s:%i:%i" % (read.read_id, i, n)
self.run_id = read.run_id
self.filename = read.filename
self.mux = read.mux
self.channel = read.channel
self.start = read.start
self.duration = read.duration
self.template_start = self.start
self.template_duration = self.duration
self.signal = chunk
def __repr__(self):
return "ReadChunk('%s')" % self.read_id
def trim(signal, window_size=40, threshold_factor=2.4, min_elements=3):
min_trim = 10
signal = signal[min_trim:]
med, mad = med_mad(signal[-(window_size*100):])
threshold = med + mad * threshold_factor
num_windows = len(signal) // window_size
seen_peak = False
for pos in range(num_windows):
start = pos * window_size
end = start + window_size
window = signal[start:end]
if len(window[window > threshold]) > min_elements or seen_peak:
seen_peak = True
if window[-1] > threshold:
continue
return min(end + min_trim, len(signal)), len(signal)
return min_trim, len(signal)
def med_mad(x, factor=1.4826):
"""
Calculate signal median and median absolute deviation
"""
med = np.median(x)
mad = np.median(np.absolute(x - med)) * factor
return med, mad
def norm_by_noisiest_section(signal, samples=100, threshold=6.0):
"""
Normalise using the medmad from the longest continuous region where the
noise is above some threshold relative to the std of the full signal.
"""
threshold = signal.std() / threshold
noise = np.ones(signal.shape)
for idx in np.arange(signal.shape[0] // samples):
window = slice(idx * samples, (idx + 1) * samples)
noise[window] = np.where(signal[window].std() > threshold, 1, 0)
# start and end low for peak finding
noise[0] = 0; noise[-1] = 0
peaks, info = find_peaks(noise, width=(None, None))
if len(peaks):
widest = np.argmax(info['widths'])
med, mad = med_mad(signal[info['left_bases'][widest]: info['right_bases'][widest]])
else:
med, mad = med_mad(signal)
return (signal - med) / mad
def read_chunks(read, chunksize=4000, overlap=400):
"""
Split a Read in fixed sized ReadChunks
"""
if len(read.signal) < chunksize:
return
_, offset = divmod(len(read.signal) - chunksize, chunksize - overlap)
signal = torch.from_numpy(read.signal[offset:])
blocks = signal.unfold(0, chunksize, chunksize - overlap)
for i, block in enumerate(blocks):
yield ReadChunk(read, block.numpy(), i+1, blocks.shape[0])
def get_raw_data(filename, read_ids=None, skip=False):
"""
Get the raw signal and read id from the fast5 files
"""
with get_fast5_file(filename, 'r') as f5_fh:
for read_id in f5_fh.get_read_ids():
if read_ids is None or (read_id in read_ids) ^ skip:
yield Read(f5_fh.get_read(read_id), filename)
def get_read_ids(filename, read_ids=None, skip=False):
"""
Get all the read_ids from the file `filename`.
"""
with get_fast5_file(filename, 'r') as f5_fh:
ids = [(filename, rid) for rid in f5_fh.get_read_ids()]
if read_ids is None:
return ids
return [rid for rid in ids if (rid[1] in read_ids) ^ skip]
def get_raw_data_for_read(info):
"""
Get the raw signal from the fast5 file for a given filename, read_id pair
"""
filename, read_id = info
with get_fast5_file(filename, 'r') as f5_fh:
return Read(f5_fh.get_read(read_id), filename)
def get_reads(directory, read_ids=None, skip=False, max_read_size=0, n_proc=1, recursive=False, cancel=None):
"""
Get all reads in a given `directory`.
"""
pattern = "**/*.fast5" if recursive else "*.fast5"
get_filtered_reads = partial(get_read_ids, read_ids=read_ids, skip=skip)
with Pool(n_proc) as pool:
for job in chain(pool.imap(get_filtered_reads, (Path(x) for x in glob(directory + "/" + pattern, recursive=True)))):
for read in pool.imap(get_raw_data_for_read, job):
if max_read_size > 0 and len(read.signal) > max_read_size:
sys.stderr.write(
"> skipping long read %s (%s samples)\n" % (read.read_id, len(read.signal))
)
continue
yield read
if cancel is not None and cancel.is_set():
return
| bonito-master | bonito/fast5.py |
"""
Bonito utils
"""
import os
import re
import sys
import random
from glob import glob
from itertools import groupby
from operator import itemgetter
from importlib import import_module
from collections import deque, defaultdict, OrderedDict
import toml
import torch
import parasail
import numpy as np
from torch.cuda import get_device_capability
try:
from claragenomics.bindings import cuda
from claragenomics.bindings.cudapoa import CudaPoaBatch
except ImportError:
pass
__dir__ = os.path.dirname(os.path.realpath(__file__))
__data__ = os.path.join(__dir__, "data")
__models__ = os.path.join(__dir__, "models")
__configs__ = os.path.join(__dir__, "models/configs")
split_cigar = re.compile(r"(?P<len>\d+)(?P<op>\D+)")
default_data = os.path.join(__data__, "dna_r9.4.1")
default_config = os.path.join(__configs__, "[email protected]")
def init(seed, device):
"""
Initialise random libs and setup cudnn
https://pytorch.org/docs/stable/notes/randomness.html
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if device == "cpu": return
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
assert(torch.cuda.is_available())
def permute(x, input_layout, output_layout):
"""
Permute `x` from `input_layout` to `output_layout`
>>> permute(x, 'TNC', 'NTC')
"""
if input_layout == output_layout: return x
return x.permute(*[input_layout.index(x) for x in output_layout])
def concat(xs, dim=0):
"""
Type agnostic concat.
"""
if isinstance(xs[0], torch.Tensor):
return torch.cat(xs, dim=dim)
elif isinstance(xs[0], np.ndarray):
return np.concatenate(xs, axis=dim)
elif isinstance(xs[0], list):
return [x for l in xs for x in l]
elif isinstance(xs[0], str):
return ''.join(xs)
elif isinstance(xs[0], dict):
return {k: concat([x[k] for x in xs], dim) for k in xs[0].keys()}
else:
raise TypeError
def select_range(x, start, end, dim=0):
"""
Type agnostic range select.
"""
if isinstance(x, dict):
return {k: select_range(v, start, end, dim) for (k, v) in x.items()}
if dim == 0 or isinstance(x, list): return x[start:end]
return x[(*(slice(None),)*dim, slice(start, end))]
def size(x, dim=0):
"""
Type agnostic size.
"""
if hasattr(x, 'shape'):
return x.shape[dim]
elif dim == 0:
return len(x)
raise TypeError
def half_supported():
"""
Returns whether FP16 is support on the GPU
"""
try:
return get_device_capability()[0] >= 7
except:
return False
def phred(prob, scale=1.0, bias=0.0):
"""
Converts `prob` into a ascii encoded phred quality score between 0 and 40.
"""
p = max(1 - prob, 1e-4)
q = -10 * np.log10(p) * scale + bias
return chr(int(np.round(q) + 33))
def mean_qscore_from_qstring(qstring):
"""
Convert qstring into a mean qscore
"""
if len(qstring) == 0: return 0.0
err_probs = [10**((ord(c) - 33) / -10) for c in qstring]
mean_err = np.mean(err_probs)
return -10 * np.log10(max(mean_err, 1e-4))
def decode_ref(encoded, labels):
"""
Convert a integer encoded reference into a string and remove blanks
"""
return ''.join(labels[e] for e in encoded if e)
def column_to_set(filename, idx=0, skip_header=False):
"""
Pull a column from a file and return a set of the values.
"""
if filename and os.path.isfile(filename):
with open(filename, 'r') as tsv:
if skip_header:
next(tsv)
return {line.strip().split()[idx] for line in tsv.readlines()}
def chunk(signal, chunksize, overlap):
"""
Convert a read into overlapping chunks before calling
"""
T = signal.shape[0]
if chunksize == 0:
chunks = signal[None, :]
elif T < chunksize:
chunks = torch.nn.functional.pad(signal, (chunksize - T, 0))[None, :]
else:
stub = (T - overlap) % (chunksize - overlap)
chunks = signal[stub:].unfold(0, chunksize, chunksize - overlap)
if stub > 0:
chunks = torch.cat([signal[None, :chunksize], chunks], dim=0)
return chunks.unsqueeze(1)
def stitch(chunks, chunksize, overlap, length, stride, reverse=False):
"""
Stitch chunks together with a given overlap
"""
if chunks.shape[0] == 1: return chunks.squeeze(0)
semi_overlap = overlap // 2
start, end = semi_overlap // stride, (chunksize - semi_overlap) // stride
stub = (length - overlap) % (chunksize - overlap)
first_chunk_end = (stub + semi_overlap) // stride if (stub > 0) else end
if reverse:
chunks = list(chunks)
return concat([
chunks[-1][:-start], *(x[-end:-start] for x in reversed(chunks[1:-1])), chunks[0][-first_chunk_end:]
])
else:
return concat([
chunks[0, :first_chunk_end], *chunks[1:-1, start:end], chunks[-1, start:]
])
def batchify(items, batchsize, dim=0):
"""
Batch up items up to `batch_size`.
"""
stack, pos = [], 0
for k, v in items:
breaks = range(batchsize - pos, size(v, dim), batchsize)
for start, end in zip([0, *breaks], [*breaks, size(v, dim)]):
sub_batch = select_range(v, start, end, dim)
stack.append(((k, (pos, pos + end - start)), sub_batch))
if pos + end - start == batchsize:
ks, vs = zip(*stack)
yield ks, concat(vs, dim)
stack, pos = [], 0
else:
pos += end - start
if len(stack):
ks, vs = zip(*stack)
yield ks, concat(vs, dim)
def unbatchify(batches, dim=0):
"""
Reconstruct batches.
"""
batches = (
(k, select_range(v, start, end, dim))
for sub_batches, v in batches
for k, (start, end) in sub_batches
)
return (
(k, concat([v for (k, v) in group], dim))
for k, group in groupby(batches, itemgetter(0))
)
def load_data(limit=None, directory=None):
"""
Load the training data
"""
if directory is None:
directory = default_data
chunks = np.load(os.path.join(directory, "chunks.npy"), mmap_mode='r')
targets = np.load(os.path.join(directory, "references.npy"), mmap_mode='r')
lengths = np.load(os.path.join(directory, "reference_lengths.npy"), mmap_mode='r')
indices = os.path.join(directory, "indices.npy")
if os.path.exists(indices):
idx = np.load(indices, mmap_mode='r')
idx = idx[idx < lengths.shape[0]]
if limit:
idx = idx[:limit]
return chunks[idx, :], targets[idx, :], lengths[idx]
if limit:
chunks = chunks[:limit]
targets = targets[:limit]
lengths = lengths[:limit]
return np.array(chunks), np.array(targets), np.array(lengths)
def load_symbol(config, symbol):
"""
Dynamic load a symbol from module specified in model config.
"""
if not isinstance(config, dict):
if not os.path.isdir(config) and os.path.isdir(os.path.join(__models__, config)):
dirname = os.path.join(__models__, config)
else:
dirname = config
config = toml.load(os.path.join(dirname, 'config.toml'))
imported = import_module(config['model']['package'])
return getattr(imported, symbol)
def match_names(state_dict, model):
keys_and_shapes = lambda state_dict: zip(*[
(k, s) for s, i, k in sorted([(v.shape, i, k)
for i, (k, v) in enumerate(state_dict.items())])
])
k1, s1 = keys_and_shapes(state_dict)
k2, s2 = keys_and_shapes(model.state_dict())
assert s1 == s2
remap = dict(zip(k1, k2))
return OrderedDict([(k, remap[k]) for k in state_dict.keys()])
def load_model(dirname, device, weights=None, half=None, chunksize=0):
"""
Load a model from disk
"""
if not os.path.isdir(dirname) and os.path.isdir(os.path.join(__models__, dirname)):
dirname = os.path.join(__models__, dirname)
if not weights: # take the latest checkpoint
weight_files = glob(os.path.join(dirname, "weights_*.tar"))
if not weight_files:
raise FileNotFoundError("no model weights found in '%s'" % dirname)
weights = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files])
device = torch.device(device)
config = toml.load(os.path.join(dirname, 'config.toml'))
weights = os.path.join(dirname, 'weights_%s.tar' % weights)
Model = load_symbol(config, "Model")
model = Model(config)
state_dict = torch.load(weights, map_location=device)
state_dict = {k2: state_dict[k1] for k1, k2 in match_names(state_dict, model).items()}
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k.replace('module.', '')
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
if half is None:
half = half_supported()
if half: model = model.half()
model.eval()
model.to(device)
return model
def parasail_to_sam(result, seq):
"""
Extract reference start and sam compatible cigar string.
:param result: parasail alignment result.
:param seq: query sequence.
:returns: reference start coordinate, cigar string.
"""
cigstr = result.cigar.decode.decode()
first = re.search(split_cigar, cigstr)
first_count, first_op = first.groups()
prefix = first.group()
rstart = result.cigar.beg_ref
cliplen = result.cigar.beg_query
clip = '' if cliplen == 0 else '{}S'.format(cliplen)
if first_op == 'I':
pre = '{}S'.format(int(first_count) + cliplen)
elif first_op == 'D':
pre = clip
rstart = int(first_count)
else:
pre = '{}{}'.format(clip, prefix)
mid = cigstr[len(prefix):]
end_clip = len(seq) - result.end_query - 1
suf = '{}S'.format(end_clip) if end_clip > 0 else ''
new_cigstr = ''.join((pre, mid, suf))
return rstart, new_cigstr
def accuracy(ref, seq, balanced=False, min_coverage=0.0):
"""
Calculate the accuracy between `ref` and `seq`
"""
alignment = parasail.sw_trace_striped_32(seq, ref, 8, 4, parasail.dnafull)
counts = defaultdict(int)
q_coverage = len(alignment.traceback.query) / len(seq)
r_coverage = len(alignment.traceback.ref) / len(ref)
if r_coverage < min_coverage:
return 0.0
_, cigar = parasail_to_sam(alignment, seq)
for count, op in re.findall(split_cigar, cigar):
counts[op] += int(count)
if balanced:
accuracy = (counts['='] - counts['I']) / (counts['='] + counts['X'] + counts['D'])
else:
accuracy = counts['='] / (counts['='] + counts['I'] + counts['X'] + counts['D'])
return accuracy * 100
def print_alignment(ref, seq):
"""
Print the alignment between `ref` and `seq`
"""
alignment = parasail.sw_trace_striped_32(seq, ref, 8, 4, parasail.dnafull)
print(alignment.traceback.ref)
print(alignment.traceback.comp)
print(alignment.traceback.query)
print(" Score=%s" % alignment.score)
return alignment.score
def poa(groups, max_poa_sequences=100, gpu_mem_per_batch=0.9):
"""
Generate consensus for POA groups.
Args:
groups : A list of lists of sequences for which consensus is to be generated.
"""
free, total = cuda.cuda_get_mem_info(cuda.cuda_get_device())
gpu_mem_per_batch *= free
batch = CudaPoaBatch(max_poa_sequences, gpu_mem_per_batch, stream=None, output_type="consensus")
results = []
for i, group in enumerate(groups, start=1):
group_status, seq_status = batch.add_poa_group(group)
# Once batch is full, run POA processing
if group_status == 1 or i == len(groups):
batch.generate_poa()
consensus, coverage, status = batch.get_consensus()
results.extend(consensus)
batch.reset()
group_status, seq_status = batch.add_poa_group(group)
return results
| bonito-master | bonito/util.py |
"""
Bonito nn modules.
"""
import torch
from torch import nn
from torch.nn import Module
from torch.nn.init import orthogonal_
layers = {}
def register(layer):
layer.name = layer.__name__.lower()
layers[layer.name] = layer
return layer
register(torch.nn.ReLU)
register(torch.nn.Tanh)
@register
class Swish(torch.nn.SiLU):
pass
@register
class Serial(torch.nn.Sequential):
def __init__(self, sublayers):
super().__init__(*sublayers)
def to_dict(self, include_weights=False):
return {
'sublayers': [to_dict(layer, include_weights) for layer in self._modules.values()]
}
@register
class Reverse(Module):
def __init__(self, sublayers):
super().__init__()
self.layer = Serial(sublayers) if isinstance(sublayers, list) else sublayers
def forward(self, x):
return self.layer(x.flip(0)).flip(0)
def to_dict(self, include_weights=False):
if isinstance(self.layer, Serial):
return self.layer.to_dict(include_weights)
else:
return {'sublayers': to_dict(self.layer, include_weights)}
@register
class Convolution(Module):
def __init__(self, insize, size, winlen, stride=1, padding=0, bias=True, activation=None):
super().__init__()
self.conv = torch.nn.Conv1d(insize, size, winlen, stride=stride, padding=padding, bias=bias)
self.activation = layers.get(activation, lambda: activation)()
def forward(self, x):
if self.activation is not None:
return self.activation(self.conv(x))
return self.conv(x)
def to_dict(self, include_weights=False):
res = {
"insize": self.conv.in_channels,
"size": self.conv.out_channels,
"bias": self.conv.bias is not None,
"winlen": self.conv.kernel_size[0],
"stride": self.conv.stride[0],
"padding": self.conv.padding[0],
"activation": self.activation.name if self.activation else None,
}
if include_weights:
res['params'] = {
'W': self.conv.weight, 'b': self.conv.bias if self.conv.bias is not None else []
}
return res
@register
class LinearCRFEncoder(Module):
def __init__(self, insize, n_base, state_len, bias=True, scale=None, activation=None, blank_score=None):
super().__init__()
self.n_base = n_base
self.state_len = state_len
self.blank_score = blank_score
size = (n_base + 1) * n_base**state_len if blank_score is None else n_base**(state_len + 1)
self.linear = torch.nn.Linear(insize, size, bias=bias)
self.activation = layers.get(activation, lambda: activation)()
self.scale = scale
def forward(self, x):
scores = self.linear(x)
if self.activation is not None:
scores = self.activation(scores)
if self.scale is not None:
scores = scores * self.scale
if self.blank_score is not None:
T, N, C = scores.shape
s = torch.tensor(self.blank_score, device=scores.device, dtype=scores.dtype)
scores = torch.cat([s.expand(T, N, C//self.n_base, 1), scores.reshape(T, N, C//self.n_base, self.n_base)], axis=-1).reshape(T, N, -1)
return scores
def to_dict(self, include_weights=False):
res = {
'insize': self.linear.in_features,
'n_base': self.n_base,
'state_len': self.state_len,
'bias': self.linear.bias is not None,
'scale': self.scale,
'activation': self.activation.name if self.activation else None,
'blank_score': self.blank_score,
}
if include_weights:
res['params'] = {
'W': self.linear.weight, 'b': self.linear.bias
if self.linear.bias is not None else []
}
return res
@register
class SHA(Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** -0.5
self.to_q = nn.Sequential(nn.Linear(dim, dim), nn.LayerNorm(dim))
def forward(self, x, kv):
x = x.transpose(0, 1)
kv = kv.transpose(0, 1)
q = self.to_q(x)
sim = torch.matmul(q, kv.transpose(-1, -2)) * self.scale
attn = sim.softmax(dim=-1)
out = torch.matmul(attn, kv)
return out.transpose(0, 1)
@register
class SHABlock(Module):
""" https://arxiv.org/abs/1911.11423 """
def __init__(self, dim, ff_mult=4):
super().__init__()
self.attn_query_norm = nn.LayerNorm(dim)
self.attn_kv_norm = nn.LayerNorm(dim)
self.attn = SHA(dim=dim)
self.ff_residual_norm = nn.LayerNorm(dim)
self.ff = Serial([
nn.LayerNorm(dim),
nn.Linear(dim, dim * ff_mult),
nn.GELU(),
nn.Linear(dim * ff_mult, dim),
])
def forward(self, x):
kv = self.attn_kv_norm(x)
x = self.attn_query_norm(x)
x = self.attn(x, kv) + x
x = self.ff(x) + self.ff_residual_norm(x)
return x
@register
class Permute(Module):
def __init__(self, dims):
super().__init__()
self.dims = dims
def forward(self, x):
return x.permute(*self.dims)
def to_dict(self, include_weights=False):
return {'dims': self.dims}
def truncated_normal(size, dtype=torch.float32, device=None, num_resample=5):
x = torch.empty(size + (num_resample,), dtype=torch.float32, device=device).normal_()
i = ((x < 2) & (x > -2)).max(-1, keepdim=True)[1]
return torch.clamp_(x.gather(-1, i).squeeze(-1), -2, 2)
class RNNWrapper(Module):
def __init__(
self, rnn_type, *args, reverse=False, orthogonal_weight_init=True, disable_state_bias=True, bidirectional=False, **kwargs
):
super().__init__()
if reverse and bidirectional:
raise Exception("'reverse' and 'bidirectional' should not both be set to True")
self.reverse = reverse
self.rnn = rnn_type(*args, bidirectional=bidirectional, **kwargs)
self.init_orthogonal(orthogonal_weight_init)
self.init_biases()
if disable_state_bias: self.disable_state_bias()
def forward(self, x):
if self.reverse: x = x.flip(0)
y, h = self.rnn(x)
if self.reverse: y = y.flip(0)
return y
def init_biases(self, types=('bias_ih',)):
for name, param in self.rnn.named_parameters():
if any(k in name for k in types):
with torch.no_grad():
param.set_(0.5*truncated_normal(param.shape, dtype=param.dtype, device=param.device))
def init_orthogonal(self, types=True):
if not types: return
if types == True: types = ('weight_ih', 'weight_hh')
for name, x in self.rnn.named_parameters():
if any(k in name for k in types):
for i in range(0, x.size(0), self.rnn.hidden_size):
orthogonal_(x[i:i+self.rnn.hidden_size])
def disable_state_bias(self):
for name, x in self.rnn.named_parameters():
if 'bias_hh' in name:
x.requires_grad = False
x.zero_()
@register
class LSTM(RNNWrapper):
def __init__(self, size, insize, bias=True, reverse=False):
super().__init__(torch.nn.LSTM, size, insize, bias=bias, reverse=reverse)
def to_dict(self, include_weights=False):
res = {
'size': self.rnn.hidden_size,
'insize': self.rnn.input_size,
'bias': self.rnn.bias,
'reverse': self.reverse,
}
if include_weights:
res['params'] = {
'iW': self.rnn.weight_ih_l0.reshape(4, self.rnn.hidden_size, self.rnn.input_size),
'sW': self.rnn.weight_hh_l0.reshape(4, self.rnn.hidden_size, self.rnn.hidden_size),
'b': self.rnn.bias_ih_l0.reshape(4, self.rnn.hidden_size)
}
return res
def to_dict(layer, include_weights=False):
if hasattr(layer, 'to_dict'):
return {'type': layer.name, **layer.to_dict(include_weights)}
return {'type': layer.name}
def from_dict(model_dict, layer_types=None):
model_dict = model_dict.copy()
if layer_types is None:
layer_types = layers
type_name = model_dict.pop('type')
typ = layer_types[type_name]
if 'sublayers' in model_dict:
sublayers = model_dict['sublayers']
model_dict['sublayers'] = [
from_dict(x, layer_types) for x in sublayers
] if isinstance(sublayers, list) else from_dict(sublayers, layer_types)
try:
layer = typ(**model_dict)
except Exception as e:
raise Exception(f'Failed to build layer of type {typ} with args {model_dict}') from e
return layer
| bonito-master | bonito/nn.py |
"""
Bonito Input/Output
"""
import os
import sys
import csv
import pandas as pd
from warnings import warn
from threading import Thread
from logging import getLogger
from contextlib import contextmanager
from os.path import realpath, splitext, dirname
import numpy as np
from mappy import revcomp
import bonito
from bonito.cli.convert import typical_indices
logger = getLogger('bonito')
class CSVLogger:
def __init__(self, filename, sep=','):
self.filename = str(filename)
if os.path.exists(self.filename):
with open(self.filename) as f:
self.columns = csv.DictReader(f).fieldnames
else:
self.columns = None
self.fh = open(self.filename, 'a', newline='')
self.csvwriter = csv.writer(self.fh, delimiter=sep)
self.count = 0
def set_columns(self, columns):
if self.columns:
raise Exception('Columns already set')
self.columns = list(columns)
self.csvwriter.writerow(self.columns)
def append(self, row):
if self.columns is None:
self.set_columns(row.keys())
self.csvwriter.writerow([row.get(k, '-') for k in self.columns])
self.count += 1
if self.count > 100:
self.count = 0
self.fh.flush()
def close(self):
self.fh.close()
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
@contextmanager
def devnull(*args, **kwds):
"""
A context manager that sends all out stdout & stderr to devnull.
"""
save_fds = [os.dup(1), os.dup(2)]
null_fds = [os.open(os.devnull, os.O_RDWR) for _ in range(2)]
os.dup2(null_fds[0], 1)
os.dup2(null_fds[1], 2)
try:
yield
finally:
os.dup2(save_fds[0], 1)
os.dup2(save_fds[1], 2)
for fd in null_fds + save_fds: os.close(fd)
def write_fasta(header, sequence, fd=sys.stdout):
"""
Write a fasta record to a file descriptor.
"""
fd.write(">%s\n" % header)
fd.write("%s\n" % sequence)
fd.flush()
def write_fastq(header, sequence, qstring, fd=sys.stdout):
"""
Write a fastq record to a file descriptor.
"""
fd.write("@%s\n" % header)
fd.write("%s\n" % sequence)
fd.write("+\n")
fd.write("%s\n" % qstring)
fd.flush()
def write_sam_header(aligner, fd=sys.stdout, sep='\t'):
"""
Write the SQ & PG sam headers to a file descriptor.
"""
fd.write('%s\n' % os.linesep.join([
sep.join([
'@SQ', 'SN:%s' % name, 'LN:%s' % len(aligner.seq(name))
]) for name in aligner.seq_names
]))
fd.write('%s\n' % sep.join([
'@PG',
'ID:bonito',
'PN:bonito',
'VN:%s' % bonito.__version__,
'CL:%s' % ' '.join(sys.argv),
]))
fd.flush()
def write_sam(read_id, sequence, qstring, mapping, fd=sys.stdout, unaligned=False, sep='\t'):
"""
Write a sam record to a file descriptor.
"""
if unaligned:
fd.write("%s\n" % sep.join(map(str, [
read_id, 4, '*', 0, 0, '*', '*', 0, 0, sequence, qstring, 'NM:i:0'
])))
else:
softclip = [
'%sS' % mapping.q_st if mapping.q_st else '',
mapping.cigar_str,
'%sS' % (len(sequence) - mapping.q_en) if len(sequence) - mapping.q_en else ''
]
fd.write("%s\n" % sep.join(map(str, [
read_id,
0 if mapping.strand == +1 else 16,
mapping.ctg,
mapping.r_st + 1,
mapping.mapq,
''.join(softclip if mapping.strand == +1 else softclip[::-1]),
'*', 0, 0,
sequence if mapping.strand == +1 else revcomp(sequence),
qstring,
'NM:i:%s' % mapping.NM,
'MD:Z:%s' % mapping.MD,
])))
fd.flush()
def summary_file():
"""
Return the filename to use for the summary tsv.
"""
stdout = realpath('/dev/fd/1')
if sys.stdout.isatty() or stdout.startswith('/proc'):
return 'summary.tsv'
return '%s_summary.tsv' % splitext(stdout)[0]
summary_field_names = [
'filename',
'read_id',
'run_id',
'channel',
'mux',
'start_time',
'duration',
'template_start',
'template_duration',
'sequence_length_template',
'mean_qscore_template',
#if alignment
'alignment_genome',
'alignment_genome_start',
'alignment_genome_end',
'alignment_strand_start',
'alignment_strand_end',
'alignment_direction',
'alignment_length',
'alignment_num_aligned',
'alignment_num_correct',
'alignment_num_insertions',
'alignment_num_deletions',
'alignment_num_substitutions',
'alignment_mapq',
'alignment_strand_coverage',
'alignment_identity',
'alignment_accuracy',
]
def summary_row(read, seqlen, qscore, alignment=False):
"""
Summary tsv row.
"""
fields = [
read.filename,
read.read_id,
read.run_id,
read.channel,
read.mux,
read.start,
read.duration,
read.template_start,
read.template_duration,
seqlen,
qscore,
]
if alignment:
ins = sum(count for count, op in alignment.cigar if op == 1)
dels = sum(count for count, op in alignment.cigar if op == 2)
subs = alignment.NM - ins - dels
length = alignment.blen
matches = length - ins - dels
correct = alignment.mlen
fields.extend([
alignment.ctg,
alignment.r_st,
alignment.r_en,
alignment.q_st if alignment.strand == +1 else seqlen - alignment.q_en,
alignment.q_en if alignment.strand == +1 else seqlen - alignment.q_st,
'+' if alignment.strand == +1 else '-',
length, matches, correct,
ins, dels, subs,
alignment.mapq,
(alignment.q_en - alignment.q_st) / seqlen,
correct / matches,
correct / length,
])
elif alignment is None:
fields.extend(
['*', -1, -1, -1, -1, '*', 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0]
)
return dict(zip(summary_field_names, fields))
duplex_summary_field_names = [
'filename_template',
'read_id_template',
'filename_complement',
'read_id_complement',
'run_id',
'channel_template',
'mux_template',
'channel_complement',
'mux_complement',
'sequence_length_duplex',
'mean_qscore_duplex',
#if alignment
'alignment_genome',
'alignment_genome_start',
'alignment_genome_end',
'alignment_strand_start',
'alignment_strand_end',
'alignment_direction',
'alignment_length',
'alignment_num_aligned',
'alignment_num_correct',
'alignment_num_insertions',
'alignment_num_deletions',
'alignment_num_substitutions',
'alignment_mapq',
'alignment_strand_coverage',
'alignment_identity',
'alignment_accuracy',
]
def duplex_summary_row(read_temp, comp_read, seqlen, qscore, alignment=False):
"""
Duplex summary tsv row.
"""
fields = [
read_temp.filename,
read_temp.read_id,
comp_read.filename,
comp_read.read_id,
read_temp.run_id,
read_temp.channel,
read_temp.mux,
comp_read.channel,
comp_read.mux,
seqlen,
qscore,
]
if alignment:
ins = sum(count for count, op in alignment.cigar if op == 1)
dels = sum(count for count, op in alignment.cigar if op == 2)
subs = alignment.NM - ins - dels
length = alignment.blen
matches = length - ins - dels
correct = alignment.mlen
fields.extend([
alignment.ctg,
alignment.r_st,
alignment.r_en,
alignment.q_st if alignment.strand == +1 else seqlen - alignment.q_en,
alignment.q_en if alignment.strand == +1 else seqlen - alignment.q_st,
'+' if alignment.strand == +1 else '-',
length, matches, correct,
ins, dels, subs,
alignment.mapq,
(alignment.q_en - alignment.q_st) / seqlen,
correct / matches,
correct / length,
])
elif alignment is None:
fields.extend(
['*', -1, -1, -1, -1, '*', 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0]
)
return dict(zip(duplex_summary_field_names, fields))
class Writer(Thread):
def __init__(self, iterator, aligner, fd=sys.stdout, fastq=False, duplex=False):
super().__init__()
self.fd = fd
self.log = []
self.fastq = fastq
self.duplex = duplex
self.aligner = aligner
self.iterator = iterator
self.write_headers()
def write_headers(self):
if self.aligner:
write_sam_header(self.aligner, fd=self.fd)
def run(self):
with CSVLogger(summary_file(), sep='\t') as summary:
for read, res in self.iterator:
seq = res['sequence']
qstring = res.get('qstring', '*')
mean_qscore = res.get('mean_qscore', 0.0)
mapping = res.get('mapping', False)
if self.duplex:
samples = len(read[0].signal) + len(read[1].signal)
read_id = '%s;%s' % (read[0].read_id, read[1].read_id)
else:
samples = len(read.signal)
read_id = read.read_id
if len(seq):
if self.aligner:
write_sam(read_id, seq, qstring, mapping, fd=self.fd, unaligned=mapping is None)
else:
if self.fastq:
write_fastq(read_id, seq, qstring, fd=self.fd)
else:
write_fasta(read_id, seq, fd=self.fd)
if self.duplex:
summary.append(duplex_summary_row(read[0], read[1], len(seq), mean_qscore, alignment=mapping))
else:
summary.append(summary_row(read, len(seq), mean_qscore, alignment=mapping))
self.log.append((read_id, samples))
else:
logger.warn("> skipping empty sequence %s", read_id)
class CTCWriter(Thread):
"""
CTC writer process that writes output numpy training data.
"""
def __init__(self, iterator, aligner, min_coverage, min_accuracy, fd=sys.stdout):
super().__init__()
self.fd = fd
self.log = []
self.aligner = aligner
self.iterator = iterator
self.min_coverage = min_coverage
self.min_accuracy = min_accuracy
self.write_headers()
def write_headers(self):
if self.aligner:
write_sam_header(self.aligner, fd=self.fd)
def run(self):
chunks = []
targets = []
lengths = []
with CSVLogger(summary_file(), sep='\t') as summary:
for read, ctc_data in self.iterator:
seq = ctc_data['sequence']
qstring = ctc_data['qstring']
mean_qscore = ctc_data['mean_qscore']
mapping = ctc_data.get('mapping', False)
self.log.append((read.read_id, len(read.signal)))
if len(seq) == 0 or mapping is None:
continue
cov = (mapping.q_en - mapping.q_st) / len(seq)
acc = mapping.mlen / mapping.blen
refseq = self.aligner.seq(mapping.ctg, mapping.r_st, mapping.r_en)
if acc < self.min_accuracy or cov < self.min_coverage or 'N' in refseq:
continue
write_sam(read.read_id, seq, qstring, mapping, fd=self.fd, unaligned=mapping is None)
summary.append(summary_row(read, len(seq), mean_qscore, alignment=mapping))
if mapping.strand == -1:
refseq = revcomp(refseq)
target = [int(x) for x in refseq.translate({65: '1', 67: '2', 71: '3', 84: '4'})]
targets.append(target)
chunks.append(read.signal)
lengths.append(len(target))
if len(chunks) == 0:
sys.stderr.write("> no suitable ctc data to write\n")
return
chunks = np.array(chunks, dtype=np.float16)
targets_ = np.zeros((chunks.shape[0], max(lengths)), dtype=np.uint8)
for idx, target in enumerate(targets): targets_[idx, :len(target)] = target
lengths = np.array(lengths, dtype=np.uint16)
indices = np.random.permutation(typical_indices(lengths))
chunks = chunks[indices]
targets_ = targets_[indices]
lengths = lengths[indices]
summary = pd.read_csv(summary_file(), sep='\t')
summary.iloc[indices].to_csv(summary_file(), sep='\t', index=False)
output_directory = '.' if sys.stdout.isatty() else dirname(realpath('/dev/fd/1'))
np.save(os.path.join(output_directory, "chunks.npy"), chunks)
np.save(os.path.join(output_directory, "references.npy"), targets_)
np.save(os.path.join(output_directory, "reference_lengths.npy"), lengths)
sys.stderr.write("> written ctc training data\n")
sys.stderr.write(" - chunks.npy with shape (%s)\n" % ','.join(map(str, chunks.shape)))
sys.stderr.write(" - references.npy with shape (%s)\n" % ','.join(map(str, targets_.shape)))
sys.stderr.write(" - reference_lengths.npy shape (%s)\n" % ','.join(map(str, lengths.shape)))
def stop(self):
self.join()
| bonito-master | bonito/io.py |
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from bonito.cli import basecaller, train, evaluate, view, convert, download, export, duplex
modules = [
'basecaller', 'train', 'evaluate', 'view', 'convert', 'download', 'export', 'duplex',
]
__version__ = '0.4.0'
def main():
parser = ArgumentParser(
'bonito',
formatter_class=ArgumentDefaultsHelpFormatter
)
parser.add_argument(
'-v', '--version', action='version',
version='%(prog)s {}'.format(__version__)
)
subparsers = parser.add_subparsers(
title='subcommands', description='valid commands',
help='additional help', dest='command'
)
subparsers.required = True
for module in modules:
mod = globals()[module]
p = subparsers.add_parser(module, parents=[mod.argparser()])
p.set_defaults(func=mod.main)
args = parser.parse_args()
args.func(args)
| bonito-master | bonito/__init__.py |
"""
Bonito Multiprocesing
"""
import queue
from itertools import count
from threading import Thread
from functools import partial
from collections import deque
from signal import signal, SIGINT
from multiprocessing import Process, Queue, Event, Lock, cpu_count
def process_iter(iterator, maxsize=1):
"""
Take an iterator and run it on another process.
"""
return iter(ProcessIterator(iterator, maxsize=maxsize))
def thread_iter(iterator, maxsize=1):
"""
Take an iterator and run it on another thread.
"""
return iter(ThreadIterator(iterator, maxsize=maxsize))
def process_cancel():
"""
Register an cancel event on sigint
"""
event = Event()
signal(SIGINT, lambda *a: event.set())
return event
def process_map(func, iterator, n_proc=4, maxsize=0):
"""
Take an `iterator` of key, value pairs and apply `func` to all values using `n_proc` processes.
"""
if n_proc == 0: return ((k, func(v)) for k, v in iterator)
return iter(ProcessMap(func, iterator, n_proc, output_queue=Queue(maxsize)))
def thread_map(func, iterator, n_thread=4, maxsize=2):
"""
Take an `iterator` of key, value pairs and apply `func` to all values using `n_thread` threads.
"""
if n_thread == 0: return ((k, func(v)) for k, v in iterator)
return iter(ThreadMap(partial(MapWorkerThread, func), iterator, n_thread, maxsize=maxsize))
class BackgroundIterator:
"""
Runs an iterator in the background.
"""
def __init__(self, iterator, maxsize=10):
super().__init__()
self.iterator = iterator
self.queue = self.QueueClass(maxsize)
def __iter__(self):
self.start()
while True:
item = self.queue.get()
if item is StopIteration:
break
yield item
def run(self):
for item in self.iterator:
self.queue.put(item)
self.queue.put(StopIteration)
def stop(self):
self.join()
class ThreadIterator(BackgroundIterator, Thread):
"""
Runs an iterator in a separate process.
"""
QueueClass = queue.Queue
class ProcessIterator(BackgroundIterator, Process):
"""
Runs an iterator in a separate process.
"""
QueueClass = Queue
class MapWorker(Process):
"""
Process that reads items from an input_queue, applies a func to them and puts them on an output_queue
"""
def __init__(self, func, input_queue, output_queue):
super().__init__()
self.func = func
self.input_queue = input_queue
self.output_queue = output_queue
def run(self):
while True:
item = self.input_queue.get()
if item is StopIteration:
break
k, v = item
self.output_queue.put((k, self.func(v)))
class ProcessMap(Thread):
def __init__(self, func, iterator, n_proc, output_queue=None):
super().__init__()
self.key_map = {}
self.iterator = iterator
self.work_queue = Queue(n_proc * 2)
self.output_queue = output_queue or Queue()
self.processes = [MapWorker(func, self.work_queue, self.output_queue) for _ in range(n_proc)]
def start(self):
for process in self.processes:
process.start()
super().start()
def run(self):
for (k, v) in self.iterator:
self.work_queue.put((id(k), v))
self.key_map[id(k)] = k
for _ in self.processes:
self.work_queue.put(StopIteration)
for process in self.processes:
process.join()
self.output_queue.put(StopIteration)
def __iter__(self):
self.start()
while True:
item = self.output_queue.get()
if item is StopIteration:
break
k, v = item
yield self.key_map.pop(k), v
class MapWorkerThread(Thread):
"""
Process that reads items from an input_queue, applies a func to them and puts them on an output_queue
"""
def __init__(self, func, input_queue=None, output_queue=None):
super().__init__()
self.func = func
self.input_queue = input_queue
self.output_queue = output_queue
def run(self):
while True:
item = self.input_queue.get()
if item is StopIteration:
self.output_queue.put(item)
break
k, v = item
self.output_queue.put((k, self.func(v)))
class ThreadMap(Thread):
def __init__(self, worker_type, iterator, n_thread, maxsize=2):
super().__init__()
self.iterator = iterator
self.n_thread = n_thread
self.work_queues = [queue.Queue(maxsize) for _ in range(n_thread)]
self.output_queues = [queue.Queue(maxsize) for _ in range(n_thread)]
self.workers = [worker_type(input_queue=in_q, output_queue=out_q) for (in_q, out_q) in zip(self.work_queues, self.output_queues)]
def start(self):
for worker in self.workers:
worker.start()
super().start()
def __iter__(self):
self.start()
for i in count():
item = self.output_queues[i % self.n_thread].get()
if item is StopIteration:
#do we need to empty output_queues in order to join worker threads?
for j in range(i + 1, i + self.n_thread):
self.output_queues[j % self.n_thread].get()
break
yield item
def run(self):
for i, (k, v) in enumerate(self.iterator):
self.work_queues[i % self.n_thread].put((k, v))
for q in self.work_queues:
q.put(StopIteration)
for worker in self.workers:
worker.join()
| bonito-master | bonito/multiprocessing.py |
"""
Bonito train
"""
import os
import re
from glob import glob
from functools import partial
from time import perf_counter
from collections import OrderedDict
from datetime import datetime
from bonito.util import accuracy, decode_ref, permute, concat, match_names
import bonito
import torch
import numpy as np
import torch.nn as nn
from tqdm import tqdm
from torch.optim.lr_scheduler import LambdaLR
import torch.cuda.amp as amp
class ChunkDataSet:
def __init__(self, chunks, targets, lengths):
self.chunks = np.expand_dims(chunks, axis=1)
self.targets = targets
self.lengths = lengths
def __getitem__(self, i):
return (
self.chunks[i].astype(np.float32),
self.targets[i].astype(np.int64),
self.lengths[i].astype(np.int64),
)
def __len__(self):
return len(self.lengths)
def const_schedule(y):
"""
Constant Scheduler
"""
return lambda t: y
def linear_schedule(y0, y1):
"""
Linear Scheduler
"""
return lambda t: y0 + (y1 - y0) * t
def cosine_decay_schedule(y0, y1):
"""
Cosine Decay Scheduler
"""
return lambda t: y1 + 0.5 * (y0 - y1) * (np.cos(t * np.pi) + 1.0)
def piecewise_schedule(knots, funcs):
"""
Piecewise Scheduler
"""
def f(t):
i = np.searchsorted(knots, t)
t0 = 0.0 if i == 0 else knots[i - 1]
t1 = 1.0 if i == len(knots) else knots[i]
return funcs[i]((t - t0) / (t1 - t0))
return f
def func_scheduler(optimizer, func, total_steps, warmup_steps=None, warmup_ratio=0.1, start_step=0):
"""
Learning Rate Scheduler
"""
if warmup_steps:
y0 = func(0.0)
func = piecewise_schedule(
[warmup_steps / total_steps],
[linear_schedule(warmup_ratio * y0, y0), func]
)
return LambdaLR(optimizer, (lambda step: func((step + start_step) / total_steps)))
def load_state(dirname, device, model):
"""
Load a model state dict from disk
"""
model.to(device)
weight_no = None
weight_files = glob(os.path.join(dirname, "weights_*.tar"))
if weight_files:
weight_no = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files])
if weight_no:
print("[picking up from epoch %s]" % weight_no)
state_dict = torch.load(
os.path.join(dirname, 'weights_%s.tar' % weight_no), map_location=device
)
state_dict = {k2: state_dict[k1] for k1, k2 in match_names(state_dict, model).items()}
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k.replace('module.', '')
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
epoch = weight_no
else:
epoch = 0
return epoch
class Trainer:
def __init__(self, model, device, train_loader, valid_loader, criterion=None, use_amp=True):
self.model = model.to(device)
self.device = device
self.train_loader = train_loader
self.valid_loader = valid_loader
self.criterion = criterion or (model.seqdist.ctc_loss if hasattr(model, 'seqdist') else model.ctc_label_smoothing_loss)
self.use_amp = use_amp
self.scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
self.optimizer = None
def train_one_step(self, batch):
data, targets, lengths = batch
self.optimizer.zero_grad()
with amp.autocast(enabled=self.use_amp):
scores = self.model(data.to(self.device))
losses = self.criterion(scores, targets.to(self.device), lengths.to(self.device))
if not isinstance(losses, dict):
losses = {'loss': losses}
self.scaler.scale(losses['loss']).backward()
self.scaler.unscale_(self.optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=2.0).item()
self.scaler.step(self.optimizer)
self.scaler.update()
return losses, grad_norm
def train_one_epoch(self, loss_log, lr_scheduler):
t0 = perf_counter()
chunks = 0
self.model.train()
progress_bar = tqdm(
total=len(self.train_loader), desc='[0/{}]'.format(len(self.train_loader.dataset)),
ascii=True, leave=True, ncols=100, bar_format='{l_bar}{bar}| [{elapsed}{postfix}]'
)
smoothed_loss = None
with progress_bar:
for batch in self.train_loader:
chunks += batch[0].shape[0]
losses, grad_norm = self.train_one_step(batch)
losses = {k: v.item() for k,v in losses.items()}
if lr_scheduler is not None: lr_scheduler.step()
smoothed_loss = losses['loss'] if smoothed_loss is None else (0.01 * losses['loss'] + 0.99 * smoothed_loss)
progress_bar.set_postfix(loss='%.4f' % smoothed_loss)
progress_bar.set_description("[{}/{}]".format(chunks, len(self.train_loader.dataset)))
progress_bar.update()
if loss_log is not None:
loss_log.append({'chunks': chunks, 'time': perf_counter() - t0, 'grad_norm': grad_norm, **losses})
return smoothed_loss, perf_counter() - t0
def validate_one_step(self, batch):
data, targets, lengths = batch
scores = self.model(data.to(self.device))
losses = self.criterion(scores, targets.to(self.device), lengths.to(self.device))
losses = {k: v.item() for k, v in losses.items()} if isinstance(losses, dict) else losses.item()
if hasattr(self.model, 'decode_batch'):
seqs = self.model.decode_batch(scores)
else:
seqs = [self.model.decode(x) for x in permute(scores, 'TNC', 'NTC')]
refs = [decode_ref(target, self.model.alphabet) for target in targets]
accs = [
accuracy(ref, seq, min_coverage=0.5) if len(seq) else 0. for ref, seq in zip(refs, seqs)
]
return seqs, refs, accs, losses
def validate_one_epoch(self):
self.model.eval()
with torch.no_grad():
seqs, refs, accs, losses = zip(*(self.validate_one_step(batch) for batch in self.valid_loader))
seqs, refs, accs = (sum(x, []) for x in (seqs, refs, accs))
loss = np.mean([(x['ctc_loss'] if isinstance(x, dict) else x) for x in losses])
return loss, np.mean(accs), np.median(accs)
def init_optimizer(self, lr, **kwargs):
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr, **kwargs)
def get_lr_scheduler(self, epochs, last_epoch=0):
return func_scheduler(
self.optimizer, cosine_decay_schedule(1.0, 0.1), epochs * len(self.train_loader),
warmup_steps=500,
start_step=last_epoch*len(self.train_loader)
)
def fit(self, workdir, epochs=1, lr=2e-3, last_epoch=0):
if self.optimizer is None:
self.init_optimizer(lr)
lr_scheduler = self.get_lr_scheduler(epochs, last_epoch=last_epoch)
for epoch in range(1 + last_epoch, epochs + 1 + last_epoch):
try:
with bonito.io.CSVLogger(os.path.join(workdir, 'losses_{}.csv'.format(epoch))) as loss_log:
train_loss, duration = self.train_one_epoch(loss_log, lr_scheduler)
model_state = self.model.module.state_dict() if hasattr(self.model, 'module') else self.model.state_dict()
torch.save(model_state, os.path.join(workdir, "weights_%s.tar" % epoch))
val_loss, val_mean, val_median = self.validate_one_epoch()
except KeyboardInterrupt:
break
print("[epoch {}] directory={} loss={:.4f} mean_acc={:.3f}% median_acc={:.3f}%".format(
epoch, workdir, val_loss, val_mean, val_median
))
with bonito.io.CSVLogger(os.path.join(workdir, 'training.csv')) as training_log:
training_log.append({
'time': datetime.today(),
'duration': int(duration),
'epoch': epoch,
'train_loss': train_loss,
'validation_loss': val_loss,
'validation_mean': val_mean,
'validation_median': val_median
}) | bonito-master | bonito/training.py |
"""
Bonito Download
"""
import os
import re
from shutil import rmtree
from zipfile import ZipFile
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from bonito.util import __data__, __models__
from bonito.cli.convert import main as convert
from bonito.cli.convert import argparser as cargparser
import requests
from tqdm import tqdm
class File:
"""
Small class for downloading models and training assets.
"""
__url__ = "https://nanoporetech.box.com/shared/static/"
def __init__(self, path, url_frag, force):
self.path = path
self.force = force
self.url = os.path.join(self.__url__, url_frag)
def location(self, filename):
return os.path.join(self.path, filename)
def exists(self, filename):
return os.path.exists(self.location(filename))
def download(self):
"""
Download the remote file
"""
# create the requests for the file
req = requests.get(self.url, stream=True)
total = int(req.headers.get('content-length', 0))
fname = re.findall('filename="([^"]+)', req.headers['content-disposition'])[0]
# skip download if local file is found
if self.exists(fname.strip('.zip')) and not self.force:
print("[skipping %s]" % fname)
return
if self.exists(fname.strip('.zip')) and self.force:
rmtree(self.location(fname.strip('.zip')))
# download the file
with tqdm(total=total, unit='iB', ascii=True, ncols=100, unit_scale=True, leave=False) as t:
with open(self.location(fname), 'wb') as f:
for data in req.iter_content(1024):
f.write(data)
t.update(len(data))
print("[downloaded %s]" % fname)
# unzip .zip files
if fname.endswith('.zip'):
with ZipFile(self.location(fname), 'r') as zfile:
zfile.extractall(self.path)
os.remove(self.location(fname))
# convert chunkify training files to bonito
if fname.endswith('.hdf5'):
print("[converting %s]" % fname)
args = cargparser().parse_args([
self.location(fname),
self.location(fname).strip('.hdf5')
])
convert(args)
r9_models = [
"n8c07gc9ro09zt0ivgcoeuz6krnwsnf6.zip", # dna_r9.4.1@v1
"nas0uhf46fd1lh2jndhx2a54a9vvhxp4.zip", # dna_r9.4.1@v2
"1wodp3ur4jhvqvu5leowfg6lrw54jxp2.zip", # dna_r9.4.1@v3
"uetgwsnb8yfqvuyoka8p09mxilgskqc7.zip", # [email protected]
"47t2y48zw4waly25lmzx6sagf4bbbqqz.zip", # [email protected]
"hrv649cvx8lvomu1u0tsd47e5u2bbabt.zip", # [email protected]
"arqi4qwcj9btsd6bbjsnlbai0s6dg8yd.zip",
]
r10_models = [
"e70s615lh3i24rkhz006i0e4u4m8y2xa.zip", # dna_r10.3_q20ea
"hnr5mwlm8vmdsfpvn5fsxn3mvhbucy5f.zip", # dna_r10.3@v3
"yesf11tisfrncmod5hj2xtx9kbdveuqt.zip", # [email protected]
"ci6xdu7d4wczmhorhw1sweyg4gczx97t.zip", # [email protected]
"4cunv5z7nwjag7v2bun0g7vk2lf8rqnc.zip",
]
training = [
"cmh91cxupa0are1kc3z9aok425m75vrb.hdf5",
]
def main(args):
"""
Download models and training sets
"""
if args.models or args.all:
print("[downloading models]")
for model in r9_models[-1 if args.latest else 0:]:
File(__models__, model, args.force).download()
for model in r10_models[-1 if args.latest else 0:]:
File(__models__, model, args.force).download()
if args.training or args.all:
print("[downloading training data]")
for train in training:
File(__data__, train, args.force).download()
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
group = parser.add_mutually_exclusive_group()
group.add_argument('--all', action='store_true')
group.add_argument('--models', action='store_true')
group.add_argument('--training', action='store_true')
parser.add_argument('-f', '--force', action='store_true')
parser.add_argument('--latest', action='store_true')
return parser
| bonito-master | bonito/cli/download.py |
#!/usr/bin/env python
"""
Convert a Taiyaki chunkify training file to set of Bonito CTC .npy files
"""
import os
import h5py
import random
import numpy as np
from argparse import ArgumentParser
from collections import OrderedDict
from itertools import islice as take
from argparse import ArgumentDefaultsHelpFormatter
from tqdm import tqdm
from bonito.training import ChunkDataSet
def align(samples, pointers, reference):
""" align to the start of the mapping """
squiggle_duration = len(samples)
mapped_off_the_start = len(pointers[pointers < 0])
mapped_off_the_end = len(pointers[pointers >= squiggle_duration])
pointers = pointers[mapped_off_the_start:len(pointers) - mapped_off_the_end]
reference = reference[mapped_off_the_start:len(reference) - mapped_off_the_end]
return samples[pointers[0]:pointers[-1]], pointers - pointers[0], reference
def scale(read, normalise=True):
""" scale and normalise a read """
samples = read['Dacs'][:]
scaling = read.attrs['range'] / read.attrs['digitisation']
scaled = (scaling * (samples + read.attrs['offset'])).astype(np.float32)
if normalise:
return (scaled - read.attrs['shift_frompA']) / read.attrs['scale_frompA']
return scaled
def pad_lengths(ragged_array, max_len=None):
lengths = np.array([len(x) for x in ragged_array], dtype=np.uint16)
padded = np.zeros((len(ragged_array), max_len or np.max(lengths)), dtype=ragged_array[0].dtype)
for x, y in zip(ragged_array, padded):
y[:len(x)] = x
return padded, lengths
def regular_break_points(n, chunk_len, overlap=0, align='mid'):
num_chunks, remainder = divmod(n - overlap, chunk_len - overlap)
start = {'left': 0, 'mid': remainder // 2, 'right': remainder}[align]
starts = np.arange(start, start + num_chunks*(chunk_len - overlap), (chunk_len - overlap))
return np.vstack([starts, starts + chunk_len]).T
def get_chunks(read, break_points):
sample = scale(read)
pointers = read['Ref_to_signal'][:]
target = read['Reference'][:] + 1 # CTC convention
return (
(sample[i:j], target[ti:tj]) for (i, j), (ti, tj)
in zip(break_points, np.searchsorted(pointers, break_points))
)
def chunk_dataset(reads, chunk_len, num_chunks=None):
all_chunks = (
(chunk, target) for read in reads for chunk, target in
get_chunks(reads[read], regular_break_points(len(reads[read]['Dacs']), chunk_len))
)
chunks, targets = zip(*tqdm(take(all_chunks, num_chunks), total=num_chunks))
targets, target_lens = pad_lengths(targets) # convert refs from ragged arrray
return ChunkDataSet(chunks, targets, target_lens)
def validation_split(reads, num_valid=1000):
reads = np.random.permutation(sorted(reads.items()))
return OrderedDict(reads[:-num_valid]), OrderedDict(reads[-num_valid:])
def typical_indices(x, n=2.5):
mu, sd = np.mean(x), np.std(x)
idx, = np.where((mu - n*sd < x) & (x < mu + n*sd))
return idx
def filter_chunks(ds, idx):
filtered = ChunkDataSet(ds.chunks.squeeze(1)[idx], ds.targets[idx], ds.lengths[idx])
filtered.targets = filtered.targets[:, :filtered.lengths.max()]
return filtered
def save_chunks(chunks, output_directory):
os.makedirs(output_directory, exist_ok=True)
np.save(os.path.join(output_directory, "chunks.npy"), chunks.chunks.squeeze(1))
np.save(os.path.join(output_directory, "references.npy"), chunks.targets)
np.save(os.path.join(output_directory, "reference_lengths.npy"), chunks.lengths)
print()
print("> data written to %s:" % output_directory)
print(" - chunks.npy with shape", chunks.chunks.squeeze(1).shape)
print(" - references.npy with shape", chunks.targets.shape)
print(" - reference_lengths.npy shape", chunks.lengths.shape)
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
reads = h5py.File(args.chunkify_file, 'r')['Reads']
training, validation = validation_split(reads, args.validation_reads)
print("> preparing training chunks\n")
training_chunks = chunk_dataset(training, args.chunksize)
training_indices = typical_indices(training_chunks.lengths)
training_chunks = filter_chunks(training_chunks, np.random.permutation(training_indices))
save_chunks(training_chunks, args.output_directory)
print("\n> preparing validation chunks\n")
validation_chunks = chunk_dataset(validation, args.chunksize)
validation_indices = typical_indices(validation_chunks.lengths)
validation_chunks = filter_chunks(validation_chunks, validation_indices)
save_chunks(validation_chunks, os.path.join(args.output_directory, "validation"))
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument("chunkify_file")
parser.add_argument("output_directory")
parser.add_argument("--seed", default=25, type=int)
parser.add_argument("--chunksize", default=3600, type=int)
parser.add_argument("--validation-reads", default=1000, type=int)
return parser
| bonito-master | bonito/cli/convert.py |
bonito-master | bonito/cli/__init__.py |
|
"""
Bonito Export
"""
import os
import re
import sys
import json
import torch
import bonito
import hashlib
import numpy as np
from glob import glob
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
class JsonEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, torch.nn.Parameter):
return obj.data
elif isinstance(obj, torch.Tensor):
return obj.detach().numpy()
else:
return super(JsonEncoder, self).default(obj)
def file_md5(filename, nblock=1024):
"""
Get md5 string from file.
"""
hasher = hashlib.md5()
block_size = nblock * hasher.block_size
with open(filename, "rb") as fh:
for blk in iter((lambda: fh.read(block_size)), b""):
hasher.update(blk)
return hasher.hexdigest()
def reformat_output_layer(layer_dict):
n_base, state_len, blank_score = [layer_dict.pop(k) for k in ['n_base', 'state_len', 'blank_score']]
layer_dict['size'] = (n_base + 1) * n_base**state_len
layer_dict['type'] = 'GlobalNormTransducer'
if blank_score is not None:
assert layer_dict['activation'] == 'tanh'
params = layer_dict['params']
params['W'] = torch.nn.functional.pad(
params['W'].reshape([n_base**state_len, n_base, -1]),
(0, 0, 1, 0),
value=0.
).reshape((n_base + 1) * n_base**state_len, -1)
params['b'] = torch.nn.functional.pad(
params['b'].reshape(n_base**state_len, n_base),
(1, 0),
value=np.arctanh(blank_score / layer_dict['scale'])
).reshape(-1)
return layer_dict
def to_guppy_dict(model, include_weights=True):
guppy_dict = bonito.nn.to_dict(model.encoder, include_weights=include_weights)
guppy_dict['sublayers'] = [x for x in guppy_dict['sublayers'] if x['type'] != 'permute']
guppy_dict['sublayers'] = [dict(x, type='LSTM', activation='tanh', gate='sigmoid') if x['type'] == 'lstm' else x for x in guppy_dict['sublayers']]
guppy_dict['sublayers'] = [dict(x, padding=(x['padding'], x['padding'])) if x['type'] == 'convolution' else x for x in guppy_dict['sublayers']]
guppy_dict['sublayers'] = [{'type': 'reverse', 'sublayers': x} if x.pop('reverse', False) else x for x in guppy_dict['sublayers']]
guppy_dict['sublayers'][-1] = reformat_output_layer(guppy_dict['sublayers'][-1])
return guppy_dict
def main(args):
if not os.path.isdir(args.model):
print("[error] file given - please provide a model directory to export.", file=sys.stderr)
return 1
model = bonito.util.load_model(args.model, device='cpu')
jsn = to_guppy_dict(model)
weight_files = glob(os.path.join(args.model, "weights_*.tar"))
weights = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files])
jsn["md5sum"] = file_md5(os.path.join(args.model, 'weights_%s.tar' % weights))
json.dump(jsn, sys.stdout, cls=JsonEncoder)
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument('model')
return parser
| bonito-master | bonito/cli/export.py |
"""
Bonito model viewer - display a model architecture for a given config.
"""
import toml
import argparse
from bonito.util import load_symbol
def main(args):
config = toml.load(args.config)
Model = load_symbol(config, "Model")
model = Model(config)
print(model)
print("Total parameters in model", sum(p.numel() for p in model.parameters()))
def argparser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument("config")
return parser
| bonito-master | bonito/cli/view.py |
"""
Bonito Basecaller
"""
import sys
import torch
import numpy as np
from tqdm import tqdm
from time import perf_counter
from datetime import timedelta
from itertools import islice as take
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from bonito.aligner import Aligner
from bonito.io import CTCWriter, Writer
from bonito.fast5 import get_reads, read_chunks
from bonito.multiprocessing import process_cancel
from bonito.util import column_to_set, load_symbol, load_model
def main(args):
if args.save_ctc and not args.reference:
sys.stderr.write("> a reference is needed to output ctc training data\n")
exit(1)
sys.stderr.write("> loading model\n")
model = load_model(args.model_directory, args.device, weights=int(args.weights))
if args.reference:
sys.stderr.write("> loading reference\n")
aligner = Aligner(args.reference, preset='ont-map', best_n=1)
if not aligner:
sys.stderr.write("> failed to load/build index\n")
exit(1)
else:
aligner = None
reads = get_reads(
args.reads_directory, n_proc=8, recursive=args.recursive,
read_ids=column_to_set(args.read_ids), skip=args.skip,
cancel=process_cancel()
)
if args.max_reads:
reads = take(reads, args.max_reads)
basecall = load_symbol(args.model_directory, "basecall")
if args.save_ctc:
reads = (
chunk for read in reads for chunk in read_chunks(read, chunksize=args.chunksize)
)
basecalls = basecall(
model, reads, batchsize=64, chunksize=args.chunksize,
aligner=aligner, qscores=args.fastq, reverse=args.revcomp,
)
writer = CTCWriter(
tqdm(basecalls, desc="> calling", unit=" reads", leave=False),
aligner, args.ctc_min_coverage, args.ctc_min_accuracy
)
else:
basecalls = basecall(
model, reads, aligner=aligner, reverse=args.revcomp,
qscores=args.fastq, batchsize=args.batchsize, chunksize=args.chunksize,
)
writer = Writer(
tqdm(basecalls, desc="> calling", unit=" reads", leave=False),
aligner, fastq=args.fastq
)
t0 = perf_counter()
writer.start()
writer.join()
duration = perf_counter() - t0
num_samples = sum(num_samples for read_id, num_samples in writer.log)
sys.stderr.write("> completed reads: %s\n" % len(writer.log))
sys.stderr.write("> duration: %s\n" % timedelta(seconds=np.round(duration)))
sys.stderr.write("> samples per second %.1E\n" % (num_samples / duration))
sys.stderr.write("> done\n")
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument("model_directory")
parser.add_argument("reads_directory")
parser.add_argument("--reference")
parser.add_argument("--read-ids")
parser.add_argument("--device", default="cuda")
parser.add_argument("--weights", default="0", type=str)
parser.add_argument("--skip", action="store_true", default=False)
parser.add_argument("--fastq", action="store_true", default=False)
parser.add_argument("--save-ctc", action="store_true", default=False)
parser.add_argument("--revcomp", action="store_true", default=False)
parser.add_argument("--recursive", action="store_true", default=False)
parser.add_argument("--ctc-min-coverage", default=0.9, type=float)
parser.add_argument("--ctc-min-accuracy", default=0.9, type=float)
parser.add_argument("--batchsize", default=32, type=int)
parser.add_argument("--chunksize", default=4000, type=int)
parser.add_argument("--max-reads", default=0, type=int)
return parser
| bonito-master | bonito/cli/basecaller.py |
"""
Bonito Duplex consensus decoding.
https://www.biorxiv.org/content/10.1101/2020.02.25.956771v1
"""
import os
import sys
import json
from glob import glob
from pathlib import Path
from os.path import basename
from functools import partial
from time import perf_counter
from datetime import timedelta
from multiprocessing import Pool
from itertools import islice, groupby
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process, Queue, Lock, cpu_count
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import spoa
import torch
import parasail
import numpy as np
import pandas as pd
from tqdm import tqdm
from fast_ctc_decode import crf_beam_search, crf_beam_search_duplex
from genomeworks import cuda
from genomeworks.cudapoa import CudaPoaBatch, status_to_str
import bonito
from bonito.io import Writer, devnull
from bonito.aligner import Aligner, align_map
from bonito.util import load_model, half_supported
from bonito.crf.basecall import transfer, split_read, stitch
from bonito.fast5 import get_raw_data_for_read, get_fast5_file
from bonito.util import unbatchify, batchify, chunk, concat, accuracy
from bonito.multiprocessing import thread_map, process_map, process_cancel
def poagen(groups, gpu_percent=0.8):
free, total = cuda.cuda_get_mem_info(cuda.cuda_get_device())
gpu_mem_per_batch = gpu_percent * free
max_seq_sz = 0
max_sequences_per_poa = 0
for group in groups:
longest_seq = len(max(group, key=len))
max_seq_sz = longest_seq if longest_seq > max_seq_sz else max_seq_sz
seq_in_poa = len(group)
max_sequences_per_poa = seq_in_poa if seq_in_poa > max_sequences_per_poa else max_sequences_per_poa
batch = CudaPoaBatch(
max_sequences_per_poa,
max_seq_sz,
gpu_mem_per_batch,
output_type="consensus",
cuda_banded_alignment=True,
alignment_band_width=256,
)
poa_index = 0
initial_count = 0
while poa_index < len(groups):
group = groups[poa_index]
group_status, seq_status = batch.add_poa_group(group)
# If group was added and more space is left in batch, continue onto next group.
if group_status == 0:
for seq_index, status in enumerate(seq_status):
if status != 0:
print("Could not add sequence {} to POA {} - error {}".format(seq_index, poa_index, status_to_str(status)), file=sys.stderr)
poa_index += 1
# Once batch is full or no groups are left, run POA processing.
if ((group_status == 1) or ((group_status == 0) and (poa_index == len(groups)))):
batch.generate_poa()
consensus, coverage, con_status = batch.get_consensus()
for p, status in enumerate(con_status):
if status != 0:
print("Could not get consensus for POA group {} - {}".format(initial_count + p, status_to_str(status)), file=sys.stderr)
yield from consensus
initial_count = poa_index
batch.reset()
# In the case where POA group wasn't processed correctly.
elif group_status != 0:
print("Could not add POA group {} to batch - {}".format(poa_index, status_to_str(group_status)), file=sys.stderr)
poa_index += 1
def get_read(readdir, summary, idx):
"""
Get a single read from row `idx` in the `summary` dataframe.
"""
return get_raw_data_for_read(
(readdir / summary.iloc[idx].filename_fast5, summary.iloc[idx].read_id)
)
def read_gen(directory, summary, n_proc=1, cancel=None):
"""
Generate reads from the given `directory` listed in the `summary` dataframe.
"""
with Pool(n_proc) as pool:
for read in pool.imap(partial(get_read, Path(directory), summary), range(len(summary))):
yield read
if cancel is not None and cancel.is_set():
return
def get_read_ids(filename):
"""
Return a dictionary of read_id -> filename mappings.
"""
with get_fast5_file(filename, 'r') as f5:
return {
read.read_id: basename(filename) for read in f5.get_reads()
}
def build_index(files, n_proc=1):
"""
Build an index of read ids to filename mappings
"""
index = {}
with ProcessPoolExecutor(max_workers=n_proc) as pool:
for res in tqdm(pool.map(get_read_ids, files), leave=False):
index.update(res)
return index
def build_envelope(len1, seq1, path1, len2, seq2, path2, padding=15):
# needleman-wunsch alignment with constant gap penalty.
aln = parasail.nw_trace_striped_32(seq2, seq1, 2, 2, parasail.dnafull)
# pair up positions
alignment = np.column_stack([
np.cumsum([x != '-' for x in aln.traceback.ref]) - 1,
np.cumsum([x != '-' for x in aln.traceback.query]) - 1
])
path_range1 = np.column_stack([path1, path1[1:] + [len1]])
path_range2 = np.column_stack([path2, path2[1:] + [len2]])
envelope = np.full((len1, 2), -1, dtype=int)
for idx1, idx2 in alignment.clip(0):
st_1, en_1 = path_range1[idx1]
st_2, en_2 = path_range2[idx2]
for idx in range(st_1, en_1):
if st_2 < envelope[idx, 0] or envelope[idx, 0] < 0:
envelope[idx, 0] = st_2
if en_2 > envelope[idx, 1] or envelope[idx, 1] < 0:
envelope[idx, 1] = en_2
# add a little padding to ensure some overlap
envelope[:, 0] = envelope[:, 0] - padding
envelope[:, 1] = envelope[:, 1] + padding
envelope = np.clip(envelope, 0, len2)
prev_end = 0
for i in range(envelope.shape[0]):
if envelope[i, 0] > envelope[i, 1]:
envelope[i, 0] = 0
if envelope[i, 0] > prev_end:
envelope[i, 0] = prev_end
prev_end = envelope[i, 1]
return envelope.astype(np.uint64)
def find_follow_on(df, gap=5, distance=51, cov=0.85, min_len=100):
"""
Find follow on reads from a sequencing summary file.
"""
df = df[
df.alignment_coverage.astype('float32').gt(cov) &
df.sequence_length_template.astype('int32').gt(min_len)
]
df = df.sort_values(['run_id', 'channel', 'mux', 'start_time'])
genome_start = np.array(df.alignment_genome_start, dtype=np.int32)
genome_end = np.array(df.alignment_genome_end, dtype=np.int32)
direction = np.array(df.alignment_direction)
start_time = np.array(df.start_time, dtype=np.float32)
end_time = np.array(df.start_time + df.duration, dtype=np.float32)
channel = np.array(df.channel, dtype=np.int32)
mux = np.array(df.mux, dtype=np.int32)
filt = (
(channel[1:] == channel[:-1]) &
(mux[1:] == mux[:-1]) &
(np.abs(genome_start[1:] - genome_start[:-1]) < distance) &
(np.abs(genome_end[1:] - genome_end[:-1]) < distance) &
(direction[1:] != direction[:-1]) &
(start_time[1:] - end_time[:-1] < gap)
)
mask = np.full(len(filt) + 1, False)
mask[:-1] = mask[:-1] | filt
mask[1:] = mask[1:] | filt
return df[mask]
def compute_scores(model, batch, reverse=False):
with torch.no_grad():
device = next(model.parameters()).device
dtype = torch.float16 if half_supported() else torch.float32
scores = model.encoder(batch.to(dtype).to(device))
if reverse: scores = model.seqdist.reverse_complement(scores)
betas = model.seqdist.backward_scores(scores.to(torch.float32))
trans, init = model.seqdist.compute_transition_probs(scores, betas)
return {
'trans': trans.to(dtype).transpose(0, 1),
'init': init.to(dtype).unsqueeze(1),
}
def basecall(model, reads, chunksize=4000, overlap=500, batchsize=32, reverse=False):
reads = (
read_chunk for read in reads
for read_chunk in split_read(read, chunksize * batchsize)[::-1 if reverse else 1]
)
chunks = (
((read, start, end),
chunk(torch.from_numpy(read.signal[start:end]), chunksize, overlap))
for (read, start, end) in reads
)
batches = (
(k, compute_scores(model, batch, reverse=reverse))
for k, batch in batchify(chunks, batchsize=batchsize)
)
stitched = (
(read, stitch(x, chunksize, overlap, end - start, model.stride, reverse=reverse))
for ((read, start, end), x) in unbatchify(batches)
)
transferred = thread_map(transfer, stitched, n_thread=1)
return (
(read, concat([part for k, part in parts]))
for read, parts in groupby(transferred, lambda x: x[0])
)
def beam_search_duplex(seq1, path1, t1, b1, seq2, path2, t2, b2, alphabet='NACGT', beamsize=5, pad=40, T=0.01):
env = build_envelope(t1.shape[0], seq1, path1, t2.shape[0], seq2, path2, padding=pad)
return crf_beam_search_duplex(
t1, b1, t2, b2,
alphabet=alphabet,
beam_size=beamsize,
beam_cut_threshold=T,
envelope=env,
)
def decode(res, beamsize_1=5, pad_1=40, cut_1=0.01, beamsize_2=5, pad_2=40, cut_2=0.01, match=80, alphabet="NACGT"):
temp_probs, init1 = res[0]['trans'].astype(np.float32), res[0]['init'][0].astype(np.float32)
comp_probs, init2 = res[1]['trans'].astype(np.float32), res[1]['init'][0].astype(np.float32)
simplex1, path1 = crf_beam_search(temp_probs, init1, alphabet, beam_size=5, beam_cut_threshold=0.01)
simplex2, path2 = crf_beam_search(comp_probs, init2, alphabet, beam_size=5, beam_cut_threshold=0.01)
if len(simplex1) < 10 or len(simplex2) < 10:
return [simplex1, simplex2]
if accuracy(simplex1, simplex2) < match:
return [simplex1, simplex2]
duplex1 = beam_search_duplex(
simplex1, path1, temp_probs, init1, simplex2, path2, comp_probs, init2, pad=pad_1, beamsize=5, T=cut_1
)
duplex2 = beam_search_duplex(
simplex2, path2, comp_probs, init2, simplex1, path1, temp_probs, init1, pad=pad_2, beamsize=5, T=cut_2
)
return [duplex1, duplex2, simplex1, simplex2]
def poa(seqs, allseq=False):
con, msa = spoa.poa(seqs, genmsa=False)
if allseq: return (con, *seqs)
return (con, )
def call(model, reads_directory, templates, complements, aligner=None, cudapoa=True):
temp_reads = read_gen(reads_directory, templates, n_proc=8, cancel=process_cancel())
comp_reads = read_gen(reads_directory, complements, n_proc=8, cancel=process_cancel())
temp_scores = basecall(model, temp_reads, reverse=False)
comp_scores = basecall(model, comp_reads, reverse=True)
scores = (((r1, r2), (s1, s2)) for (r1, s1), (r2, s2) in zip(temp_scores, comp_scores))
calls = thread_map(decode, scores, n_thread=12)
if cudapoa:
sequences = ((reads, [seqs, ]) for reads, seqs in calls if len(seqs) > 2)
consensus = (zip(reads, poagen(calls)) for reads, calls in batchify(sequences, 100))
res = ((reads[0], {'sequence': seq}) for seqs in consensus for reads, seq in seqs)
else:
sequences = ((reads, seqs) for reads, seqs in calls if len(seqs) > 2)
consensus = process_map(poa, sequences, n_proc=4)
res = ((reads, {'sequence': seq}) for reads, seqs in consensus for seq in seqs)
if aligner is None: return res
return align_map(aligner, res)
def main(args):
sys.stderr.write("> loading model\n")
model = load_model(args.model, args.device)
if args.reference:
sys.stderr.write("> loading reference\n")
aligner = Aligner(args.reference, preset='ont-map')
if not aligner:
sys.stderr.write("> failed to load/build index\n")
exit(1)
else:
aligner = None
if args.summary:
sys.stderr.write("> finding follow on strands\n")
pairs = pd.read_csv(args.summary, '\t', low_memory=False)
pairs = pairs[pairs.sequence_length_template.gt(0)]
if 'filename' in pairs.columns:
pairs = pairs.rename(columns={'filename': 'filename_fast5'})
if 'alignment_strand_coverage' in pairs.columns:
pairs = pairs.rename(columns={'alignment_strand_coverage': 'alignment_coverage'})
valid_fast5s = [
f for f in pairs.filename_fast5.unique()
if ((args.reads_directory / Path(f)).exists())
]
pairs = pairs[pairs.filename_fast5.isin(valid_fast5s)]
pairs = find_follow_on(pairs)
sys.stderr.write("> found %s follow strands in summary\n" % (len(pairs) // 2))
if args.max_reads > 0: pairs = pairs.head(args.max_reads)
temp_reads = pairs.iloc[0::2]
comp_reads = pairs.iloc[1::2]
else:
if args.index is not None:
sys.stderr.write("> loading read index\n")
index = json.load(open(args.index, 'r'))
else:
sys.stderr.write("> building read index\n")
files = list(glob(os.path.join(args.reads_directory, '*.fast5')))
index = build_index(files, n_proc=8)
if args.save_index:
with open('bonito-read-id.idx', 'w') as f:
json.dump(index, f)
pairs = pd.read_csv(args.pairs, sep=args.sep, names=['read_1', 'read_2'])
if args.max_reads > 0: pairs = pairs.head(args.max_reads)
pairs['file_1'] = pairs['read_1'].apply(index.get)
pairs['file_2'] = pairs['read_2'].apply(index.get)
pairs = pairs.dropna().reset_index()
temp_reads = pairs[['read_1', 'file_1']].rename(
columns={'read_1': 'read_id', 'file_1': 'filename_fast5'}
)
comp_reads = pairs[['read_2', 'file_2']].rename(
columns={'read_2': 'read_id', 'file_2': 'filename_fast5'}
)
if len(pairs) == 0:
print("> no matched pairs found in given directory", file=sys.stderr)
exit(1)
# https://github.com/clara-parabricks/GenomeWorks/issues/648
with devnull(): CudaPoaBatch(1000, 1000, 3724032)
basecalls = call(model, args.reads_directory, temp_reads, comp_reads, aligner=aligner)
writer = Writer(tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, duplex=True)
t0 = perf_counter()
writer.start()
writer.join()
duration = perf_counter() - t0
num_samples = sum(num_samples for read_id, num_samples in writer.log)
print("> duration: %s" % timedelta(seconds=np.round(duration)), file=sys.stderr)
print("> samples per second %.1E" % (num_samples / duration), file=sys.stderr)
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument("model")
parser.add_argument("reads_directory")
group = parser.add_mutually_exclusive_group()
group.add_argument("--summary", default=None)
group.add_argument("--pairs", default=None)
parser.add_argument("--sep", default=' ')
parser.add_argument("--index", default=None)
parser.add_argument("--save-index", action="store_true", default=False)
parser.add_argument("--reference")
parser.add_argument("--device", default="cuda")
parser.add_argument("--max-reads", default=0, type=int)
return parser
| bonito-master | bonito/cli/duplex.py |
#!/usr/bin/env python3
"""
Bonito training.
"""
import os
from argparse import ArgumentParser
from argparse import ArgumentDefaultsHelpFormatter
from bonito.util import __models__, default_config, default_data
from bonito.util import load_data, load_model, load_symbol, init, half_supported
from bonito.training import ChunkDataSet, load_state, Trainer
import toml
import torch
import numpy as np
from torch.optim import AdamW
from torch.utils.data import DataLoader
def main(args):
workdir = os.path.expanduser(args.training_directory)
if os.path.exists(workdir) and not args.force:
print("[error] %s exists, use -f to force continue training." % workdir)
exit(1)
init(args.seed, args.device)
device = torch.device(args.device)
print("[loading data]")
train_data = load_data(limit=args.chunks, directory=args.directory)
if os.path.exists(os.path.join(args.directory, 'validation')):
valid_data = load_data(directory=os.path.join(args.directory, 'validation'))
else:
print("[validation set not found: splitting training set]")
split = np.floor(len(train_data[0]) * 0.97).astype(np.int32)
valid_data = [x[split:] for x in train_data]
train_data = [x[:split] for x in train_data]
train_loader = DataLoader(ChunkDataSet(*train_data), batch_size=args.batch, shuffle=True, num_workers=4, pin_memory=True)
valid_loader = DataLoader(ChunkDataSet(*valid_data), batch_size=args.batch, num_workers=4, pin_memory=True)
if args.pretrained:
dirname = args.pretrained
if not os.path.isdir(dirname) and os.path.isdir(os.path.join(__models__, dirname)):
dirname = os.path.join(__models__, dirname)
config_file = os.path.join(dirname, 'config.toml')
else:
config_file = args.config
config = toml.load(config_file)
argsdict = dict(training=vars(args))
os.makedirs(workdir, exist_ok=True)
toml.dump({**config, **argsdict}, open(os.path.join(workdir, 'config.toml'), 'w'))
print("[loading model]")
if args.pretrained:
print("[using pretrained model {}]".format(args.pretrained))
model = load_model(args.pretrained, device, half=False)
else:
model = load_symbol(config, 'Model')(config)
last_epoch = load_state(workdir, args.device, model)
if args.multi_gpu:
from torch.nn import DataParallel
model = DataParallel(model)
model.decode = model.module.decode
model.alphabet = model.module.alphabet
trainer = Trainer(model, device, train_loader, valid_loader, use_amp=half_supported() and not args.no_amp)
trainer.fit(workdir, args.epochs, args.lr, last_epoch=last_epoch)
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument("training_directory")
group = parser.add_mutually_exclusive_group()
group.add_argument('--config', default=default_config)
group.add_argument('--pretrained', default="")
parser.add_argument("--directory", default=default_data)
parser.add_argument("--device", default="cuda")
parser.add_argument("--lr", default=2e-3, type=float)
parser.add_argument("--seed", default=25, type=int)
parser.add_argument("--epochs", default=5, type=int)
parser.add_argument("--batch", default=64, type=int)
parser.add_argument("--chunks", default=0, type=int)
parser.add_argument("--no-amp", action="store_true", default=False)
parser.add_argument("--multi-gpu", action="store_true", default=False)
parser.add_argument("-f", "--force", action="store_true", default=False)
return parser
| bonito-master | bonito/cli/train.py |
"""
Bonito model evaluator
"""
import os
import time
import torch
import numpy as np
from itertools import starmap
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from bonito.training import ChunkDataSet
from bonito.util import accuracy, poa, decode_ref, half_supported
from bonito.util import init, load_data, load_model, concat, permute
from torch.utils.data import DataLoader
def main(args):
poas = []
init(args.seed, args.device)
print("* loading data")
directory = args.directory
if os.path.exists(os.path.join(directory, 'validation')):
directory = os.path.join(directory, 'validation')
testdata = ChunkDataSet(
*load_data(
limit=args.chunks, directory=directory
)
)
dataloader = DataLoader(testdata, batch_size=args.batchsize)
accuracy_with_cov = lambda ref, seq: accuracy(ref, seq, min_coverage=args.min_coverage)
for w in [int(i) for i in args.weights.split(',')]:
seqs = []
print("* loading model", w)
model = load_model(args.model_directory, args.device, weights=w)
print("* calling")
t0 = time.perf_counter()
with torch.no_grad():
for data, *_ in dataloader:
if half_supported():
data = data.type(torch.float16).to(args.device)
else:
data = data.to(args.device)
log_probs = model(data)
if hasattr(model, 'decode_batch'):
seqs.extend(model.decode_batch(log_probs))
else:
seqs.extend([model.decode(p) for p in permute(log_probs, 'TNC', 'NTC')])
duration = time.perf_counter() - t0
refs = [decode_ref(target, model.alphabet) for target in dataloader.dataset.targets]
accuracies = [accuracy_with_cov(ref, seq) if len(seq) else 0. for ref, seq in zip(refs, seqs)]
if args.poa: poas.append(sequences)
print("* mean %.2f%%" % np.mean(accuracies))
print("* median %.2f%%" % np.median(accuracies))
print("* time %.2f" % duration)
print("* samples/s %.2E" % (args.chunks * data.shape[2] / duration))
if args.poa:
print("* doing poa")
t0 = time.perf_counter()
# group each sequence prediction per model together
poas = [list(seq) for seq in zip(*poas)]
consensuses = poa(poas)
duration = time.perf_counter() - t0
accuracies = list(starmap(accuracy_with_coverage_filter, zip(references, consensuses)))
print("* mean %.2f%%" % np.mean(accuracies))
print("* median %.2f%%" % np.median(accuracies))
print("* time %.2f" % duration)
def argparser():
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
add_help=False
)
parser.add_argument("model_directory")
parser.add_argument("--directory", default=None)
parser.add_argument("--device", default="cuda")
parser.add_argument("--seed", default=9, type=int)
parser.add_argument("--weights", default="0", type=str)
parser.add_argument("--chunks", default=1000, type=int)
parser.add_argument("--batchsize", default=96, type=int)
parser.add_argument("--beamsize", default=5, type=int)
parser.add_argument("--poa", action="store_true", default=False)
parser.add_argument("--min-coverage", default=0.5, type=float)
return parser
| bonito-master | bonito/cli/evaluate.py |
from .model import Model
from .basecall import basecall
| bonito-master | bonito/crf/__init__.py |
"""
Bonito CTC-CRF Model.
"""
import torch
import numpy as np
from bonito.nn import Module, Convolution, SHABlock, LinearCRFEncoder, Serial, Permute, layers, from_dict
import seqdist.sparse
from seqdist.ctc_simple import logZ_cupy, viterbi_alignments
from seqdist.core import SequenceDist, Max, Log, semiring
def get_stride(m):
if hasattr(m, 'stride'):
return m.stride if isinstance(m.stride, int) else m.stride[0]
if isinstance(m, Convolution):
return get_stride(m.conv)
if isinstance(m, Serial):
return int(np.prod([get_stride(x) for x in m]))
return 1
class CTC_CRF(SequenceDist):
def __init__(self, state_len, alphabet):
super().__init__()
self.alphabet = alphabet
self.state_len = state_len
self.n_base = len(alphabet[1:])
self.idx = torch.cat([
torch.arange(self.n_base**(self.state_len))[:, None],
torch.arange(
self.n_base**(self.state_len)
).repeat_interleave(self.n_base).reshape(self.n_base, -1).T
], dim=1).to(torch.int32)
def n_score(self):
return len(self.alphabet) * self.n_base**(self.state_len)
def logZ(self, scores, S:semiring=Log):
T, N, _ = scores.shape
Ms = scores.reshape(T, N, -1, len(self.alphabet))
alpha_0 = Ms.new_full((N, self.n_base**(self.state_len)), S.one)
beta_T = Ms.new_full((N, self.n_base**(self.state_len)), S.one)
return seqdist.sparse.logZ(Ms, self.idx, alpha_0, beta_T, S)
def normalise(self, scores):
return (scores - self.logZ(scores)[:, None] / len(scores))
def forward_scores(self, scores, S: semiring=Log):
T, N, _ = scores.shape
Ms = scores.reshape(T, N, -1, self.n_base + 1)
alpha_0 = Ms.new_full((N, self.n_base**(self.state_len)), S.one)
return seqdist.sparse.fwd_scores_cupy(Ms, self.idx, alpha_0, S, K=1)
def backward_scores(self, scores, S: semiring=Log):
T, N, _ = scores.shape
Ms = scores.reshape(T, N, -1, self.n_base + 1)
beta_T = Ms.new_full((N, self.n_base**(self.state_len)), S.one)
return seqdist.sparse.bwd_scores_cupy(Ms, self.idx, beta_T, S, K=1)
def compute_transition_probs(self, scores, betas):
T, N, C = scores.shape
# add bwd scores to edge scores
log_trans_probs = (scores.reshape(T, N, -1, self.n_base + 1) + betas[1:, :, :, None])
# transpose from (new_state, dropped_base) to (old_state, emitted_base) layout
log_trans_probs = torch.cat([
log_trans_probs[:, :, :, [0]],
log_trans_probs[:, :, :, 1:].transpose(3, 2).reshape(T, N, -1, self.n_base)
], dim=-1)
# convert from log probs to probs by exponentiating and normalising
trans_probs = torch.softmax(log_trans_probs, dim=-1)
#convert first bwd score to initial state probabilities
init_state_probs = torch.softmax(betas[0], dim=-1)
return trans_probs, init_state_probs
def reverse_complement(self, scores):
T, N, C = scores.shape
expand_dims = T, N, *(self.n_base for _ in range(self.state_len)), self.n_base + 1
scores = scores.reshape(*expand_dims)
blanks = torch.flip(scores[..., 0].permute(
0, 1, *range(self.state_len + 1, 1, -1)).reshape(T, N, -1, 1), [0, 2]
)
emissions = torch.flip(scores[..., 1:].permute(
0, 1, *range(self.state_len, 1, -1),
self.state_len +2,
self.state_len + 1).reshape(T, N, -1, self.n_base), [0, 2, 3]
)
return torch.cat([blanks, emissions], dim=-1).reshape(T, N, -1)
def viterbi(self, scores):
traceback = self.posteriors(scores, Max)
paths = traceback.argmax(2) % len(self.alphabet)
return paths
def path_to_str(self, path):
alphabet = np.frombuffer(''.join(self.alphabet).encode(), dtype='u1')
seq = alphabet[path[path != 0]]
return seq.tobytes().decode()
def prepare_ctc_scores(self, scores, targets):
# convert from CTC targets (with blank=0) to zero indexed
targets = torch.clamp(targets - 1, 0)
T, N, C = scores.shape
scores = scores.to(torch.float32)
n = targets.size(1) - (self.state_len - 1)
stay_indices = sum(
targets[:, i:n + i] * self.n_base ** (self.state_len - i - 1)
for i in range(self.state_len)
) * len(self.alphabet)
move_indices = stay_indices[:, 1:] + targets[:, :n - 1] + 1
stay_scores = scores.gather(2, stay_indices.expand(T, -1, -1))
move_scores = scores.gather(2, move_indices.expand(T, -1, -1))
return stay_scores, move_scores
def ctc_loss(self, scores, targets, target_lengths, loss_clip=None, reduction='mean', normalise_scores=True):
if normalise_scores:
scores = self.normalise(scores)
stay_scores, move_scores = self.prepare_ctc_scores(scores, targets)
logz = logZ_cupy(stay_scores, move_scores, target_lengths + 1 - self.state_len)
loss = - (logz / target_lengths)
if loss_clip:
loss = torch.clamp(loss, 0.0, loss_clip)
if reduction == 'mean':
return loss.mean()
elif reduction in ('none', None):
return loss
else:
raise ValueError('Unknown reduction type {}'.format(reduction))
def ctc_viterbi_alignments(self, scores, targets, target_lengths):
stay_scores, move_scores = self.prepare_ctc_scores(scores, targets)
return viterbi_alignments(stay_scores, move_scores, target_lengths + 1 - self.state_len)
def conv(c_in, c_out, ks, stride=1, bias=False, activation=None):
return Convolution(c_in, c_out, ks, stride=stride, padding=ks//2, bias=bias, activation=activation)
def rnn_encoder(n_base, state_len, insize=1, stride=5, winlen=19, activation='swish', rnn_type='lstm', features=768, scale=5.0, blank_score=None, single_head_attn=False):
rnn = layers[rnn_type]
return Serial([
conv(insize, 4, ks=5, bias=True, activation=activation),
conv(4, 16, ks=5, bias=True, activation=activation),
conv(16, features, ks=winlen, stride=stride, bias=True, activation=activation),
Permute([2, 0, 1]),
rnn(features, features, reverse=True), rnn(features, features),
rnn(features, features, reverse=True), rnn(features, features),
*([SHABlock(features)] if single_head_attn else []),
rnn(features, features, reverse=True),
LinearCRFEncoder(features, n_base, state_len, bias=True, activation='tanh', scale=scale, blank_score=blank_score)
])
class SeqdistModel(Module):
def __init__(self, encoder, seqdist):
super().__init__()
self.seqdist = seqdist
self.encoder = encoder
self.stride = get_stride(encoder)
self.alphabet = seqdist.alphabet
def forward(self, x):
return self.encoder(x).to(torch.float32)
def decode_batch(self, x):
scores = self.seqdist.posteriors(x.to(torch.float32)) + 1e-8
tracebacks = self.seqdist.viterbi(scores.log()).to(torch.int16).T
return [self.seqdist.path_to_str(x) for x in tracebacks.cpu().numpy()]
def decode(self, x):
return self.decode_batch(x.unsqueeze(1))[0]
class Model(SeqdistModel):
def __init__(self, config):
seqdist = CTC_CRF(
state_len=config['global_norm']['state_len'],
alphabet=config['labels']['labels']
)
if 'type' in config['encoder']: #new-style config
encoder = from_dict(config['encoder'])
else: #old-style
encoder = rnn_encoder(seqdist.n_base, seqdist.state_len, insize=config['input']['features'], **config['encoder'])
super().__init__(encoder, seqdist)
self.config = config
| bonito-master | bonito/crf/model.py |
"""
Bonito CRF basecall
"""
import torch
import numpy as np
from kbeam import beamsearch
from itertools import groupby
from functools import partial
from operator import itemgetter
import bonito
from bonito.io import Writer
from bonito.fast5 import get_reads
from bonito.aligner import align_map
from bonito.multiprocessing import thread_map, thread_iter
from bonito.util import concat, chunk, batchify, unbatchify, half_supported
def stitch(chunks, chunksize, overlap, length, stride, reverse=False):
"""
Stitch chunks together with a given overlap
"""
if isinstance(chunks, dict):
return {
k: stitch(v, chunksize, overlap, length, stride, reverse=reverse)
for k, v in chunks.items()
}
return bonito.util.stitch(chunks, chunksize, overlap, length, stride, reverse=reverse)
def compute_scores(model, batch, reverse=False):
"""
Compute scores for model.
"""
with torch.no_grad():
device = next(model.parameters()).device
dtype = torch.float16 if half_supported() else torch.float32
scores = model(batch.to(dtype).to(device))
if reverse: scores = model.seqdist.reverse_complement(scores)
betas = model.seqdist.backward_scores(scores.to(torch.float32))
betas -= (betas.max(2, keepdim=True)[0] - 5.0)
return {
'scores': scores.transpose(0, 1),
'betas': betas.transpose(0, 1),
}
def quantise_int8(x, scale=127/5):
"""
Quantise scores to int8.
"""
scores = x['scores']
scores *= scale
scores = torch.round(scores).to(torch.int8).detach()
betas = x['betas']
betas *= scale
betas = torch.round(torch.clamp(betas, -127., 128.)).to(torch.int8).detach()
return {'scores': scores, 'betas': betas}
def transfer(x):
"""
Device to host transfer using pinned memory.
"""
torch.cuda.synchronize()
with torch.cuda.stream(torch.cuda.Stream()):
return {
k: torch.empty(v.shape, pin_memory=True, dtype=v.dtype).copy_(v).numpy()
for k, v in x.items()
}
def decode_int8(scores, seqdist, scale=127/5, beamsize=40, beamcut=100.0):
"""
Beamsearch decode.
"""
path, _ = beamsearch(
scores['scores'], scale, seqdist.n_base, beamsize,
guide=scores['betas'], beam_cut=beamcut
)
try:
return seqdist.path_to_str(path % 4 + 1)
except IndexError:
return ""
def split_read(read, split_read_length=400000):
"""
Split large reads into manageable pieces.
"""
if len(read.signal) <= split_read_length:
return [(read, 0, len(read.signal))]
breaks = np.arange(0, len(read.signal) + split_read_length, split_read_length)
return [(read, start, min(end, len(read.signal))) for (start, end) in zip(breaks[:-1], breaks[1:])]
def basecall(model, reads, aligner=None, beamsize=40, chunksize=4000, overlap=500, batchsize=32, qscores=False, reverse=False):
"""
Basecalls a set of reads.
"""
_decode = partial(decode_int8, seqdist=model.seqdist, beamsize=beamsize)
reads = (read_chunk for read in reads for read_chunk in split_read(read)[::-1 if reverse else 1])
chunks = (
((read, start, end), chunk(torch.from_numpy(read.signal[start:end]), chunksize, overlap))
for (read, start, end) in reads
)
batches = (
(k, quantise_int8(compute_scores(model, batch, reverse=reverse)))
for k, batch in thread_iter(batchify(chunks, batchsize=batchsize))
)
stitched = (
(read, stitch(x, chunksize, overlap, end - start, model.stride, reverse=reverse))
for ((read, start, end), x) in unbatchify(batches)
)
transferred = thread_map(transfer, stitched, n_thread=1)
basecalls = thread_map(_decode, transferred, n_thread=8)
basecalls = (
(read, ''.join(seq for k, seq in parts))
for read, parts in groupby(basecalls, lambda x: (x[0].parent if hasattr(x[0], 'parent') else x[0]))
)
basecalls = (
(read, {'sequence': seq, 'qstring': '?' * len(seq) if qscores else '*', 'mean_qscore': 0.0})
for read, seq in basecalls
)
if aligner: return align_map(aligner, basecalls)
return basecalls
| bonito-master | bonito/crf/basecall.py |
from .model import Model
from .basecall import basecall
| bonito-master | bonito/ctc/__init__.py |
"""
Bonito Model template
"""
import numpy as np
from bonito.nn import Permute, layers
import torch
from torch.nn.functional import log_softmax, ctc_loss
from torch.nn import Module, ModuleList, Sequential, Conv1d, BatchNorm1d, Dropout
from fast_ctc_decode import beam_search, viterbi_search
class Model(Module):
"""
Model template for QuartzNet style architectures
https://arxiv.org/pdf/1910.10261.pdf
"""
def __init__(self, config):
super(Model, self).__init__()
if 'qscore' not in config:
self.qbias = 0.0
self.qscale = 1.0
else:
self.qbias = config['qscore']['bias']
self.qscale = config['qscore']['scale']
self.config = config
self.stride = config['block'][0]['stride'][0]
self.alphabet = config['labels']['labels']
self.features = config['block'][-1]['filters']
self.encoder = Encoder(config)
self.decoder = Decoder(self.features, len(self.alphabet))
def forward(self, x):
encoded = self.encoder(x)
return self.decoder(encoded)
def decode(self, x, beamsize=5, threshold=1e-3, qscores=False, return_path=False):
x = x.exp().cpu().numpy().astype(np.float32)
if beamsize == 1 or qscores:
seq, path = viterbi_search(x, self.alphabet, qscores, self.qscale, self.qbias)
else:
seq, path = beam_search(x, self.alphabet, beamsize, threshold)
if return_path: return seq, path
return seq
def ctc_label_smoothing_loss(self, log_probs, targets, lengths, weights=None):
T, N, C = log_probs.shape
weights = weights or torch.cat([torch.tensor([0.4]), (0.1 / (C - 1)) * torch.ones(C - 1)])
log_probs_lengths = torch.full(size=(N, ), fill_value=T, dtype=torch.int64)
loss = ctc_loss(log_probs.to(torch.float32), targets, log_probs_lengths, lengths, reduction='mean')
label_smoothing_loss = -((log_probs * weights.to(log_probs.device)).mean())
return {'loss': loss + label_smoothing_loss, 'ctc_loss': loss, 'label_smooth_loss': label_smoothing_loss}
class Encoder(Module):
"""
Builds the model encoder
"""
def __init__(self, config):
super(Encoder, self).__init__()
self.config = config
features = self.config['input']['features']
activation = layers[self.config['encoder']['activation']]()
encoder_layers = []
for layer in self.config['block']:
encoder_layers.append(
Block(
features, layer['filters'], activation,
repeat=layer['repeat'], kernel_size=layer['kernel'],
stride=layer['stride'], dilation=layer['dilation'],
dropout=layer['dropout'], residual=layer['residual'],
separable=layer['separable'],
)
)
features = layer['filters']
self.encoder = Sequential(*encoder_layers)
def forward(self, x):
return self.encoder(x)
class TCSConv1d(Module):
"""
Time-Channel Separable 1D Convolution
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, separable=False):
super(TCSConv1d, self).__init__()
self.separable = separable
if separable:
self.depthwise = Conv1d(
in_channels, in_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=bias, groups=in_channels
)
self.pointwise = Conv1d(
in_channels, out_channels, kernel_size=1, stride=1,
dilation=dilation, bias=bias, padding=0
)
else:
self.conv = Conv1d(
in_channels, out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, bias=bias
)
def forward(self, x):
if self.separable:
x = self.depthwise(x)
x = self.pointwise(x)
else:
x = self.conv(x)
return x
class Block(Module):
"""
TCSConv, Batch Normalisation, Activation, Dropout
"""
def __init__(self, in_channels, out_channels, activation, repeat=5, kernel_size=1, stride=1, dilation=1, dropout=0.0, residual=False, separable=False):
super(Block, self).__init__()
self.use_res = residual
self.conv = ModuleList()
_in_channels = in_channels
padding = self.get_padding(kernel_size[0], stride[0], dilation[0])
# add the first n - 1 convolutions + activation
for _ in range(repeat - 1):
self.conv.extend(
self.get_tcs(
_in_channels, out_channels, kernel_size=kernel_size,
stride=stride, dilation=dilation,
padding=padding, separable=separable
)
)
self.conv.extend(self.get_activation(activation, dropout))
_in_channels = out_channels
# add the last conv and batch norm
self.conv.extend(
self.get_tcs(
_in_channels, out_channels,
kernel_size=kernel_size,
stride=stride, dilation=dilation,
padding=padding, separable=separable
)
)
# add the residual connection
if self.use_res:
self.residual = Sequential(*self.get_tcs(in_channels, out_channels))
# add the activation and dropout
self.activation = Sequential(*self.get_activation(activation, dropout))
def get_activation(self, activation, dropout):
return activation, Dropout(p=dropout)
def get_padding(self, kernel_size, stride, dilation):
if stride > 1 and dilation > 1:
raise ValueError("Dilation and stride can not both be greater than 1")
return (kernel_size // 2) * dilation
def get_tcs(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, padding=0, bias=False, separable=False):
return [
TCSConv1d(
in_channels, out_channels, kernel_size,
stride=stride, dilation=dilation, padding=padding,
bias=bias, separable=separable
),
BatchNorm1d(out_channels, eps=1e-3, momentum=0.1)
]
def forward(self, x):
_x = x
for layer in self.conv:
_x = layer(_x)
if self.use_res:
_x = _x + self.residual(x)
return self.activation(_x)
class Decoder(Module):
"""
Decoder
"""
def __init__(self, features, classes):
super(Decoder, self).__init__()
self.layers = Sequential(
Conv1d(features, classes, kernel_size=1, bias=True),
Permute([2, 0, 1])
)
def forward(self, x):
return log_softmax(self.layers(x), dim=-1)
| bonito-master | bonito/ctc/model.py |
"""
Bonito basecall
"""
import torch
import numpy as np
from functools import partial
from bonito.fast5 import ReadChunk
from bonito.aligner import align_map
from bonito.multiprocessing import process_map, thread_map
from bonito.util import mean_qscore_from_qstring, half_supported
from bonito.util import chunk, stitch, batchify, unbatchify, permute, concat
def basecall(model, reads, aligner=None, beamsize=5, chunksize=0, overlap=0, batchsize=1, qscores=False, reverse=None):
"""
Basecalls a set of reads.
"""
chunks = (
(read, chunk(torch.tensor(read.signal), chunksize, overlap)) for read in reads
)
scores = unbatchify(
(k, compute_scores(model, v)) for k, v in batchify(chunks, batchsize)
)
scores = (
(read, {'scores': stitch(v, chunksize, overlap, len(read.signal), model.stride)}) for read, v in scores
)
decoder = partial(decode, decode=model.decode, beamsize=beamsize, qscores=qscores)
basecalls = process_map(decoder, scores, n_proc=4)
if aligner: return align_map(aligner, basecalls)
return basecalls
def compute_scores(model, batch):
"""
Compute scores for model.
"""
with torch.no_grad():
device = next(model.parameters()).device
chunks = batch.to(torch.half).to(device)
probs = permute(model(chunks), 'TNC', 'NTC')
return probs.cpu().to(torch.float32)
def decode(scores, decode, beamsize=5, qscores=False):
"""
Convert the network scores into a sequence.
"""
# do a greedy decode to get a sensible qstring to compute the mean qscore from
seq, path = decode(scores['scores'], beamsize=1, qscores=True, return_path=True)
seq, qstring = seq[:len(path)], seq[len(path):]
mean_qscore = mean_qscore_from_qstring(qstring)
# beam search will produce a better sequence but doesn't produce a sensible qstring/path
if not (qscores or beamsize == 1):
try:
seq = decode(scores['scores'], beamsize=beamsize)
path = None
qstring = '*'
except:
pass
return {'sequence': seq, 'qstring': qstring, 'mean_qscore': mean_qscore, 'path': path}
| bonito-master | bonito/ctc/basecall.py |
# Always prefer setuptools over distutils
# To use a consistent encoding
from codecs import open
import os
from os import path
from setuptools import setup
here = path.abspath(path.dirname(__file__))
# get keops version
with open(os.path.join(here, "pykeops", "keops_version"), encoding="utf-8") as v:
current_version = v.read().rstrip()
# Get the long description from the README file
with open(path.join(here, "pykeops", "readme.md"), encoding="utf-8") as f:
long_description = f.read()
# package setup
setup(
name="pykeops",
version=current_version,
description="Python bindings of KeOps: KErnel OPerationS, on CPUs and GPUs, with autodiff and without memory overflows", # Required
long_description=long_description,
long_description_content_type="text/markdown",
url="http://www.kernel-operations.io/",
project_urls={
"Bug Reports": "https://github.com/getkeops/keops/issues",
"Source": "https://github.com/getkeops/keops",
},
author="B. Charlier, J. Feydy, J. Glaunes",
author_email="[email protected], [email protected], [email protected]",
python_requires=">=3",
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Topic :: Scientific/Engineering",
"License :: OSI Approved :: MIT License",
"Operating System :: POSIX :: Linux",
"Operating System :: MacOS :: MacOS X",
"Programming Language :: C++",
"Programming Language :: Python :: 3 :: Only",
],
keywords="kernels gpu autodiff",
packages=[
"pykeops",
"pykeops.common",
"pykeops.common.keops_io",
"pykeops.numpy",
"pykeops.numpy.cluster",
"pykeops.numpy.generic",
"pykeops.numpy.lazytensor",
"pykeops.test",
"pykeops.torch",
"pykeops.torch.cluster",
"pykeops.torch.generic",
"pykeops.torch.lazytensor",
],
package_data={
"pykeops": [
"readme.md",
"licence.txt",
"keops_version",
"common/keops_io/pykeops_nvrtc.cpp",
],
},
install_requires=["numpy", "pybind11", "keopscore"],
extras_require={
"full": [
"sphinx",
"sphinx-gallery",
"recommonmark",
"sphinxcontrib-httpdomain",
"sphinx_rtd_theme",
"breathe",
"matplotlib",
"imageio",
"torch",
"gpytorch",
"scikit-learn",
"multiprocess",
"faiss",
"h5py",
"jaxlib",
"jax",
],
"test:": ["pytest", "numpy", "torch"],
},
)
| keops-main | pykeops/setup.py |
import importlib.util
import sysconfig
from os.path import join, dirname, realpath
###############################################################
# Initialize some variables: the values may be redefined later
numpy_found = importlib.util.find_spec("numpy") is not None
torch_found = importlib.util.find_spec("torch") is not None
from keopscore.config.config import use_cuda as gpu_available
from keopscore.config.config import get_build_folder
def pykeops_nvrtc_name(type="src"):
basename = "pykeops_nvrtc"
extension = ".cpp" if type == "src" else sysconfig.get_config_var("EXT_SUFFIX")
return join(
join(dirname(realpath(__file__)), "common", "keops_io")
if type == "src"
else get_build_folder(),
basename + extension,
)
def pykeops_cpp_name(tag="", extension=""):
basename = "pykeops_cpp_"
return join(
get_build_folder(),
basename + tag + extension,
)
python_includes = "$(python3 -m pybind11 --includes)"
| keops-main | pykeops/pykeops/config.py |
import os
import keopscore
import keopscore.config
import keopscore.config.config
from keopscore.config.config import get_build_folder as keops_get_build_folder
from . import config as pykeopsconfig
###########################################################
# Verbosity level
verbose = True
if os.getenv("PYKEOPS_VERBOSE") == "0":
verbose = False
os.environ["KEOPS_VERBOSE"] = "0"
def set_verbose(val):
global verbose
verbose = val
keopscore.verbose = val
###########################################################
# Set version
with open(
os.path.join(os.path.abspath(os.path.dirname(__file__)), "keops_version"),
encoding="utf-8",
) as v:
__version__ = v.read().rstrip()
###########################################################
# Utils
default_device_id = 0 # default Gpu device number
if keopscore.config.config.use_cuda:
if not os.path.exists(pykeopsconfig.pykeops_nvrtc_name(type="target")):
from .common.keops_io.LoadKeOps_nvrtc import compile_jit_binary
compile_jit_binary()
def clean_pykeops(recompile_jit_binaries=True):
import pykeops
keopscore.clean_keops(recompile_jit_binary=recompile_jit_binaries)
keops_binder = pykeops.common.keops_io.keops_binder
for key in keops_binder:
keops_binder[key].reset()
if recompile_jit_binaries and keopscore.config.config.use_cuda:
pykeops.common.keops_io.LoadKeOps_nvrtc.compile_jit_binary()
def set_build_folder(path=None):
import pykeops
keopscore.set_build_folder(path)
keops_binder = pykeops.common.keops_io.keops_binder
for key in keops_binder:
keops_binder[key].reset(new_save_folder=get_build_folder())
if keopscore.config.config.use_cuda and not os.path.exists(
pykeops.config.pykeops_nvrtc_name(type="target")
):
pykeops.common.keops_io.LoadKeOps_nvrtc.compile_jit_binary()
def get_build_folder():
return keops_get_build_folder()
if pykeopsconfig.numpy_found:
from .numpy.test_install import test_numpy_bindings
if pykeopsconfig.torch_found:
from .torch.test_install import test_torch_bindings
# next line is to ensure that cache file for formulas is loaded at import
from .common import keops_io
| keops-main | pykeops/pykeops/__init__.py |
import math
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 1000, 1000, 3, 1
dtype = torch.float32
device_id = "cpu" # "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.matmul.allow_tf32 = False
torch.manual_seed(0)
x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, requires_grad=True, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y) ** 2).sum(dim=2)
Kxy = (-Dxy).exp()
if backend == "keops":
out = LazyTensor.__matmul__(Kxy, b, backend="CPU")
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out.flatten()[:10])
return out
backends = ["keops", "torch"] # "keops_old"
out = []
for backend in backends:
out.append(fun(x, y, b, backend).squeeze())
out_g = []
for k, backend in enumerate(backends):
out_g.append(torch.autograd.grad((out[k] ** 2).sum(), [b], create_graph=True)[0])
out_g2 = []
for k, backend in enumerate(backends):
out_g2.append(torch.autograd.grad((out_g[k] ** 2).sum(), [b])[0])
class TestClass:
def test_lazytensor_gaussian_cpu(self):
assert torch.allclose(out[0], out[1])
def test_lazytensor_gaussian_cpu_bw1(self):
assert torch.allclose(out_g[0], out_g[1])
def test_lazytensor_gaussian_cpu_bw2(self):
assert torch.allclose(out_g2[0], out_g2[1])
| keops-main | pykeops/pykeops/test/test_lazytensor_gaussian_cpu.py |
import math
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 2500, 2000, 3, 1
dtype = torch.float64
sum_scheme = "block_sum"
torch.backends.cuda.matmul.allow_tf32 = False
device_id = 0 if torch.cuda.is_available() else -1
torch.manual_seed(0)
x = torch.rand(M, 1, D, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y).square()).sum(dim=2)
Kxy = (-Dxy).exp()
if "keops" in backend:
out = Kxy.__matmul__(b, sum_scheme=sum_scheme, device_id=device_id)
else:
out = Kxy @ b
# print("out:",out)
return out
backends = ["keops", "torch"]
out = []
for backend in backends:
out.append(fun(x, y, b, backend).squeeze())
def test_lazytensor_gaussian_fromhost():
assert torch.allclose(out[0], out[1])
| keops-main | pykeops/pykeops/test/test_lazytensor_gaussian_fromhost.py |
import math
import torch
from pykeops.torch import LazyTensor
B1, B2, M, N, D, DV = 2, 3, 200, 300, 3, 300
dtype = torch.float32
sum_scheme = "block_sum"
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(B1, B2, M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(B1, 1, 1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(1, B2, N, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y).square()).sum(dim=4)
Kxy = (-Dxy).exp()
if "keops" in backend:
out = Kxy.__matmul__(b, sum_scheme=sum_scheme)
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out[:,:10])
return out
out = []
for backend in ["keops", "torch"]:
out.append(fun(x, y, b, backend).squeeze())
def test_finalchunks_ranges():
assert torch.allclose(out[0], out[1], atol=0.0001)
| keops-main | pykeops/pykeops/test/test_finalchunks_ranges.py |
import unittest
import itertools
import numpy as np
import pykeops
import pykeops.config
from pykeops.numpy.utils import (
squared_distances,
np_kernel,
log_np_kernel,
grad_np_kernel,
differences,
log_sum_exp,
)
class PytorchUnitTestCase(unittest.TestCase):
A = int(5) # Batchdim 1
B = int(3) # Batchdim 2
M = int(10)
N = int(6)
D = int(3)
E = int(3)
nbatchdims = int(2)
x = np.random.rand(M, D)
a = np.random.rand(M, E)
e = np.random.rand(M, E)
f = np.random.rand(M, 1)
y = np.random.rand(N, D)
b = np.random.rand(N, E)
g = np.random.rand(N, 1)
p = np.random.rand(2)
sigma = np.array([0.4])
alpha = np.array([0.1])
X = np.random.rand(A, B, M, D)
L = np.random.rand(A, 1, M, 1)
Y = np.random.rand(1, B, N, D)
S = np.random.rand(A, B, 1) + 1
try:
import torch
use_cuda = torch.cuda.is_available()
device = "cuda" if use_cuda else "cpu"
torch.backends.cuda.matmul.allow_tf32 = False
dtype = torch.float32
xc = torch.tensor(x, dtype=dtype, device=device, requires_grad=True)
ac = torch.tensor(a, dtype=dtype, device=device, requires_grad=False)
ec = torch.tensor(e, dtype=dtype, device=device, requires_grad=False)
fc = torch.tensor(f, dtype=dtype, device=device, requires_grad=True)
yc = torch.tensor(y, dtype=dtype, device=device, requires_grad=False)
bc = torch.tensor(b, dtype=dtype, device=device, requires_grad=False)
gc = torch.tensor(g, dtype=dtype, device=device, requires_grad=True)
pc = torch.tensor(p, dtype=dtype, device=device, requires_grad=False)
sigmac = torch.tensor(sigma, dtype=dtype, device=device, requires_grad=False)
alphac = torch.tensor(alpha, dtype=dtype, device=device, requires_grad=False)
Xc = torch.tensor(X, dtype=dtype, device=device, requires_grad=True)
Lc = torch.tensor(L, dtype=dtype, device=device, requires_grad=False)
Yc = torch.tensor(Y, dtype=dtype, device=device, requires_grad=True)
Sc = torch.tensor(S, dtype=dtype, device=device, requires_grad=True)
dtype = torch.float64
xcd = torch.tensor(x, dtype=dtype, device=device, requires_grad=False)
acd = torch.tensor(a, dtype=dtype, device=device, requires_grad=False)
ecd = torch.tensor(e, dtype=dtype, device=device, requires_grad=False)
fcd = torch.tensor(f, dtype=dtype, device=device, requires_grad=False)
ycd = torch.tensor(y, dtype=dtype, device=device, requires_grad=False)
bcd = torch.tensor(b, dtype=dtype, device=device, requires_grad=False)
gcd = torch.tensor(g, dtype=dtype, device=device, requires_grad=False)
pcd = torch.tensor(p, dtype=dtype, device=device, requires_grad=False)
sigmacd = torch.tensor(sigma, dtype=dtype, device=device, requires_grad=False)
alphacd = torch.tensor(alpha, dtype=dtype, device=device, requires_grad=False)
Xcd = torch.tensor(X, dtype=dtype, device=device, requires_grad=True)
Lcd = torch.tensor(L, dtype=dtype, device=device, requires_grad=False)
Ycd = torch.tensor(Y, dtype=dtype, device=device, requires_grad=True)
Scd = torch.tensor(S, dtype=dtype, device=device, requires_grad=True)
print("Running Pytorch tests.")
except:
print("Pytorch could not be loaded. Skip tests.")
pass
############################################################
def test_generic_syntax_float(self):
############################################################
from pykeops.torch import Genred
aliases = ["p=Pm(1)", "a=Vj(1)", "x=Vi(3)", "y=Vj(3)"]
formula = "Square(p-a)*Exp(x+y)"
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b in backend_to_test:
with self.subTest(b=b):
# Call cuda kernel
gamma_keops = Genred(formula, aliases, axis=1)(
self.sigmac, self.gc, self.xc, self.yc, backend=b
)
# Numpy version
gamma_py = np.sum(
(self.sigma - self.g) ** 2
* np.exp((self.y.T[:, :, np.newaxis] + self.x.T[:, np.newaxis, :])),
axis=1,
).T
# compare output
self.assertTrue(
np.allclose(gamma_keops.cpu().data.numpy(), gamma_py, atol=1e-6)
)
############################################################
def test_generic_syntax_double(self):
############################################################
from pykeops.torch import Genred
aliases = ["p=Pm(1)", "a=Vj(1)", "x=Vi(3)", "y=Vj(3)"]
formula = "Square(p-a)*Exp(x+y)"
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b in backend_to_test:
with self.subTest(b=b):
# Call cuda kernel
gamma_keops = Genred(formula, aliases, axis=1)(
self.sigmacd, self.gcd, self.xcd, self.ycd, backend=b
)
# Numpy version
gamma_py = np.sum(
(self.sigma - self.g) ** 2
* np.exp((self.y.T[:, :, np.newaxis] + self.x.T[:, np.newaxis, :])),
axis=1,
).T
# compare output
self.assertTrue(
np.allclose(gamma_keops.cpu().data.numpy(), gamma_py, atol=1e-6)
)
############################################################
def test_generic_syntax_softmax(self):
############################################################
from pykeops.torch import Genred
aliases = ["p=Pm(1)", "a=Vj(1)", "x=Vi(3)", "y=Vj(3)"]
formula = "Square(p-a)*Exp(-SqNorm2(x-y))"
formula_weights = "y"
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b in backend_to_test:
with self.subTest(b=b):
# Call cuda kernel
myop = Genred(
formula,
aliases,
reduction_op="SumSoftMaxWeight",
axis=1,
formula2=formula_weights,
)
gamma_keops = myop(
self.sigmacd, self.gcd, self.xcd, self.ycd, backend=b
)
# Numpy version
def np_softmax(x, w):
x -= np.max(x, axis=1)[:, None] # subtract the max for robustness
return np.exp(x) @ w / np.sum(np.exp(x), axis=1)[:, None]
gamma_py = np_softmax(
(self.sigma - self.g.T) ** 2
* np.exp(-squared_distances(self.x, self.y)),
self.y,
)
# compare output
self.assertTrue(
np.allclose(gamma_keops.cpu().data.numpy(), gamma_py, atol=1e-6)
)
############################################################
def test_generic_syntax_simple(self):
############################################################
from pykeops.torch import Genred
aliases = [
"P = Pm(2)", # 1st argument, a parameter, dim 2.
"X = Vi("
+ str(self.xc.shape[1])
+ ") ", # 2nd argument, indexed by i, dim D.
"Y = Vj(" + str(self.yc.shape[1]) + ") ",
] # 3rd argument, indexed by j, dim D.
formula = "Pow((X|Y),2) * ((Elem(P,0) * X) + (Elem(P,1) * Y))"
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b in backend_to_test:
with self.subTest(b=b):
my_routine = Genred(formula, aliases, reduction_op="Sum", axis=1)
gamma_keops = my_routine(self.pc, self.xc, self.yc, backend=b)
# Numpy version
scals = (self.x @ self.y.T) ** 2 # Memory-intensive computation!
gamma_py = self.p[0] * scals.sum(1).reshape(-1, 1) * self.x + self.p[
1
] * (scals @ self.y)
# compare output
self.assertTrue(
np.allclose(gamma_keops.cpu().data.numpy(), gamma_py, atol=1e-6)
)
############################################################
def test_logSumExp_kernels_feature(self):
############################################################
from pykeops.torch import Vi, Vj, Pm
kernels = {
"gaussian": lambda xc, yc, sigmac: (
-Pm(1 / sigmac**2) * Vi(xc).sqdist(Vj(yc))
),
"laplacian": lambda xc, yc, sigmac: (
-(Pm(1 / sigmac**2) * Vi(xc).sqdist(Vj(yc))).sqrt()
),
"cauchy": lambda xc, yc, sigmac: (
1 + Pm(1 / sigmac**2) * Vi(xc).sqdist(Vj(yc))
)
.power(-1)
.log(),
"inverse_multiquadric": lambda xc, yc, sigmac: (
1 + Pm(1 / sigmac**2) * Vi(xc).sqdist(Vj(yc))
)
.sqrt()
.power(-1)
.log(),
}
for k in ["gaussian", "laplacian", "cauchy", "inverse_multiquadric"]:
with self.subTest(k=k):
# Call cuda kernel
gamma_lazy = kernels[k](self.xc, self.yc, self.sigmac)
gamma_lazy = gamma_lazy.logsumexp(dim=1, weight=Vj(self.gc.exp())).cpu()
# gamma = kernel_product(params, self.xc, self.yc, self.gc).cpu()
# Numpy version
log_K = log_np_kernel(self.x, self.y, self.sigma, kernel=k)
log_KP = log_K + self.g.T
gamma_py = log_sum_exp(log_KP, axis=1)
# compare output
self.assertTrue(
np.allclose(gamma_lazy.data.numpy().ravel(), gamma_py, atol=1e-6)
)
############################################################
def test_logSumExp_gradient_kernels_feature(self):
############################################################
import torch
from pykeops.torch import Genred
aliases = [
"P = Pm(2)", # 1st argument, a parameter, dim 2.
"X = Vi("
+ str(self.gc.shape[1])
+ ") ", # 2nd argument, indexed by i, dim D.
"Y = Vj(" + str(self.fc.shape[1]) + ") ",
] # 3rd argument, indexed by j, dim D.
formula = "(Elem(P,0) * X) + (Elem(P,1) * Y)"
# Pytorch version
my_routine = Genred(formula, aliases, reduction_op="LogSumExp", axis=1)
tmp = my_routine(self.pc, self.fc, self.gc, backend="auto")
res = torch.dot(
torch.ones_like(tmp).view(-1), tmp.view(-1)
) # equivalent to tmp.sum() but avoiding contiguity pb
gamma_keops = torch.autograd.grad(res, [self.fc, self.gc], create_graph=False)
# Numpy version
tmp = self.p[0] * self.f + self.p[1] * self.g.T
res_py = (np.exp(tmp)).sum(axis=1)
tmp2 = np.exp(tmp.T) / res_py.reshape(1, -1)
gamma_py = [np.ones(self.M) * self.p[0], self.p[1] * tmp2.T.sum(axis=0)]
# compare output
self.assertTrue(
np.allclose(
gamma_keops[0].cpu().data.numpy().ravel(), gamma_py[0], atol=1e-6
)
)
self.assertTrue(
np.allclose(
gamma_keops[1].cpu().data.numpy().ravel(), gamma_py[1], atol=1e-6
)
)
############################################################
def test_non_contiguity(self):
############################################################
from pykeops.torch import Genred
aliases = [
"P = Pm(2)", # 1st argument, a parameter, dim 2.
"X = Vi("
+ str(self.xc.shape[1])
+ ") ", # 2nd argument, indexed by i, dim D.
"Y = Vj(" + str(self.yc.shape[1]) + ") ",
] # 3rd argument, indexed by j, dim D.
formula = "Pow((X|Y),2) * ((Elem(P,0) * X) + (Elem(P,1) * Y))"
my_routine = Genred(formula, aliases, reduction_op="Sum", axis=1)
yc_tmp = self.yc.t().contiguous().t() # create a non contiguous copy
# check output
self.assertFalse(yc_tmp.is_contiguous())
my_routine(self.pc, self.xc, yc_tmp, backend="auto")
############################################################
def test_heterogeneous_var_aliases(self):
############################################################
from pykeops.torch import Genred
from pykeops.numpy.utils import squared_distances
aliases = ["p=Pm(0,1)", "x=Vi(1,3)", "y=Vj(2,3)"]
formula = "Square(p-Var(3,1,1))*Exp(-SqNorm2(y-x))"
# Call cuda kernel
myconv = Genred(formula, aliases, reduction_op="Sum", axis=1)
gamma_keops = myconv(self.sigmac, self.xc, self.yc, self.gc, backend="auto")
# Numpy version
gamma_py = np.sum(
(self.sigma - self.g.T) ** 2 * np.exp(-squared_distances(self.x, self.y)),
axis=1,
)
# compare output
self.assertTrue(
np.allclose(
gamma_keops.cpu().data.numpy().ravel(), gamma_py.ravel(), atol=1e-6
)
)
############################################################
def test_invkernel(self):
############################################################
import torch
from pykeops.torch.operations import KernelSolve
formula = "Exp(-oos2*SqDist(x,y))*b"
aliases = [
"x = Vi(" + str(self.D) + ")", # First arg : i-variable, of size D
"y = Vj(" + str(self.D) + ")", # Second arg : j-variable, of size D
"b = Vj(" + str(self.E) + ")", # Third arg : j-variable, of size Dv
"oos2 = Pm(1)",
] # Fourth arg : scalar parameter
Kinv = KernelSolve(formula, aliases, "b", axis=1)
c = Kinv(self.xc, self.xc, self.ac, self.sigmac, alpha=self.alphac)
if torch.__version__ >= "1.8":
torchsolve = lambda A, B: torch.linalg.solve(A, B)
else:
torchsolve = lambda A, B: torch.solve(B, A)[0]
c_ = torchsolve(
self.alphac * torch.eye(self.M, device=self.device)
+ torch.exp(
-torch.sum((self.xc[:, None, :] - self.xc[None, :, :]) ** 2, dim=2)
* self.sigmac
),
self.ac,
)
self.assertTrue(
np.allclose(
c.cpu().data.numpy().ravel(), c_.cpu().data.numpy().ravel(), atol=1e-4
)
)
(u,) = torch.autograd.grad(c, self.xc, self.ec)
(u_,) = torch.autograd.grad(c_, self.xc, self.ec)
self.assertTrue(
np.allclose(
u.cpu().data.numpy().ravel(), u_.cpu().data.numpy().ravel(), atol=1e-4
)
)
############################################################
def test_softmax(self):
############################################################
import torch
from pykeops.torch import Genred
formula = "SqDist(x,y)"
formula_weights = "b"
aliases = [
"x = Vi(" + str(self.D) + ")", # First arg : i-variable, of size D
"y = Vj(" + str(self.D) + ")", # Second arg : j-variable, of size D
"b = Vj(" + str(self.E) + ")",
] # third arg : j-variable, of size Dv
softmax_op = Genred(
formula,
aliases,
reduction_op="SumSoftMaxWeight",
axis=1,
formula2=formula_weights,
)
c = softmax_op(self.xc, self.yc, self.bc)
# compare with direct implementation
cc = 0
for k in range(self.D):
xk = self.xc[:, k][:, None]
yk = self.yc[:, k][:, None]
cc += (xk - yk.t()) ** 2
cc -= torch.max(cc, dim=1)[0][:, None] # subtract the max for robustness
cc = torch.exp(cc) @ self.bc / torch.sum(torch.exp(cc), dim=1)[:, None]
self.assertTrue(
np.allclose(
c.cpu().data.numpy().ravel(), cc.cpu().data.numpy().ravel(), atol=1e-6
)
)
############################################################
def test_pickle(self):
############################################################
from pykeops.torch import Genred
import pickle
formula = "SqDist(x,y)"
aliases = [
"x = Vi(" + str(self.D) + ")", # First arg : i-variable, of size D
"y = Vj(" + str(self.D) + ")", # Second arg : j-variable, of size D
]
kernel_instance = Genred(formula, aliases, reduction_op="Sum", axis=1)
# serialize/pickle
serialized_kernel = pickle.dumps(kernel_instance)
# deserialize/unpickle
deserialized_kernel = pickle.loads(serialized_kernel)
self.assertTrue(type(kernel_instance), type(deserialized_kernel))
############################################################
def test_LazyTensor_sum(self):
############################################################
import torch
from pykeops.torch import LazyTensor
full_results = []
for use_keops in [True, False]:
results = []
# N.B.: We could loop over float32 and float64, but this would take longer...
for (x, l, y, s) in [(self.Xc, self.Lc, self.Yc, self.Sc)]: # Float32
x_i = x.unsqueeze(-2)
l_i = l.unsqueeze(-2)
y_j = y.unsqueeze(-3)
s_p = s.unsqueeze(-2).unsqueeze(-2)
if use_keops:
x_i, l_i, y_j, s_p = (
LazyTensor(x_i),
LazyTensor(l_i),
LazyTensor(y_j),
LazyTensor(s_p),
)
D_ij = (0.5 * (l_i * x_i - y_j) ** 2 / s_p).sum(-1)
K_ij = (-D_ij).exp()
a_i = K_ij.sum(self.nbatchdims + 1)
if use_keops:
a_i = a_i.squeeze(-1)
[g_x, g_y, g_s] = torch.autograd.grad(
(a_i**2).sum(), [x, y, s], create_graph=True
)
[g_xx] = torch.autograd.grad((g_x**2).sum(), [x], create_graph=True)
results += [a_i, g_x, g_y, g_s, g_xx]
full_results.append(results)
for (res_keops, res_torch) in zip(full_results[0], full_results[1]):
self.assertTrue(res_keops.shape == res_torch.shape)
self.assertTrue(
np.allclose(
res_keops.cpu().data.numpy().ravel(),
res_torch.cpu().data.numpy().ravel(),
atol=1e-3,
),
"KeOps:\n"
+ str(res_keops)
+ "\nPyTorch:\n"
+ str(res_torch)
+ "\nMax error: {:.2e}".format((res_keops - res_torch).abs().max()),
)
############################################################
def test_LazyTensor_logsumexp(self):
############################################################
import torch
from pykeops.torch import LazyTensor
full_results = []
for use_keops in [True, False]:
results = []
# N.B.: We could loop over float32 and float64, but this would take longer...
for (x, l, y, s) in [(self.Xcd, self.Lcd, self.Ycd, self.Scd)]: # Float64
x_i = x.unsqueeze(-2)
l_i = l.unsqueeze(-2)
y_j = y.unsqueeze(-3)
s_p = s.unsqueeze(-2).unsqueeze(-2)
if use_keops:
x_i, l_i, y_j, s_p = (
LazyTensor(x_i),
LazyTensor(l_i),
LazyTensor(y_j),
LazyTensor(s_p),
)
D_ij = ((l_i * x_i + y_j).relu() * s_p / 9).sum(-1)
K_ij = -1 / (1 + D_ij)
a_i = K_ij.logsumexp(self.nbatchdims + 1)
if use_keops:
a_i = a_i.squeeze(-1)
[g_x, g_y, g_s] = torch.autograd.grad(
(1.0 * a_i).sum(), [x, y, s], create_graph=True
)
# N.B. (Joan, sept 2020) commenting out the 2nd order gradient computation here,
# since it slows down too much the compilation currently, when using Cuda 11.
#
[g_xs] = torch.autograd.grad((g_x.abs()).sum(), [s], create_graph=True)
results += [a_i, g_x, g_y, g_s, g_xs]
full_results.append(results)
for (res_keops, res_torch) in zip(full_results[0], full_results[1]):
self.assertTrue(res_keops.shape == res_torch.shape)
self.assertTrue(
np.allclose(
res_keops.cpu().data.numpy().ravel(),
res_torch.cpu().data.numpy().ravel(),
atol=1e-5,
)
)
############################################################
# Test min reduction with chunk without batches
def test_LazyTensor_min_chunked(self):
############################################################
from pykeops.torch import LazyTensor
import torch
X = np.random.rand(self.M, 990)
Xc = torch.tensor(X, dtype=self.dtype, device=self.device)
Y = np.random.rand(self.N, 990)
Yc = torch.tensor(Y, dtype=self.dtype, device=self.device)
full_results = []
for use_keops in [True, False]:
results = []
# N.B.: We could loop over float32 and float64, but this would take longer...
for (x, y) in [(Xc, Yc)]: # Float32
x_i = x.unsqueeze(-2)
y_j = y.unsqueeze(-3)
if use_keops:
x_i, y_j = (
LazyTensor(x_i),
LazyTensor(y_j),
)
K_ij = ((-(((x_i + y_j)) ** 2)).exp()).sum(-1, keepdim=True)
if use_keops:
m, am = K_ij.min_argmin(dim=0)
else:
m, am = K_ij.min(dim=0)
results += [m, am]
full_results.append(results)
for (res_keops, res_torch) in zip(full_results[0], full_results[1]):
self.assertTrue(res_keops.shape == res_torch.shape)
self.assertTrue(
np.allclose(
res_keops.cpu().data.numpy().ravel(),
res_torch.cpu().data.numpy().ravel(),
atol=1e-5,
)
)
############################################################
def test_LazyTensor_min(self):
############################################################
from pykeops.torch import LazyTensor
full_results = []
for use_keops in [True, False]:
results = []
# N.B.: We could loop over float32 and float64, but this would take longer...
for (x, l, y, s) in [(self.Xc, self.Lc, self.Yc, self.Sc)]: # Float32
x_i = x.unsqueeze(-2)
l_i = l.unsqueeze(-2)
y_j = y.unsqueeze(-3)
s_p = s.unsqueeze(-2).unsqueeze(-2)
if use_keops:
x_i, l_i, y_j, s_p = (
LazyTensor(x_i),
LazyTensor(l_i),
LazyTensor(y_j),
LazyTensor(s_p),
)
D_ij = ((1 + ((l_i * x_i + y_j).relu() * s_p) ** 2).log()).sum(
-1, keepdim=True
)
K_ij = (D_ij**1.5 + 1).cos() * (D_ij * (3.2 + s_p)).sin()
if use_keops:
m, am = K_ij.min_argmin(dim=self.nbatchdims)
else:
m, am = K_ij.min(dim=self.nbatchdims)
results += [m, am]
full_results.append(results)
for (res_keops, res_torch) in zip(full_results[0], full_results[1]):
self.assertTrue(res_keops.shape == res_torch.shape)
self.assertTrue(
np.allclose(
res_keops.cpu().data.numpy().ravel(),
res_torch.cpu().data.numpy().ravel(),
atol=1e-5,
)
)
############################################################
def test_TensorDot_with_permute(self):
############################################################
import torch
from pykeops.torch import LazyTensor
def my_tensordort_perm(a, b, dims=None, perm=None):
return torch.tensordot(a, b, dims=dims).sum(3).permute(perm)
def invert_permutation_numpy(permutation):
return np.arange(len(permutation))[np.argsort(permutation)]
x = torch.randn(self.M, 2, 3, 2, 2, 4, requires_grad=True, dtype=torch.float64)
y = torch.randn(
self.N, 2, 4, 2, 3, 2, 3, requires_grad=True, dtype=torch.float64
)
dimfa, dimfb = x.shape[1:], y.shape[1:]
contfa, contfb = [5, 1, 3], [2, 5, 3]
perm = [4, 3, 2, 0, 1]
perm_torch = (0,) + tuple([(i + 1) for i in invert_permutation_numpy(perm)])
sum_f_torch2 = my_tensordort_perm(x, y, dims=(contfa, contfb), perm=perm_torch)
f_keops = LazyTensor(
x.reshape(self.M, 1, int(np.array((dimfa)).prod()))
).keops_tensordot(
LazyTensor(y.reshape(1, self.N, int(np.array(dimfb).prod()))),
dimfa,
dimfb,
tuple(np.array(contfa) - 1),
tuple(np.array(contfb) - 1),
tuple(perm),
)
sum_f_keops = f_keops.sum_reduction(dim=1)
self.assertTrue(torch.allclose(sum_f_keops.flatten(), sum_f_torch2.flatten()))
e = torch.randn_like(sum_f_torch2)
# checking gradients
grad_keops = torch.autograd.grad(
sum_f_keops, x, e.reshape(self.M, -1), retain_graph=True
)[0]
grad_torch = torch.autograd.grad(sum_f_torch2, x, e, retain_graph=True)[0]
self.assertTrue(
torch.allclose(grad_keops.flatten(), grad_torch.flatten(), rtol=1e-4)
)
grad_keops = torch.autograd.grad(sum_f_keops, y, e.reshape(self.M, -1))[0]
grad_torch = torch.autograd.grad(sum_f_torch2, y, e)[0]
self.assertTrue(
torch.allclose(grad_keops.flatten(), grad_torch.flatten(), rtol=1e-4)
)
if __name__ == "__main__":
"""
run tests
"""
unittest.main()
| keops-main | pykeops/pykeops/test/test_torch.py |
import math
import torch
from pykeops.torch import LazyTensor
B1, B2, M, N, D, DV = 2, 3, 200, 300, 300, 1
dtype = torch.float32
sum_scheme = "block_sum"
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(B1, B2, M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(B1, 1, 1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(1, B2, N, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y).square()).sum(dim=4)
Kxy = (-Dxy).exp()
if "keops" in backend:
out = Kxy.__matmul__(b, sum_scheme=sum_scheme)
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out)
return out
out = []
for backend in ["keops", "torch"]:
out.append(fun(x, y, b, backend).squeeze())
def test_chunk_ranges():
assert torch.allclose(out[0], out[1], rtol=0.0001, atol=0.0001)
| keops-main | pykeops/pykeops/test/test_chunks_ranges.py |
keops-main | pykeops/pykeops/test/__init__.py |
|
import torch
from pykeops.torch import LazyTensor
M, N, D = 1000, 1000, 3
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.randn(M, 1, D, requires_grad=True, device=device_id)
y = torch.randn(1, N, D, device=device_id)
a = -1.23
b = 1.54
def fun(x, y, a, b, backend):
if backend == "keops":
x = LazyTensor(x)
y = LazyTensor(y)
elif backend != "torch":
raise ValueError("wrong backend")
Dxy = ((x * y).clamp(a, b)).sum(dim=2)
Kxy = (-(Dxy**2)).exp()
return Kxy.sum(dim=1)
out = []
for backend in ["torch", "keops"]:
out.append(fun(x, y, a, b, backend).squeeze())
out_g = []
for k, backend in enumerate(["torch", "keops"]):
out_g.append(torch.autograd.grad((out[k] ** 2).sum(), [x])[0])
class TestCase:
def test_lazytensor_clamp_fw(self):
assert torch.allclose(out[0], out[1])
def test_lazytensor_clamp_bw(self):
assert torch.allclose(out_g[0], out_g[1], atol=0.01)
| keops-main | pykeops/pykeops/test/test_lazytensor_clamp.py |
import math
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 200, 300, 300, 1
dtype = torch.float32
sum_scheme = "block_sum"
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y).square()).sum(dim=2)
Kxy = (-Dxy).exp()
if "keops" in backend:
out = Kxy.__matmul__(b, sum_scheme=sum_scheme)
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out)
return out
out = []
for backend in ["keops", "torch"]:
out.append(fun(x, y, b, backend).squeeze())
def test_chunks():
assert torch.allclose(out[0], out[1], atol=0.0001)
| keops-main | pykeops/pykeops/test/test_chunks.py |
from pykeops.numpy import LazyTensor
import numpy as np
np.random.seed(0)
a1 = np.random.rand(2, 1000, 5)
a2 = np.ascontiguousarray(a1.transpose(2, 0, 1)).transpose(1, 2, 0)
b = np.random.rand(2, 1000, 5)
c = np.random.rand(2, 1000, 5)
b_j = LazyTensor(b[:, None])
a1_i = LazyTensor(a1[:, :, None])
dist1 = a1_i.sqdist(b_j)
kernel1 = dist1.exp()
d1 = kernel1 @ c
a2_i = LazyTensor(a2[:, :, None])
dist2 = a2_i.sqdist(b_j)
kernel2 = dist2.exp()
d2 = kernel2 @ c
def test_contiguous_numpy():
assert np.allclose(d2, d1)
| keops-main | pykeops/pykeops/test/test_contiguous_numpy.py |
import math
import numpy as np
from pykeops.numpy import LazyTensor
M, N, D, DV = 3000, 2000, 3, 1
dtype = np.float32
np.random.seed(0)
x = np.random.rand(M, 1, D).astype(dtype) / math.sqrt(D)
y = np.random.rand(1, N, D).astype(dtype) / math.sqrt(D)
b = np.random.randn(N, DV).astype(dtype)
a = np.empty((M, DV), dtype=dtype)
def fun(x, y, b, backend, out=None):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y)).sum(axis=2)
if backend == "keops":
Kxy = (-Dxy).exp()
out = Kxy.__matmul__(b, out=out)
else:
Kxy = np.exp(-Dxy)
out = Kxy @ b
return out
backends = ["keops", "numpy"]
out = []
for backend in backends:
out.append(fun(x, y, b, backend, out=a).squeeze())
def test_lazytensor_gaussian_numpy_inplace():
assert np.allclose(out[0], out[1])
| keops-main | pykeops/pykeops/test/test_lazytensor_gaussian_numpy_inplace.py |
import math
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 200, 300, 3, 300
dtype = torch.float32
sum_scheme = "block_sum"
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y).square()).sum(dim=2)
Kxy = (-Dxy).exp()
if "keops" in backend:
out = Kxy.__matmul__(b, sum_scheme=sum_scheme)
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
return out
backends = ["keops", "torch"]
out = []
for backend in backends:
out.append(fun(x, y, b, backend).squeeze())
def test_finalchunk():
# print(out[0] - out[1])
assert torch.allclose(out[0], out[1], atol=0.0001)
| keops-main | pykeops/pykeops/test/test_finalchunks.py |
import math
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 2000, 3000, 3, 1
dtype = torch.float32
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, requires_grad=True, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y) ** 2).sum(dim=2)
Kxy = (-Dxy).exp()
if backend == "keops2D":
out = LazyTensor.__matmul__(Kxy, b, backend="GPU_2D")
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out)
return out
backends = ["keops2D", "torch"]
out = []
for backend in backends:
out.append(fun(x, y, b, backend).squeeze())
out_g = []
for k, backend in enumerate(backends):
out_g.append(torch.autograd.grad((out[k] ** 2).sum(), [b], create_graph=True)[0])
out_g2 = []
for k, backend in enumerate(backends):
out_g2.append(torch.autograd.grad((out_g[k] ** 2).sum(), [b])[0])
class TestCase:
def test_conv2d_fw(self):
assert torch.allclose(out[0], out[1])
def test_conv2d_bw1(self):
assert torch.allclose(out_g[0], out_g[1])
def test_conv2d_bw2(self):
assert torch.allclose(out_g2[0], out_g2[1])
| keops-main | pykeops/pykeops/test/conv2d.py |
import torch
from pykeops.torch import LazyTensor
M, N = 2, 10
# Matrix multiplication as a special case of Tensordot
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
a = torch.randn(4 * 7, requires_grad=True, device=device_id, dtype=torch.float64)
b = torch.randn(7, requires_grad=True, device=device_id, dtype=torch.float64)
c = a.reshape(4, 7) @ b
A = LazyTensor(a[None, None, :])
B = LazyTensor(b[None, None, :])
C = A.keops_tensordot(B, (4, 7), (7,), (1,), (0,)).sum_reduction(dim=1)
def test_tensordot():
assert torch.allclose(c.flatten(), C.flatten())
| keops-main | pykeops/pykeops/test/test_lazytensor_tensordot.py |
# Test for Clamp operation using LazyTensors
import pytest
import torch
from pykeops.torch import LazyTensor
dtype = torch.float16
M, N, D = 5, 5, 1
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.randn(M, 1, D, dtype=dtype, requires_grad=True, device=device_id)
y = torch.randn(1, N, D, dtype=dtype, device=device_id)
def fun(x, y, backend):
if backend == "keops":
x = LazyTensor(x)
y = LazyTensor(y)
elif backend != "torch":
raise ValueError("wrong backend")
Dxy = (x - y).sum(dim=2)
Kxy = Dxy
return Kxy.sum(dim=0)
class TestCase:
out = []
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires a GPU")
def test_float16_fw(self):
for backend in ["torch", "keops"]:
self.out.append(fun(x, y, backend).squeeze())
assert torch.allclose(self.out[0], self.out[1], atol=0.001, rtol=0.001)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires a GPU")
def test_float16_bw(self):
out_g = []
for k, backend in enumerate(["torch", "keops"]):
out_g.append(torch.autograd.grad(self.out[k][0], [x])[0])
assert torch.allclose(out_g[0], out_g[1])
| keops-main | pykeops/pykeops/test/test_float16.py |
import math
import pytest
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 1000, 1000, 3, 1
dtype = torch.float32
device_id = "cpu"
torch.backends.cuda.matmul.allow_tf32 = False
torch.manual_seed(0)
x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y) ** 2).sum(dim=2)
Kxy = (-Dxy).exp()
if "keops" in backend:
if backend.split("_")[1] == "gpu":
out = Kxy.__matmul__(b, backend="GPU_1D")
elif backend.split("_")[1] == "cpu":
out = Kxy.__matmul__(b, backend="CPU")
else:
out = Kxy @ b
return out
out = []
for backend in ["torch", "keops_cpu"]:
out.append(fun(x, y, b, backend).squeeze())
class TestCase:
def test_torch_keops_cpu(self):
assert torch.allclose(out[0], out[1])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires a GPU")
def test_torch_keops_gpu(self):
assert torch.allclose(out[0], fun(x, y, b, ["keops_gpu"]).squeeze())
| keops-main | pykeops/pykeops/test/test_gpu_cpu.py |
import numpy as np
from pykeops.numpy import LazyTensor, ComplexLazyTensor
M, N, D = 1000, 1000, 3
dtype = "float32"
np.random.seed(0)
x = np.random.rand(M, 1, D).astype(dtype) + 1j * np.random.rand(M, 1, D).astype(dtype)
y = np.random.rand(1, N, D).astype(dtype) + 1j * np.random.rand(1, N, D).astype(dtype)
def fun(x, y, backend):
if backend == "keops":
x = LazyTensor(x)
y = LazyTensor(y)
Kxy = ((x * y) * y.real + x + x.real).sum(axis=2)
return Kxy.sum(axis=0)
out = []
for backend in ["numpy", "keops"]:
out.append(fun(x, y, backend).squeeze())
def test_complex_numpy():
assert np.allclose(out[0], out[1])
| keops-main | pykeops/pykeops/test/test_complex_numpy.py |
from pykeops.torch import LazyTensor
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.manual_seed(0)
a1 = torch.rand(2, 1000, 5)
a2 = ((a1.permute(2, 0, 1)).contiguous()).permute(1, 2, 0)
b = torch.rand(2, 1000, 5)
c = torch.rand(2, 1000, 5)
b_j = LazyTensor(b[:, None])
a1_i = LazyTensor(a1[:, :, None])
dist1 = a1_i.sqdist(b_j)
kernel1 = dist1.exp()
d1 = kernel1 @ c
a2_i = LazyTensor(a2[:, :, None])
dist2 = a2_i.sqdist(b_j)
kernel2 = dist2.exp()
d2 = kernel2 @ c
def test_contiguous_torch():
assert torch.allclose(d2, d1)
| keops-main | pykeops/pykeops/test/test_contiguous_torch.py |
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 100, 100, 3, 1
dtype = torch.float32
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(M, 1, D, requires_grad=True, device=device_id, dtype=dtype)
y = torch.rand(1, N, 1, device=device_id, dtype=dtype)
b = torch.randn(N, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
# Kxy = ((x - 0.5).mod(1, 0.2) - y).sum(dim=2)
Kxy = (x.cos() - y).sum(dim=2)
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out.flatten()[:10])
return out
backends = ["keops", "torch"] # "keops_old"
out = []
for backend in backends:
out.append(fun(x, y, b, backend).squeeze())
out_g = []
for k, backend in enumerate(backends):
out_g.append(torch.autograd.grad((out[k] ** 2).sum(), [x], create_graph=True)[0])
out_g2 = []
for k, backend in enumerate(backends):
out_g2.append(torch.autograd.grad((out_g[k] ** 2).sum(), [x])[0])
class TestClass:
def test_lazytensor_grad(self):
assert torch.allclose(out[0], out[1], rtol=0.0001)
def test_lazytensor_grad_bw1(self):
assert torch.allclose(out_g[0], out_g[1], rtol=0.0001)
def test_lazytensor_grad_bw2(self):
assert torch.allclose(out_g2[0], out_g2[1], rtol=0.001)
| keops-main | pykeops/pykeops/test/test_lazytensor_grad.py |
# Non-Uniform Discrete Fourier Tranform example
import math
import torch
from pykeops.torch import LazyTensor
dtype = torch.float32
dtype_c = torch.complex64
M, N, D = 1000, 1000, 1
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(1, N, D, dtype=dtype_c, requires_grad=True, device=device_id)
p = torch.rand(1, N, D, dtype=dtype, device=device_id)
f = torch.rand(M, 1, D, dtype=dtype, device=device_id)
def view_as_real(x):
if torch.is_complex(x):
return torch.view_as_real(x)
else:
return x
def fun(x, p, f, backend):
if "keops" in backend:
x = LazyTensor(x)
p = LazyTensor(p)
f = LazyTensor(f)
X = x * (-2 * math.pi * 1j * p * f).exp()
return X.sum(dim=0)
out = []
for backend in ["keops", "torch"]:
out.append(fun(x, p, f, backend).squeeze())
def test_complex_fw():
assert torch.allclose(out[0], out[1])
# out_g = []
# for k, backend in enumerate(["keops", "torch"]):
# if out[k].is_complex():
# out_g.append(
# torch.autograd.grad((out[k].real ** 2 + out[k].imag ** 2).sum(), [x])[0]
# )
# else:
# out_g.append(torch.autograd.grad((out[k] ** 2).sum(), [x])[0])
#
#
# def test_complex_bw():
# assert torch.allclose(out_g[0], out_g[1])
| keops-main | pykeops/pykeops/test/test_complex.py |
import os.path
import sys
sys.path.append(
os.path.join(
os.path.dirname(os.path.abspath(__file__)), os.path.sep.join([os.pardir] * 2)
)
)
sys.path.append(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
os.path.sep.join([os.pardir] * 3),
"keopscore",
)
)
import unittest
import itertools
import numpy as np
import pykeops
import pykeops.config
from pykeops.numpy.utils import (
np_kernel,
grad_np_kernel,
differences,
squared_distances,
log_sum_exp,
np_kernel_sphere,
)
class NumpyUnitTestCase(unittest.TestCase):
A = int(4) # Batchdim 1
B = int(6) # Batchdim 2
M = int(10)
N = int(6)
D = int(3)
E = int(3)
nbatchdims = int(2)
x = np.random.rand(M, D)
a = np.random.rand(M, E)
f = np.random.rand(M, 1)
y = np.random.rand(N, D)
b = np.random.rand(N, E)
g = np.random.rand(N, 1)
sigma = np.array([0.4])
X = np.random.rand(A, 1, M, D)
L = np.random.rand(1, B, M, 1)
Y = np.random.rand(1, B, N, D)
S = np.random.rand(A, B, 1) + 1
type_to_test = ["float32", "float64"]
############################################################
def test_generic_syntax_sum(self):
############################################################
from pykeops.numpy import Genred
aliases = ["p=Pm(0,1)", "a=Vj(1,1)", "x=Vi(2,3)", "y=Vj(3,3)"]
formula = "Square(p-a)*Exp(x+y)"
axis = 1 # 0 means summation over i, 1 means over j
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b, t in itertools.product(backend_to_test, self.type_to_test):
with self.subTest(b=b, t=t):
# Call cuda kernel
myconv = Genred(formula, aliases, reduction_op="Sum", axis=axis)
gamma_keops = myconv(
self.sigma.astype(t),
self.g.astype(t),
self.x.astype(t),
self.y.astype(t),
backend=b,
)
# Numpy version
gamma_py = np.sum(
(self.sigma - self.g) ** 2
* np.exp((self.y.T[:, :, np.newaxis] + self.x.T[:, np.newaxis, :])),
axis=1,
).T
# compare output
self.assertTrue(np.allclose(gamma_keops, gamma_py, atol=1e-6))
############################################################
def test_generic_syntax_lse(self):
############################################################
from pykeops.numpy import Genred
aliases = ["p=Pm(0,1)", "a=Vj(1,1)", "x=Vi(2,3)", "y=Vj(3,3)"]
formula = "Square(p-a)*Exp(-SqNorm2(x-y))"
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b, t in itertools.product(backend_to_test, self.type_to_test):
with self.subTest(b=b, t=t):
# Call cuda kernel
myconv = Genred(formula, aliases, reduction_op="LogSumExp", axis=1)
gamma_keops = myconv(
self.sigma.astype(t),
self.g.astype(t),
self.x.astype(t),
self.y.astype(t),
backend=b,
)
# Numpy version
gamma_py = log_sum_exp(
(self.sigma - self.g.T) ** 2
* np.exp(-squared_distances(self.x, self.y)),
axis=1,
)
# compare output
self.assertTrue(np.allclose(gamma_keops.ravel(), gamma_py, atol=1e-6))
############################################################
def test_generic_syntax_softmax(self):
############################################################
from pykeops.numpy import Genred
aliases = ["p=Pm(0,1)", "a=Vj(1,1)", "x=Vi(2,3)", "y=Vj(3,3)"]
formula = "Square(p-a)*Exp(-SqNorm2(x-y))"
formula_weights = "y"
if pykeops.config.gpu_available:
backend_to_test = ["auto", "GPU_1D", "GPU_2D", "GPU"]
else:
backend_to_test = ["auto"]
for b, t in itertools.product(backend_to_test, self.type_to_test):
with self.subTest(b=b, t=t):
# Call cuda kernel
myop = Genred(
formula,
aliases,
reduction_op="SumSoftMaxWeight",
axis=1,
formula2=formula_weights,
)
gamma_keops = myop(
self.sigma.astype(t),
self.g.astype(t),
self.x.astype(t),
self.y.astype(t),
backend=b,
)
# Numpy version
def np_softmax(x, w):
x -= np.max(x, axis=1)[:, None] # subtract the max for robustness
return np.exp(x) @ w / np.sum(np.exp(x), axis=1)[:, None]
gamma_py = np_softmax(
(self.sigma - self.g.T) ** 2
* np.exp(-squared_distances(self.x, self.y)),
self.y,
)
# compare output
self.assertTrue(
np.allclose(gamma_keops.ravel(), gamma_py.ravel(), atol=1e-6)
)
############################################################
def test_non_contiguity(self):
############################################################
from pykeops.numpy import Genred
t = self.type_to_test[0]
aliases = ["p=Pm(0,1)", "a=Vj(1,1)", "x=Vi(2,3)", "y=Vj(3,3)"]
formula = "Square(p-a)*Exp(-SqNorm2(y-x))"
my_routine = Genred(formula, aliases, reduction_op="Sum", axis=1)
gamma_keops1 = my_routine(
self.sigma.astype(t),
self.g.astype(t),
self.x.astype(t),
self.y.astype(t),
backend="auto",
)
yc_tmp = np.ascontiguousarray(self.y.T).T # create a non contiguous copy
gamma_keops2 = my_routine(
self.sigma.astype(t), self.g.astype(t), self.x.astype(t), yc_tmp.astype(t)
)
# check output
self.assertFalse(yc_tmp.flags.c_contiguous)
self.assertTrue(np.allclose(gamma_keops1, gamma_keops2))
############################################################
def test_heterogeneous_var_aliases(self):
############################################################
from pykeops.numpy import Genred
t = self.type_to_test[0]
aliases = ["p=Pm(0,1)", "x=Vi(1,3)", "y=Vj(2,3)"]
formula = "Square(p-Var(3,1,1))*Exp(-SqNorm2(y-x))"
# Call cuda kernel
myconv = Genred(formula, aliases, reduction_op="Sum", axis=1)
gamma_keops = myconv(
self.sigma.astype(t),
self.x.astype(t),
self.y.astype(t),
self.g.astype(t),
backend="auto",
)
# Numpy version
gamma_py = np.sum(
(self.sigma - self.g.T) ** 2 * np.exp(-squared_distances(self.x, self.y)),
axis=1,
)
# compare output
self.assertTrue(np.allclose(gamma_keops.ravel(), gamma_py, atol=1e-6))
############################################################
def test_formula_simplification(self):
############################################################
from pykeops.numpy import Genred
t = self.type_to_test[0]
aliases = ["x=Vi(0,3)"]
formula = "Grad(Grad(x + Var(1,3,1), x, Var(2,3,0)),x, Var(3,3,0))"
# Call cuda kernel
myconv = Genred(formula, aliases, reduction_op="Sum", axis=1)
gamma_keops = myconv(
self.x.astype(t),
self.y.astype(t),
self.x.astype(t),
self.x.astype(t),
backend="auto",
)
# Numpy version
gamma_py = np.zeros_like(self.x)
# compare output
self.assertTrue(np.allclose(gamma_keops, gamma_py, atol=1e-6))
############################################################
def test_argkmin(self):
############################################################
from pykeops.numpy import Genred
formula = "SqDist(x,y)"
variables = [
"x = Vi(" + str(self.D) + ")", # First arg : i-variable, of size D
"y = Vj(" + str(self.D) + ")",
] # Second arg : j-variable, of size D
my_routine = Genred(
formula,
variables,
reduction_op="ArgKMin",
axis=1,
opt_arg=3,
)
c = my_routine(self.x, self.y, backend="auto").astype(int)
cnp = np.argsort(
np.sum((self.x[:, np.newaxis, :] - self.y[np.newaxis, :, :]) ** 2, axis=2),
axis=1,
)[:, :3]
self.assertTrue(np.allclose(c.ravel(), cnp.ravel()))
############################################################
def test_LazyTensor_sum(self):
############################################################
from pykeops.numpy import LazyTensor
full_results = []
for use_keops in [True, False]:
results = []
for (x, l, y, s) in [
(self.X.astype(t), self.L.astype(t), self.Y.astype(t), self.S.astype(t))
for t in self.type_to_test
]:
x_i = x[:, :, :, None, :]
l_i = l[:, :, :, None, :]
y_j = y[:, :, None, :, :]
s_p = s[:, :, None, None, :]
if use_keops:
x_i, l_i, y_j, s_p = (
LazyTensor(x_i),
LazyTensor(l_i),
LazyTensor(y_j),
LazyTensor(s_p),
)
D_ij = ((l_i + x_i * y_j) ** 2 + s_p).sum(-1)
if use_keops:
K_ij = 1 / (1 + D_ij).exp()
else:
K_ij = 1 / np.exp(1 + D_ij)
a_i = K_ij.sum(self.nbatchdims + 1)
if use_keops:
a_i = a_i.squeeze(-1)
results += [a_i]
full_results.append(results)
for (res_keops, res_numpy) in zip(full_results[0], full_results[1]):
self.assertTrue(res_keops.shape == res_numpy.shape)
self.assertTrue(np.allclose(res_keops, res_numpy, atol=1e-3))
if __name__ == "__main__":
unittest.main()
| keops-main | pykeops/pykeops/test/test_numpy.py |
import math
import torch
from pykeops.torch import LazyTensor
B1, B2, M, N, D, DV = 3, 4, 20, 25, 3, 2
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(1)
x = torch.rand(1, B2, M, 1, D, device=device_id) / math.sqrt(D)
y = torch.rand(B1, B2, 1, N, D, device=device_id) / math.sqrt(D)
b = torch.randn(B1, 1, N, DV, requires_grad=True, device=device_id)
def fun(x, y, b, backend):
if backend == "keops":
x = LazyTensor(x)
y = LazyTensor(y)
elif backend != "torch":
raise ValueError("wrong backend")
Dxy = ((x - y) ** 2).sum(dim=4)
Kxy = (-Dxy).exp()
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
return out
backends = ["torch", "keops"]
out = []
for backend in backends:
out.append(fun(x, y, b, backend).squeeze())
out_g = []
for k, backend in enumerate(backends):
out_g.append(torch.autograd.grad((out[k] ** 2).sum(), [b])[0])
class TestCase:
def test_lazytensor_gaussian_batch_fw(self):
# print(out[0]- out[1])
assert torch.allclose(out[0], out[1], atol=1e-6)
def test_lazytensor_gaussian_batch_bw(self):
assert torch.allclose(out_g[0], out_g[1])
| keops-main | pykeops/pykeops/test/test_lazytensor_gaussian_batch.py |
import math
import torch
from pykeops.torch import LazyTensor
M, N, D, DV = 20, 30, 3, 1
dtype = torch.float32
sum_scheme = "block_sum"
torch.backends.cuda.matmul.allow_tf32 = False
device_id = "cuda:0" if torch.cuda.is_available() else "cpu"
torch.manual_seed(0)
x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D)
y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D)
b = torch.randn(N, DV, device=device_id, dtype=dtype)
a = torch.empty(M, DV, device=device_id, dtype=dtype)
def fun(x, y, b, backend, out=None):
if "keops" in backend:
x = LazyTensor(x)
y = LazyTensor(y)
Dxy = ((x - y).square()).sum(dim=2)
Kxy = (-Dxy).exp()
if "keops" in backend:
Kxy.__matmul__(b, sum_scheme=sum_scheme, out=out)
else:
out = Kxy @ b
if device_id != "cpu":
torch.cuda.synchronize()
# print("out:",out)
return out
out = []
for backend in ["keops", "torch"]:
out.append(fun(x, y, b, backend, out=a).squeeze())
def test_lazytensor_gaussian_inplace():
assert torch.allclose(out[0], out[1])
| keops-main | pykeops/pykeops/test/test_lazytensor_gaussian_inplace.py |
import torch
from pykeops.common.parse_type import get_type
def make_odd_cat(y):
bdims = y.shape[:-2]
N, D = y.shape[-2:]
if N % 2 == 0:
ycut = y[..., :-1, :].view(bdims + (N - 1, D))
yend = y[..., -1, :].view(bdims + (1, D))
y = torch.cat((y, yend, ycut), dim=-2)
else:
y = torch.cat((y, y), dim=-2)
return y, N
def make_even_size(x):
bdims = x.shape[:-2]
M, D = x.shape[-2:]
if M % 2 == 1:
xend = x[..., -1, :].view(bdims + (1, D)) # used as dummy row to insert into x
x = torch.cat((x, xend), dim=-2)
tag_dummy = True
else:
tag_dummy = False
return x, tag_dummy
def half2half2(x):
bdims = x.shape[:-2]
M, D = x.shape[-2:]
return (
x.view(bdims + (M // 2, 2, D))
.transpose(-1, -2)
.contiguous()
.view(bdims + (M, D))
)
def half22half(x):
bdims = x.shape[:-2]
M, D = x.shape[-2:]
return (
x.view(bdims + (M // 2, D, 2))
.transpose(-1, -2)
.contiguous()
.view(bdims + (M, D))
)
def ranges2half2(ranges, N):
# we have to convert true indices to half2 indices, and take into account the special
# concatenate operation done in make_odd_cat, which doubles the number of ranges along j axis.
ranges_i, slices_i, redranges_j = ranges
ranges_i[:, 0] = torch.floor(ranges_i[:, 0] / 2.0).int()
ranges_i[:, 1] = torch.ceil(ranges_i[:, 1] / 2.0).int()
slices_i = torch.cat((slices_i, slices_i + redranges_j.shape[0]))
redranges_j_block1 = torch.zeros(redranges_j.shape)
redranges_j_block1[:, 0] = torch.floor(redranges_j[:, 0] / 2.0).int()
redranges_j_block1[:, 1] = torch.ceil(redranges_j[:, 1] / 2.0).int()
redranges_j_block2 = torch.zeros(redranges_j.shape)
redranges_j_block2[:, 0] = N // 2 + torch.floor((redranges_j[:, 0] + 1) / 2.0).int()
redranges_j_block2[:, 1] = N // 2 + torch.ceil((redranges_j[:, 1] + 1) / 2.0).int()
if N % 2 == 0:
# special treatment in case the last range goes to the end of the array
if redranges_j[-1, 1] == N:
redranges_j_block1[-1, 1] += 1
redranges_j_block2[-1, 1] -= 1
redranges_j = torch.cat((redranges_j, redranges_j_block2), dim=0)
return ranges_i, slices_i, redranges_j
def preprocess_half2(args, aliases, axis, ranges, nx, ny):
# When the dtype is "half", i.e. float16, we need to use special tricks
# because internally the Cuda code will use half2 data type, i.e.
# vectors of two float16 scalars. So we need to :
# - make a distinction between the actual nx and ny sizes of the reduction
# on the Python side, i.e. for the user, and the sizes in the c++ code
# which need to be divided by two (modulo the next point...)
# - make a copy of data for variables corresponding to the axis of reduction,
# switching the order of the pairs. To understand this, let's consider
# that we have two variables x_i and y_j, with nx = ny = 2,
# and we need to sum over the j axis some kernel,
# i.e. compute out_i = sum_j k(x_i, y_j) for i,j ranging from 1 to 2.
# After conversion to half2 data type, without any copy, we would get
# only one half2 for the x_i : X=(x_0,x_1) and one half2
# for the y_j : Y=(y_0,y_1). The computation of k(X,Y), with
# the rules of vectorization of Cuda, would compute only the two scalars
# k(x_0,y_0) and k(x_1,y_1) and store the result as a half2.
# To get the two other required kernel evaluations k(x_0,y_1) and k(x_1,y_0),
# we need to create a second half2 Ytilde=(y_1,y_0). The correct
# computation will then be acheived by computing k(X,Y) + k(X,Ytilde).
# N is the actual size of reduction, we record it for not mixing up things
# when we will do the post-process back conversion after reduction
N = ny if axis == 1 else nx
if ranges:
# When using ranges, we need to adapt the ranges to the special copy trick
if axis == 1:
ranges = ranges2half2(ranges[0:3], ny) + ranges[3:6]
else:
ranges = ranges[0:3] + ranges2half2(ranges[3:6], nx)
newargs = len(aliases) * [None]
tag_dummy = False
for (var_ind, sig) in enumerate(aliases):
_, cat, dim, pos = get_type(sig, position_in_list=var_ind)
arg = args[
pos
].data # we don't want to record our cuisine in the Autograd mechanism !
if cat == 2:
arg = arg[..., None, :] # (...,D) -> (...,1,D)
arg, _ = make_even_size(arg) # (...,1,D) -> (...,2,D)
elif cat == axis:
arg, Narg = make_odd_cat(arg)
N = max(N, Narg)
else:
arg, tag_dummy = make_even_size(arg)
arg = half2half2(arg)
if cat == 2:
arg = arg.view(
tuple(arg.shape[:-2]) + (2 * dim,)
) # (...,2,D) -> (...,2*D) (we "hide" the factor 2 in the dimension...)
newargs[pos] = arg
return newargs, ranges, tag_dummy, N
def postprocess_half2(out, tag_dummy, reduction_op, N):
out = half22half(out)
if tag_dummy:
out = out[..., :-1, :]
if reduction_op in ("ArgMin", "ArgMax", "ArgKMin"):
outind = out
elif reduction_op in (
"Min_ArgMin",
"MinArgMin",
"Max_ArgMax",
"MaxArgMax",
"KMinArgKMin",
"KMin_ArgKMin",
):
outind = out[..., out.shape[-1] // 2 :]
else:
return out
if N % 2 == 0:
outind[outind == N] = N - 1
outind[outind > N] -= N + 1
else:
outind[outind >= N] -= N
return out
| keops-main | pykeops/pykeops/torch/half2_convert.py |
import torch
from .. import config as pykeopsconfig
##########################################################
# Check Pytorch install
# is the proper torch version installed ?
torch_version_required = "1.3"
if torch.__version__ < torch_version_required:
raise ImportError(
"[pyKeOps]: The pytorch version should be >=" + torch_version_required
)
##########################################################
# Get GPU informations
pykeopsconfig.gpu_available = torch.cuda.is_available() # use torch to detect gpu
##########################################################
# Import pyKeOps routines
from .generic.generic_red import Genred
from .generic.generic_ops import (
generic_sum,
generic_logsumexp,
generic_argmin,
generic_argkmin,
)
from .operations import KernelSolve
from .lazytensor.LazyTensor import LazyTensor, ComplexLazyTensor, Vi, Vj, Pm
__all__ = sorted(
[
"Genred",
"generic_sum",
"generic_logsumexp",
"generic_argmin",
"generic_argkmin",
"KernelSolve",
"LazyTensor",
"Vi",
"Vj",
"Pm",
]
)
| keops-main | pykeops/pykeops/torch/__init__.py |
import torch
from pykeops.common.get_options import get_tag_backend
from pykeops.common.keops_io import keops_binder
from pykeops.common.operations import ConjugateGradientSolver
from pykeops.common.parse_type import (
get_type,
get_sizes,
complete_aliases,
get_optional_flags,
)
from pykeops.common.utils import axis2cat
from pykeops.torch.generic.generic_red import GenredAutograd
from pykeops import default_device_id
from pykeops.common.utils import pyKeOps_Warning
class KernelSolveAutograd(torch.autograd.Function):
"""
This class is the entry point to pytorch auto grad engine.
"""
@staticmethod
def forward(
ctx,
formula,
aliases,
varinvpos,
alpha,
backend,
dtype,
device_id_request,
eps,
ranges,
optional_flags,
rec_multVar_highdim,
nx,
ny,
*args
):
# N.B. when rec_multVar_highdim option is set, it means that formula is of the form "sum(F*b)", where b is a variable
# with large dimension. In this case we set option multVar_highdim to allow for the use of the special "final chunk" computation
# mode. However, this may not be also true for the gradients of the same formula. In fact only the gradient
# with respect to variable b will have the same form. Hence, we save optional_flags current status into ctx,
# before adding the multVar_highdim option.
ctx.optional_flags = optional_flags.copy()
if rec_multVar_highdim:
optional_flags["multVar_highdim"] = 1
else:
optional_flags["multVar_highdim"] = 0
tagCPUGPU, tag1D2D, tagHostDevice = get_tag_backend(backend, args)
# number of batch dimensions
# N.B. we assume here that there is at least a cat=0 or cat=1 variable in the formula...
nbatchdims = max(len(arg.shape) for arg in args) - 2
use_ranges = nbatchdims > 0 or ranges
device_args = args[0].device
if tagCPUGPU == 1 & tagHostDevice == 1:
for i in range(1, len(args)):
if args[i].device.index != device_args.index:
raise ValueError(
"[KeOps] Input arrays must be all located on the same device."
)
if device_id_request == -1: # -1 means auto setting
if device_args.index: # means args are on Gpu
device_id_request = device_args.index
else:
device_id_request = default_device_id if tagCPUGPU == 1 else -1
else:
if device_args.index:
if device_args.index != device_id_request:
raise ValueError(
"[KeOps] Gpu device id of arrays is different from device id requested for computation."
)
myconv = keops_binder["nvrtc" if tagCPUGPU else "cpp"](
tagCPUGPU,
tag1D2D,
tagHostDevice,
use_ranges,
device_id_request,
formula,
aliases,
len(args),
dtype,
"torch",
optional_flags,
).import_module()
# Context variables: save everything to compute the gradient:
ctx.formula = formula
ctx.aliases = aliases
ctx.varinvpos = varinvpos
ctx.alpha = alpha
ctx.backend = backend
ctx.dtype = dtype
ctx.device_id_request = device_id_request
ctx.eps = eps
ctx.nx = nx
ctx.ny = ny
ctx.myconv = myconv
ctx.ranges = ranges
ctx.rec_multVar_highdim = rec_multVar_highdim
ctx.optional_flags = optional_flags
varinv = args[varinvpos]
ctx.varinvpos = varinvpos
def linop(var):
newargs = args[:varinvpos] + (var,) + args[varinvpos + 1 :]
res = myconv.genred_pytorch(
device_args, ranges, nx, ny, nbatchdims, None, *newargs
)
if alpha:
res += alpha * var
return res
global copy
result = ConjugateGradientSolver("torch", linop, varinv.data, eps)
# relying on the 'ctx.saved_variables' attribute is necessary if you want to be able to differentiate the output
# of the backward once again. It helps pytorch to keep track of 'who is who'.
ctx.save_for_backward(*args, result)
return result
@staticmethod
def backward(ctx, G):
formula = ctx.formula
aliases = ctx.aliases
varinvpos = ctx.varinvpos
backend = ctx.backend
alpha = ctx.alpha
dtype = ctx.dtype
device_id_request = ctx.device_id_request
eps = ctx.eps
nx = ctx.nx
ny = ctx.ny
myconv = ctx.myconv
ranges = ctx.ranges
optional_flags = ctx.optional_flags
rec_multVar_highdim = ctx.rec_multVar_highdim
args = ctx.saved_tensors[:-1] # Unwrap the saved variables
nargs = len(args)
result = ctx.saved_tensors[-1]
# If formula takes 5 variables (numbered from 0 to 4), then the gradient
# wrt. the output, G, should be given as a 6-th variable (numbered 5),
# with the same dim-cat as the formula's output.
eta = (
"Var("
+ str(nargs)
+ ","
+ str(myconv.dimout)
+ ","
+ str(myconv.tagIJ)
+ ")"
)
# there is also a new variable for the formula's output
resvar = (
"Var("
+ str(nargs + 1)
+ ","
+ str(myconv.dimout)
+ ","
+ str(myconv.tagIJ)
+ ")"
)
newargs = args[:varinvpos] + (G,) + args[varinvpos + 1 :]
KinvG = KernelSolveAutograd.apply(
formula,
aliases,
varinvpos,
alpha,
backend,
dtype,
device_id_request,
eps,
ranges,
optional_flags,
rec_multVar_highdim,
nx,
ny,
*newargs
)
grads = [] # list of gradients wrt. args;
for (var_ind, sig) in enumerate(aliases): # Run through the arguments
# If the current gradient is to be discarded immediatly...
if not ctx.needs_input_grad[
var_ind + 13
]: # because of (formula, aliases, varinvpos, alpha, backend, dtype, device_id, eps, ranges, optional_flags, rec_multVar_highdim, nx, ny)
grads.append(None) # Don't waste time computing it.
else: # Otherwise, the current gradient is really needed by the user:
if var_ind == varinvpos:
grads.append(KinvG)
else:
# adding new aliases is way too dangerous if we want to compute
# second derivatives, etc. So we make explicit references to Var<ind,dim,cat> instead.
# New here (Joan) : we still add the new variables to the list of "aliases" (without giving new aliases for them)
# these will not be used in the C++ code,
# but are useful to keep track of the actual variables used in the formula
_, cat, dim, pos = get_type(sig, position_in_list=var_ind)
var = "Var(" + str(pos) + "," + str(dim) + "," + str(cat) + ")" # V
formula_g = (
"Grad_WithSavedForward("
+ formula
+ ", "
+ var
+ ", "
+ eta
+ ", "
+ resvar
+ ")"
) # Grad<F,V,G,R>
aliases_g = aliases + [eta, resvar]
args_g = (
args[:varinvpos]
+ (result,)
+ args[varinvpos + 1 :]
+ (-KinvG,)
+ (result,)
) # Don't forget the gradient to backprop !
# N.B.: if I understand PyTorch's doc, we should redefine this function every time we use it?
genconv = GenredAutograd.apply
if (
cat == 2
): # we're referring to a parameter, so we'll have to sum both wrt 'i' and 'j'
# WARNING !! : here we rely on the implementation of DiffT in files in folder keopscore/core/formulas/reductions
# if tagI==cat of V is 2, then reduction is done wrt j, so we need to further sum output wrt i
grad = genconv(
formula_g,
aliases_g,
backend,
dtype,
device_id_request,
ranges,
optional_flags,
None,
nx,
ny,
None,
*args_g
)
# Then, sum 'grad' wrt 'i' :
# I think that '.sum''s backward introduces non-contiguous arrays,
# and is thus non-compatible with GenredAutograd: grad = grad.sum(0)
# We replace it with a 'handmade hack' :
grad = torch.ones(1, grad.shape[0]).type_as(grad.data) @ grad
grad = grad.view(-1)
else:
grad = genconv(
formula_g,
aliases_g,
backend,
dtype,
device_id_request,
ranges,
optional_flags,
None,
nx,
ny,
None,
*args_g
)
grads.append(grad)
# Grads wrt. formula, aliases, varinvpos, alpha, backend, dtype, device_id_request, eps, ranges, optional_flags, rec_multVar_highdim, nx, ny, *args
return (
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
*grads,
)
class KernelSolve:
r"""
Creates a new conjugate gradient solver.
Supporting the same :ref:`generic syntax <part.generic_formulas>` as :class:`torch.Genred <pykeops.torch.Genred>`,
this module allows you to solve generic optimization problems of
the form:
.. math::
& & a^{\star} & =\operatorname*{argmin}_a \tfrac 1 2 \langle a,( \alpha \operatorname{Id}+K_{xx}) a\rangle - \langle a,b \rangle, \\\\
&\text{i.e.}\quad & a^{\star} & = (\alpha \operatorname{Id} + K_{xx})^{-1} b,
where :math:`K_{xx}` is a **symmetric**, **positive** definite **linear** operator
and :math:`\alpha` is a **nonnegative regularization** parameter.
Note:
:class:`KernelSolve` is fully compatible with PyTorch's :mod:`autograd` engine:
you can **backprop** through the KernelSolve :meth:`__call__` just
as if it was a vanilla PyTorch operation.
Example:
>>> formula = "Exp(-Norm2(x - y)) * a" # Exponential kernel
>>> aliases = ["x = Vi(3)", # 1st input: target points, one dim-3 vector per line
... "y = Vj(3)", # 2nd input: source points, one dim-3 vector per column
... "a = Vj(2)"] # 3rd input: source signal, one dim-2 vector per column
>>> K = Genred(formula, aliases, axis = 1) # Reduce formula along the lines of the kernel matrix
>>> K_inv = KernelSolve(formula, aliases, "a", # The formula above is linear wrt. 'a'
... axis = 1)
>>> # Generate some random data:
>>> x = torch.randn(10000, 3, requires_grad=True).cuda() # Sampling locations
>>> b = torch.randn(10000, 2).cuda() # Random observed signal
>>> a = K_inv(x, x, b, alpha = .1) # Linear solve: a_i = (.1*Id + K(x,x)) \ b
>>> print(a.shape)
torch.Size([10000, 2])
>>> # Mean squared error:
>>> print( ((( .1 * a + K(x,x,a) - b)**2 ).sqrt().sum() / len(x) ).item() )
0.0002317614998901263
>>> [g_x] = torch.autograd.grad((a ** 2).sum(), [x]) # KernelSolve supports autograd!
>>> print(g_x.shape)
torch.Size([10000, 3])
"""
def __init__(
self,
formula,
aliases,
varinvalias,
axis=0,
dtype_acc="auto",
use_double_acc=False,
sum_scheme="auto",
enable_chunks=True,
rec_multVar_highdim=None,
dtype=None,
cuda_type=None,
):
r"""
Instantiate a new KernelSolve operation.
Note:
:class:`KernelSolve` relies on CUDA kernels that are compiled on-the-fly
and stored in a :ref:`cache directory <part.cache>` as shared libraries (".so" files) for later use.
Args:
formula (string): The scalar- or vector-valued expression
that should be computed and reduced.
The correct syntax is described in the :doc:`documentation <../../Genred>`,
using appropriate :doc:`mathematical operations <../../../api/math-operations>`.
aliases (list of strings): A list of identifiers of the form ``"AL = TYPE(DIM)"``
that specify the categories and dimensions of the input variables. Here:
- ``AL`` is an alphanumerical alias, used in the **formula**.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0.
- ``Vj``: indexation by :math:`j` along axis 1.
- ``Pm``: no indexation, the input tensor is a *vector* and not a 2d array.
- ``DIM`` is an integer, the dimension of the current variable.
As described below, :meth:`__call__` will expect input Tensors whose
shape are compatible with **aliases**.
varinvalias (string): The alphanumerical **alias** of the variable with
respect to which we shall perform our conjugate gradient descent.
**formula** is supposed to be linear with respect to **varinvalias**,
but may be more sophisticated than a mere ``"K(x,y) * {varinvalias}"``.
Keyword Args:
alpha (float, default = 1e-10): Non-negative
**ridge regularization** parameter, added to the diagonal
of the Kernel matrix :math:`K_{xx}`.
axis (int, default = 0): Specifies the dimension of the kernel matrix :math:`K_{x_ix_j}` that is reduced by our routine.
The supported values are:
- **axis** = 0: reduction with respect to :math:`i`, outputs a ``Vj`` or ":math:`j`" variable.
- **axis** = 1: reduction with respect to :math:`j`, outputs a ``Vi`` or ":math:`i`" variable.
dtype_acc (string, default ``"auto"``): type for accumulator of reduction, before casting to dtype.
It improves the accuracy of results in case of large sized data, but is slower.
Default value "auto" will set this option to the value of dtype. The supported values are:
- **dtype_acc** = ``"float16"`` : allowed only if dtype is "float16".
- **dtype_acc** = ``"float32"`` : allowed only if dtype is "float16" or "float32".
- **dtype_acc** = ``"float64"`` : allowed only if dtype is "float32" or "float64".
use_double_acc (bool, default False): same as setting dtype_acc="float64" (only one of the two options can be set)
If True, accumulate results of reduction in float64 variables, before casting to float32.
This can only be set to True when data is in float32 or float64.
It improves the accuracy of results in case of large sized data, but is slower.
sum_scheme (string, default ``"auto"``): method used to sum up results for reductions.
Default value "auto" will set this option to "block_red". Possible values are:
- **sum_scheme** = ``"direct_sum"``: direct summation
- **sum_scheme** = ``"block_sum"``: use an intermediate accumulator in each block before accumulating in the output. This improves accuracy for large sized data.
- **sum_scheme** = ``"kahan_scheme"``: use Kahan summation algorithm to compensate for round-off errors. This improves accuracy for large sized data.
enable_chunks (bool, default True): enable automatic selection of special "chunked" computation mode for accelerating reductions
with formulas involving large dimension variables.
"""
if dtype:
pyKeOps_Warning(
"keyword argument dtype in Genred is deprecated ; argument is ignored."
)
if cuda_type:
pyKeOps_Warning(
"keyword argument cuda_type in Genred is deprecated ; argument is ignored."
)
self.reduction_op = "Sum"
self.optional_flags = get_optional_flags(
self.reduction_op,
dtype_acc,
use_double_acc,
sum_scheme,
enable_chunks,
)
self.formula = (
self.reduction_op
+ "_Reduction("
+ formula
+ ","
+ str(axis2cat(axis))
+ ")"
)
self.aliases = complete_aliases(
formula, list(aliases)
) # just in case the user provided a tuple
if varinvalias[:4] == "Var(":
# varinv is given directly as Var(*,*,*) so we just have to read the index
varinvpos = int(varinvalias[4 : varinvalias.find(",")])
else:
# we need to recover index from alias
tmp = self.aliases.copy()
for (i, s) in enumerate(tmp):
tmp[i] = s[: s.find("=")].strip()
varinvpos = tmp.index(varinvalias)
self.varinvpos = varinvpos
self.rec_multVar_highdim = rec_multVar_highdim
self.axis = axis
def __call__(
self, *args, backend="auto", device_id=-1, alpha=1e-10, eps=1e-6, ranges=None
):
r"""
Apply the routine on arbitrary torch Tensors.
Warning:
Even for variables of size 1 (e.g. :math:`a_i\in\mathbb{R}`
for :math:`i\in[0,M)`), KeOps expects inputs to be formatted
as 2d Tensors of size ``(M,dim)``. In practice,
``a.view(-1,1)`` should be used to turn a vector of weights
into a *list of scalar values*.
Args:
*args (2d Tensors (variables ``Vi(..)``, ``Vj(..)``) and 1d Tensors (parameters ``Pm(..)``)): The input numerical arrays,
which should all have the same ``dtype``, be **contiguous** and be stored on
the **same device**. KeOps expects one array per alias,
with the following compatibility rules:
- All ``Vi(Dim_k)`` variables are encoded as **2d-tensors** with ``Dim_k`` columns and the same number of lines :math:`M`.
- All ``Vj(Dim_k)`` variables are encoded as **2d-tensors** with ``Dim_k`` columns and the same number of lines :math:`N`.
- All ``Pm(Dim_k)`` variables are encoded as **1d-tensors** (vectors) of size ``Dim_k``.
Keyword Args:
backend (string): Specifies the map-reduce scheme,
as detailed in the documentation
of the :class:`torch.Genred <pykeops.torch.Genred>` module.
device_id (int, default=-1): Specifies the GPU that should be used
to perform the computation; a negative value lets your system
choose the default GPU. This parameter is only useful if your
system has access to several GPUs.
ranges (6-uple of IntTensors, None by default): Ranges of integers
that specify a :doc:`block-sparse reduction scheme <../../sparsity>`
with *Mc clusters along axis 0* and *Nc clusters along axis 1*,
as detailed in the documentation
of the :class:`torch.Genred <pykeops.torch.Genred>` module.
If **None** (default), we simply use a **dense Kernel matrix**
as we loop over all indices :math:`i\in[0,M)` and :math:`j\in[0,N)`.
Returns:
(M,D) or (N,D) Tensor:
The solution of the optimization problem, stored on the same device
as the input Tensors. The output of a :class:`KernelSolve`
call is always a
**2d-tensor** with :math:`M` or :math:`N` lines (if **axis** = 1
or **axis** = 0, respectively) and a number of columns
that is inferred from the **formula**.
"""
dtype = args[0].dtype.__str__().split(".")[1]
nx, ny = get_sizes(self.aliases, *args)
return KernelSolveAutograd.apply(
self.formula,
self.aliases,
self.varinvpos,
alpha,
backend,
dtype,
device_id,
eps,
ranges,
self.optional_flags,
self.rec_multVar_highdim,
nx,
ny,
*args
)
| keops-main | pykeops/pykeops/torch/operations.py |
import torch
from pykeops.torch import Genred, KernelSolve
from pykeops.torch.cluster import swap_axes as torch_swap_axes
# from pykeops.torch.generic.generic_red import GenredLowlevel
def is_on_device(x):
return x.is_cuda
class torchtools:
copy = torch.clone
exp = torch.exp
log = torch.log
norm = torch.norm
swap_axes = torch_swap_axes
Genred = Genred
KernelSolve = KernelSolve
arraytype = torch.Tensor
float_types = [float]
# GenredLowlevel = GenredLowlevel
@staticmethod
def eq(x, y):
return torch.eq(x, y)
@staticmethod
def transpose(x):
return x.t()
@staticmethod
def permute(x, *args):
return x.permute(*args)
@staticmethod
def contiguous(x):
return x.contiguous()
@staticmethod
def solve(A, b):
return torch.solve(b, A)[0].contiguous()
@staticmethod
def arraysum(x, axis=None):
return x.sum() if axis is None else x.sum(dim=axis)
@staticmethod
def long(x):
return x.long()
@staticmethod
def size(x):
return x.numel()
@staticmethod
def tile(*args):
return torch.Tensor.repeat(*args)
@staticmethod
def numpy(x):
return x.detach().cpu().numpy()
@staticmethod
def view(x, s):
return x.view(s)
@staticmethod
def is_tensor(x):
return isinstance(x, torch.Tensor)
@staticmethod
def dtype(x):
if hasattr(x, "dtype"):
return x.dtype
else:
return type(x)
@staticmethod
def dtype(x):
if hasattr(x, "dtype"):
return x.dtype
else:
return type(x)
@staticmethod
def detect_complex(x):
if type(x) == list:
return any(type(v) == complex for v in x)
elif type(x) == torch.Tensor:
return torch.is_complex(x)
else:
return type(x) == complex
@staticmethod
def view_as_complex(x):
sh = list(x.shape)
sh[-1] //= 2
sh += [2]
x = x.view(sh)
return torch.view_as_complex(x)
@staticmethod
def view_as_real(x):
sh = list(x.shape)
sh[-1] *= 2
return torch.view_as_real(x).view(sh)
@staticmethod
def dtypename(dtype):
if dtype == torch.float32:
return "float32"
elif dtype == torch.float64:
return "float64"
elif dtype == torch.float16:
return "float16"
elif dtype == int:
return int
elif dtype == list:
return "float32"
else:
raise ValueError(
"[KeOps] {} data type incompatible with KeOps.".format(dtype)
)
@staticmethod
def rand(m, n, dtype, device):
return torch.rand(m, n, dtype=dtype, device=device)
@staticmethod
def randn(m, n, dtype, device):
return torch.randn(m, n, dtype=dtype, device=device)
@staticmethod
def zeros(
shape,
dtype,
device,
requires_grad=False,
):
return torch.zeros(
*shape, dtype=dtype, device=device, requires_grad=requires_grad
)
@staticmethod
def empty(
shape,
dtype,
device,
requires_grad=False,
):
return torch.empty(
*shape, dtype=dtype, device=device, requires_grad=requires_grad
)
@staticmethod
def eye(n, dtype, device):
return torch.eye(n, dtype=dtype, device=device)
@staticmethod
def array(x, dtype, device):
if dtype == "float32":
dtype = torch.float32
elif dtype == "float64":
dtype = torch.float64
elif dtype == "float16":
dtype = torch.float16
elif dtype == "int32":
dtype = torch.int32
else:
raise ValueError(
"[KeOps] data type " + dtype + " is incompatible with KeOps."
)
return torch.tensor(x, dtype=dtype, device=device)
@staticmethod
def device(x):
if isinstance(x, torch.Tensor):
return x.device
else:
return None
@staticmethod
def get_pointer(x):
return x.data_ptr()
@staticmethod
def device_type_index(x):
if isinstance(x, torch.Tensor):
dev = x.device
return dev.type, dev.index
else:
return None, None
@staticmethod
def pointer(x):
return x.data.data_ptr()
def squared_distances(x, y):
x_norm = (x**2).sum(1).reshape(-1, 1)
y_norm = (y**2).sum(1).reshape(1, -1)
dist = x_norm + y_norm - 2.0 * torch.matmul(x, torch.transpose(y, 0, 1))
return dist
def torch_kernel(x, y, s, kernel):
sq = squared_distances(x, y)
_kernel = {
"gaussian": lambda _sq, _s: torch.exp(-_sq / (_s * _s)),
"laplacian": lambda _sq, _s: torch.exp(-torch.sqrt(_sq) / _s),
"cauchy": lambda _sq, _s: 1.0 / (1 + _sq / (_s * _s)),
"inverse_multiquadric": lambda _sq, _s: torch.rsqrt(1 + _sq / (_s * _s)),
}
return _kernel[kernel](sq, s)
| keops-main | pykeops/pykeops/torch/utils.py |
import torch
from pykeops.common.utils import pyKeOps_Message
formula = "SqNorm2(x - y)"
var = ["x = Vi(3)", "y = Vj(3)"]
expected_res = [63.0, 90.0]
def test_torch_bindings():
"""
This function try to compile a simple keops formula using the pytorch binder.
"""
x = torch.arange(1, 10, dtype=torch.float32).view(-1, 3)
y = torch.arange(3, 9, dtype=torch.float32).view(-1, 3)
import pykeops.torch as pktorch
my_conv = pktorch.Genred(formula, var)
if torch.allclose(
my_conv(x, y).view(-1), torch.tensor(expected_res).type(torch.float32)
):
pyKeOps_Message("pyKeOps with torch bindings is working!", use_tag=False)
else:
pyKeOps_Message("outputs wrong values...", use_tag=False)
| keops-main | pykeops/pykeops/torch/test_install.py |
import torch
def from_matrix(ranges_i, ranges_j, keep):
r"""Turns a boolean matrix into a KeOps-friendly **ranges** argument.
This routine is a helper for the **block-sparse** reduction mode of KeOps,
allowing you to turn clustering information (**ranges_i**,
**ranges_j**) and a cluster-to-cluster boolean mask (**keep**)
into integer tensors of indices that can be used to schedule the KeOps routines.
Suppose that you're working with variables :math:`x_i` (:math:`i \in [0,10^6)`),
:math:`y_j` (:math:`j \in [0,10^7)`), and that you want to compute a KeOps reduction
over indices :math:`i` or :math:`j`: Instead of performing the full
kernel dot product (:math:`10^6 \cdot 10^7 = 10^{13}` operations!),
you may want to restrict yourself to
interactions between points :math:`x_i` and :math:`y_j` that are "close" to each other.
With KeOps, the simplest way of doing so is to:
1. Compute cluster labels for the :math:`x_i`'s and :math:`y_j`'s, using e.g.
the :func:`grid_cluster` method.
2. Compute the ranges (**ranges_i**, **ranges_j**) and centroids associated
to each cluster, using e.g. the :func:`cluster_ranges_centroids` method.
3. Sort the tensors ``x_i`` and ``y_j`` with :func:`sort_clusters` to make sure that the
clusters are stored contiguously in memory (this step is **critical** for performance on GPUs).
At this point:
- the :math:`k`-th cluster of :math:`x_i`'s is given by ``x_i[ ranges_i[k,0]:ranges_i[k,1], : ]``, for :math:`k \in [0,M)`,
- the :math:`\ell`-th cluster of :math:`y_j`'s is given by ``y_j[ ranges_j[l,0]:ranges_j[l,1], : ]``, for :math:`\ell \in [0,N)`.
4. Compute the :math:`(M,N)` matrix **dist** of pairwise distances between cluster centroids.
5. Apply a threshold on **dist** to generate a boolean matrix ``keep = dist < threshold``.
6. Define a KeOps reduction ``my_genred = Genred(..., axis = 0 or 1)``, as usual.
7. Compute the block-sparse reduction through
``result = my_genred(x_i, y_j, ranges = from_matrix(ranges_i,ranges_j,keep) )``
:func:`from_matrix` is thus the routine that turns a **high-level description**
of your block-sparse computation (cluster ranges + boolean matrix)
into a set of **integer tensors** (the **ranges** optional argument),
used by KeOps to schedule computations on the GPU.
Args:
ranges_i ((M,2) IntTensor): List of :math:`[\text{start}_k,\text{end}_k)` indices.
For :math:`k \in [0,M)`, the :math:`k`-th cluster of ":math:`i`" variables is
given by ``x_i[ ranges_i[k,0]:ranges_i[k,1], : ]``, etc.
ranges_j ((N,2) IntTensor): List of :math:`[\text{start}_\ell,\text{end}_\ell)` indices.
For :math:`\ell \in [0,N)`, the :math:`\ell`-th cluster of ":math:`j`" variables is
given by ``y_j[ ranges_j[l,0]:ranges_j[l,1], : ]``, etc.
keep ((M,N) BoolTensor):
If the output ``ranges`` of :func:`from_matrix` is used in a KeOps reduction,
we will only compute and reduce the terms associated to pairs of "points"
:math:`x_i`, :math:`y_j` in clusters :math:`k` and :math:`\ell`
if ``keep[k,l] == 1``.
Returns:
A 6-uple of LongTensors that can be used as an optional **ranges**
argument of :class:`torch.Genred <pykeops.torch.Genred>`. See the documentation of :class:`torch.Genred <pykeops.torch.Genred>` for reference.
Example:
>>> r_i = torch.IntTensor( [ [2,5], [7,12] ] ) # 2 clusters: X[0] = x_i[2:5], X[1] = x_i[7:12]
>>> r_j = torch.IntTensor( [ [1,4], [4,9], [20,30] ] ) # 3 clusters: Y[0] = y_j[1:4], Y[1] = y_j[4:9], Y[2] = y_j[20:30]
>>> x,y = torch.Tensor([1., 0.]), torch.Tensor([1.5, .5, 2.5]) # dummy "centroids"
>>> dist = (x[:,None] - y[None,:])**2
>>> keep = (dist <= 1) # (2,3) matrix
>>> print(keep)
tensor([[1, 1, 0],
[0, 1, 0]], dtype=torch.uint8)
--> X[0] interacts with Y[0] and Y[1], X[1] interacts with Y[1]
>>> (ranges_i,slices_i,redranges_j, ranges_j,slices_j,redranges_i) = from_matrix(r_i,r_j,keep)
--> (ranges_i,slices_i,redranges_j) will be used for reductions with respect to "j" (axis=1)
--> (ranges_j,slices_j,redranges_i) will be used for reductions with respect to "i" (axis=0)
Information relevant if **axis** = 1:
>>> print(ranges_i) # = r_i
tensor([[ 2, 5],
[ 7, 12]], dtype=torch.int32)
--> Two "target" clusters in a reduction wrt. j
>>> print(slices_i)
tensor([2, 3], dtype=torch.int32)
--> X[0] is associated to redranges_j[0:2]
--> X[1] is associated to redranges_j[2:3]
>>> print(redranges_j)
tensor([[1, 4],
[4, 9],
[4, 9]], dtype=torch.int32)
--> For X[0], i in [2,3,4], we'll reduce over j in [1,2,3] and [4,5,6,7,8]
--> For X[1], i in [7,8,9,10,11], we'll reduce over j in [4,5,6,7,8]
Information relevant if **axis** = 0:
>>> print(ranges_j)
tensor([[ 1, 4],
[ 4, 9],
[20, 30]], dtype=torch.int32)
--> Three "target" clusters in a reduction wrt. i
>>> print(slices_j)
tensor([1, 3, 3], dtype=torch.int32)
--> Y[0] is associated to redranges_i[0:1]
--> Y[1] is associated to redranges_i[1:3]
--> Y[2] is associated to redranges_i[3:3] = no one...
>>> print(redranges_i)
tensor([[ 2, 5],
[ 2, 5],
[ 7, 12]], dtype=torch.int32)
--> For Y[0], j in [1,2,3], we'll reduce over i in [2,3,4]
--> For Y[1], j in [4,5,6,7,8], we'll reduce over i in [2,3,4] and [7,8,9,10,11]
--> For Y[2], j in [20,21,...,29], there is no reduction to be done
"""
I, J = torch.meshgrid(
(
torch.arange(0, keep.shape[0], device=keep.device),
torch.arange(0, keep.shape[1], device=keep.device),
)
)
redranges_i = ranges_i[
I.t()[keep.t()]
] # Use PyTorch indexing to "stack" copies of ranges_i[...]
redranges_j = ranges_j[J[keep]]
slices_i = (
keep.sum(1).cumsum(0).int()
) # slice indices in the "stacked" array redranges_j
slices_j = (
keep.sum(0).cumsum(0).int()
) # slice indices in the "stacked" array redranges_i
return (ranges_i, slices_i, redranges_j, ranges_j, slices_j, redranges_i)
if __name__ == "__main__":
r_i = torch.IntTensor([[2, 5], [7, 12]])
r_j = torch.IntTensor([[1, 4], [4, 9], [20, 30]])
x, y = torch.Tensor([0.0, 1.0]), torch.Tensor([0.0, 0.7, 2.0])
dist = (x[:, None] - y[None, :]) ** 2
keep = dist <= 0.8
print(keep)
for item in from_matrix(r_i, r_j, keep):
print(item)
| keops-main | pykeops/pykeops/torch/cluster/matrix.py |
import torch
def grid_cluster(x, size):
r"""Simplistic clustering algorithm which distributes points into cubic bins.
Args:
x ((M,D) Tensor): List of points :math:`x_i \in \mathbb{R}^D`.
size (float or (D,) Tensor): Dimensions of the cubic cells ("voxels").
Returns:
(M,) IntTensor:
Vector of integer **labels**. Two points ``x[i]`` and ``x[j]`` are
in the same cluster if and only if ``labels[i] == labels[j]``.
Labels are sorted in a compact range :math:`[0,C)`,
where :math:`C` is the number of non-empty cubic cells.
Example:
>>> x = torch.Tensor([ [0.], [.1], [.9], [.05], [.5] ]) # points in the unit interval
>>> labels = grid_cluster(x, .2) # bins of size .2
>>> print( labels )
tensor([0, 0, 2, 0, 1], dtype=torch.int32)
"""
with torch.no_grad():
# Quantize the points' positions
if x.shape[1] == 1:
weights = torch.IntTensor(
[1],
).to(x.device)
elif x.shape[1] == 2:
weights = torch.IntTensor(
[2**10, 1],
).to(x.device)
elif x.shape[1] == 3:
weights = torch.IntTensor([2**20, 2**10, 1]).to(x.device)
else:
raise NotImplementedError()
x_ = (x / size).floor().int()
x_ *= weights
lab = x_.sum(1) # labels
lab = lab - lab.min()
# Replace arbitrary labels with unique identifiers in a compact arange
u_lab = torch.unique(lab).sort()[0]
N_lab = len(u_lab)
foo = torch.empty(u_lab.max() + 1, dtype=torch.int32, device=x.device)
foo[u_lab] = torch.arange(N_lab, dtype=torch.int32, device=x.device)
lab = foo[lab]
return lab
| keops-main | pykeops/pykeops/torch/cluster/grid_cluster.py |
from .grid_cluster import grid_cluster
from .matrix import from_matrix
from .utils import (
sort_clusters,
cluster_ranges,
cluster_centroids,
cluster_ranges_centroids,
swap_axes,
)
# N.B.: the order is important for the autodoc in sphinx!
__all__ = sorted(
[
"grid_cluster",
"from_matrix",
"sort_clusters",
"cluster_ranges",
"cluster_centroids",
"cluster_ranges_centroids",
"swap_axes",
]
)
| keops-main | pykeops/pykeops/torch/cluster/__init__.py |
import torch
def sort_clusters(x, lab):
r"""Sorts a list of points and labels to make sure that the clusters are contiguous in memory.
On the GPU, **contiguous memory accesses** are key to high performances.
By making sure that points in the same cluster are stored next
to each other in memory, this pre-processing routine allows
KeOps to compute block-sparse reductions with maximum efficiency.
Warning:
For unknown reasons, ``torch.bincount`` is much more efficient
on *unsorted* arrays of labels... so make sure not to call ``bincount``
on the output of this routine!
Args:
x ((M,D) Tensor or tuple/list of (M,..) Tensors): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) IntTensor): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Returns:
(M,D) Tensor or tuple/list of (M,..) Tensors, (M,) IntTensor:
Sorted **point cloud(s)** and **vector of labels**.
Example:
>>> x = torch.Tensor( [ [0.], [5.], [.4], [.3], [2.] ])
>>> lab = torch.IntTensor([ 0, 2, 0, 0, 1 ])
>>> x_sorted, lab_sorted = sort_clusters(x, lab)
>>> print(x_sorted)
tensor([[0.0000],
[0.4000],
[0.3000],
[2.0000],
[5.0000]])
>>> print(lab_sorted)
tensor([0, 0, 0, 1, 2], dtype=torch.int32)
"""
lab, perm = torch.sort(lab.view(-1))
if type(x) is tuple:
x_sorted = tuple(a[perm] for a in x)
elif type(x) is list:
x_sorted = list(a[perm] for a in x)
else:
x_sorted = x[perm]
return x_sorted, lab
def cluster_ranges(lab, Nlab=None):
r"""Computes the ``[start,end)`` indices that specify clusters in a sorted point cloud.
If **lab** denotes a vector of labels :math:`\ell_i\in[0,C)`,
:func:`sort_clusters` allows us to sort our point clouds and make sure
that points that share the same label are stored next to each other in memory.
:func:`cluster_ranges` is simply there to give you the **slice indices**
that correspond to each of those :math:`C` classes.
Args:
x ((M,D) Tensor): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) IntTensor): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Keyword Args:
Nlab ((C,) IntTensor, optional): If you have computed it already,
you may specify the number of points per class through
this integer vector of length :math:`C`.
Returns:
(C,2) IntTensor:
Stacked array of :math:`[\text{start}_k, \text{end}_k )` indices in :math:`[0,M]`,
for :math:`k\in[0,C)`.
Example:
>>> x = torch.Tensor( [ [0.], [5.], [.4], [.3], [2.] ])
>>> lab = torch.IntTensor([ 0, 2, 0, 0, 1 ])
>>> x_sorted, lab_sorted = sort_clusters(x, lab)
>>> print(x_sorted)
tensor([[0.0000],
[0.4000],
[0.3000],
[2.0000],
[5.0000]])
>>> print(lab_sorted)
tensor([0, 0, 0, 1, 2], dtype=torch.int32)
>>> ranges_i = cluster_ranges(lab)
>>> print( ranges_i )
tensor([[0, 3],
[3, 4],
[4, 5]], dtype=torch.int32)
--> cluster 0 = x_sorted[0:3, :]
--> cluster 1 = x_sorted[3:4, :]
--> cluster 2 = x_sorted[4:5, :]
"""
if Nlab is None:
Nlab = torch.bincount(lab).float()
pivots = torch.cat((torch.Tensor([0.0]).to(Nlab.device), Nlab.cumsum(0)))
return torch.stack((pivots[:-1], pivots[1:]), dim=1).int()
def cluster_centroids(x, lab, Nlab=None, weights=None, weights_c=None):
r"""Computes the (weighted) centroids of classes specified by a vector of labels.
If points :math:`x_i \in\mathbb{R}^D` are assigned to :math:`C` different classes
by the vector of integer labels :math:`\ell_i \in [0,C)`,
this function returns a collection of :math:`C` centroids
.. math::
c_k = \frac{\sum_{i, \ell_i = k} w_i\cdot x_i}{\sum_{i, \ell_i=k} w_i},
where the weights :math:`w_i` are set to 1 by default.
Args:
x ((M,D) Tensor): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) IntTensor): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Keyword Args:
Nlab ((C,) IntTensor): Number of points per class. Recomputed if None.
weights ((N,) Tensor): Positive weights :math:`w_i` of each point.
weights_c ((C,) Tensor): Total weight of each class. Recomputed if None.
Returns:
(C,D) Tensor:
List of centroids :math:`c_k \in \mathbb{R}^D`.
Example:
>>> x = torch.Tensor([ [0.], [1.], [4.], [5.], [6.] ])
>>> lab = torch.IntTensor([ 0, 0, 1, 1, 1 ])
>>> weights = torch.Tensor([ .5, .5, 2., 1., 1. ])
>>> centroids = cluster_centroids(x, lab, weights=weights)
>>> print(centroids)
tensor([[0.5000],
[4.7500]])
"""
if Nlab is None:
Nlab = torch.bincount(lab).float()
if weights is not None and weights_c is None:
weights_c = torch.bincount(lab, weights=weights).view(-1, 1)
c = torch.zeros((len(Nlab), x.shape[1]), dtype=x.dtype, device=x.device)
for d in range(x.shape[1]):
if weights is None:
c[:, d] = torch.bincount(lab, weights=x[:, d]) / Nlab
else:
c[:, d] = torch.bincount(
lab, weights=x[:, d] * weights.view(-1)
) / weights_c.view(-1)
return c
def cluster_ranges_centroids(x, lab, weights=None, min_weight=1e-9):
r"""Computes the cluster indices and centroids of a (weighted) point cloud with labels.
If **x** and **lab** encode a cloud of points :math:`x_i\in\mathbb{R}^D`
with labels :math:`\ell_i\in[0,C)`, for :math:`i\in[0,M)`, this routine returns:
- Ranges :math:`[\text{start}_k,\text{end}_k)` compatible with
:func:`sort_clusters` for :math:`k\in[0,C)`.
- Centroids :math:`c_k` for each cluster :math:`k`, computed as barycenters
using the weights :math:`w_i \in \mathbb{R}_{>0}`:
.. math::
c_k = \frac{\sum_{i, \ell_i=k} w_i\cdot \ell_i}{\sum_{i, \ell_i=k} w_i}
- Total weights :math:`\sum_{i, \ell_i=k} w_i`, for :math:`k\in[0,C)`.
The weights :math:`w_i` can be given through a vector **weights**
of size :math:`M`, and are set by default to 1 for all points in the cloud.
Args:
x ((M,D) Tensor): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) IntTensor): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Keyword Args:
weights ((M,) Tensor): Positive weights :math:`w_i` that can be used to compute
our barycenters.
min_weight (float): For the sake of numerical stability,
weights are clamped to be larger or equal to this value.
Returns:
(C,2) IntTensor, (C,D) Tensor, (C,) Tensor:
**ranges** - Stacked array of :math:`[\text{start}_k,\text{end}_k)` indices in :math:`[0,M]`,
for :math:`k\in[0,C)`, compatible with the :func:`sort_clusters` routine.
**centroids** - List of centroids :math:`c_k \in \mathbb{R}^D`.
**weights_c** - Total weight of each cluster.
Example:
>>> x = torch.Tensor([ [0.], [.5], [1.], [2.], [3.] ])
>>> lab = torch.IntTensor([ 0, 0, 1, 1, 1 ])
>>> ranges, centroids, weights_c = cluster_ranges_centroids(x, lab)
>>> print(ranges)
tensor([[0, 2],
[2, 5]], dtype=torch.int32)
--> cluster 0 = x[0:2, :]
--> cluster 1 = x[2:5, :]
>>> print(centroids)
tensor([[0.2500],
[2.0000]])
>>> print(weights_c)
tensor([2., 3.])
>>> weights = torch.Tensor([ 1., .5, 1., 1., 10. ])
>>> ranges, centroids, weights_c = cluster_ranges_centroids(x, lab, weights=weights)
>>> print(ranges)
tensor([[0, 2],
[2, 5]], dtype=torch.int32)
--> cluster 0 = x[0:2, :]
--> cluster 1 = x[2:5, :]
>>> print(centroids)
tensor([[0.1667],
[2.7500]])
>>> print(weights_c)
tensor([1.5000, 12.0000])
"""
Nlab = torch.bincount(lab).float()
if weights is not None:
# Remove "zero weights" for the sake of numerical stability:
weights = weights.clone()
weights[weights <= min_weight] = min_weight
w_c = torch.bincount(lab, weights=weights).view(-1)
return (
cluster_ranges(lab, Nlab),
cluster_centroids(x, lab, Nlab, weights=weights, weights_c=w_c),
w_c,
)
else:
return cluster_ranges(lab, Nlab), cluster_centroids(x, lab, Nlab), Nlab
def swap_axes(ranges):
r"""
Swaps the ":math:`i`" and ":math:`j`" axes of a reduction's optional **ranges** parameter.
This function returns **None** if **ranges** is **None**,
and swaps the :math:`i` and :math:`j` arrays of indices otherwise.
"""
if ranges is None:
return None
else:
return (*ranges[3:6], *ranges[0:3])
| keops-main | pykeops/pykeops/torch/cluster/utils.py |
keops-main | pykeops/pykeops/torch/lazytensor/__init__.py |
|
import torch
from pykeops.common.lazy_tensor import GenericLazyTensor, ComplexGenericLazyTensor
from pykeops.torch.utils import torchtools
# Convenient aliases:
def Var(x_or_ind, dim=None, cat=None):
if dim is None:
# init via data: we assume x_or_ind is data
return LazyTensor(x_or_ind, axis=cat)
else:
# init via symbolic variable given as triplet (ind,dim,cat)
return LazyTensor((x_or_ind, dim, cat))
def Vi(x_or_ind, dim=None):
r"""
Simple wrapper that returns an instantiation of :class:`LazyTensor` of type 0.
"""
return Var(x_or_ind, dim, 0)
def Vj(x_or_ind, dim=None):
r"""
Simple wrapper that returns an instantiation of :class:`LazyTensor` of type 1.
"""
return Var(x_or_ind, dim, 1)
def Pm(x_or_ind, dim=None):
r"""
Simple wrapper that returns an instantiation of :class:`LazyTensor` of type 2.
"""
return Var(x_or_ind, dim, 2)
class LazyTensor(GenericLazyTensor):
r"""Symbolic wrapper for PyTorch tensors.
:class:`LazyTensor` encode numerical arrays through the combination
of a symbolic, **mathematical formula** and a list of **small data arrays**.
They can be used to implement efficient algorithms on objects
that are **easy to define**, but **impossible to store** in memory
(e.g. the matrix of pairwise distances between
two large point clouds).
:class:`LazyTensor` may be created from standard NumPy arrays or PyTorch tensors,
combined using simple mathematical operations and converted
back to NumPy arrays or PyTorch tensors with
efficient reduction routines, which outperform
standard tensorized implementations by two orders of magnitude.
"""
def __new__(self, x=None, axis=None, is_complex=False):
if is_complex or torchtools.detect_complex(x):
return ComplexLazyTensor(x, axis)
else:
return object.__new__(self)
def __init__(self, x=None, axis=None, is_complex=False):
super().__init__(x=x, axis=axis)
def get_tools(self):
self.tools = torchtools
self.Genred = torchtools.Genred
self.KernelSolve = torchtools.KernelSolve
def lt_constructor(self, x=None, axis=None, is_complex=False):
return LazyTensor(x=x, axis=axis, is_complex=is_complex)
class ComplexLazyTensor(ComplexGenericLazyTensor):
r"""Extension of the LazyTensor class for complex operations."""
def __init__(self, x=None, axis=None):
super().__init__(x=x, axis=axis)
def get_tools(self):
self.tools = torchtools
self.Genred = torchtools.Genred
self.KernelSolve = torchtools.KernelSolve
def lt_constructor(self, x=None, axis=None, is_complex=True):
return LazyTensor(x=x, axis=axis, is_complex=is_complex)
| keops-main | pykeops/pykeops/torch/lazytensor/LazyTensor.py |
import torch
from pykeops.common.get_options import get_tag_backend
from pykeops.common.operations import preprocess, postprocess
from pykeops.common.parse_type import (
get_type,
get_sizes,
complete_aliases,
get_optional_flags,
)
from pykeops.common.utils import axis2cat
from pykeops import default_device_id
from pykeops.common.utils import pyKeOps_Warning
class GenredAutograd(torch.autograd.Function):
"""
This class is the entry point to pytorch auto grad engine.
"""
@staticmethod
def forward(
ctx,
formula,
aliases,
backend,
dtype,
device_id_request,
ranges,
optional_flags,
rec_multVar_highdim,
nx,
ny,
out,
*args
):
# N.B. when rec_multVar_highdim option is set, it means that formula is of the form "sum(F*b)", where b is a variable
# with large dimension. In this case we set option multVar_highdim to allow for the use of the special "final chunk" computation
# mode. However, this may not be also true for the gradients of the same formula. In fact only the gradient
# with respect to variable b will have the same form. Hence, we save optional_flags current status into ctx,
# before adding the multVar_highdim option.
ctx.optional_flags = optional_flags.copy()
if rec_multVar_highdim:
optional_flags["multVar_highdim"] = 1
else:
optional_flags["multVar_highdim"] = 0
tagCPUGPU, tag1D2D, tagHostDevice = get_tag_backend(backend, args)
# number of batch dimensions
# N.B. we assume here that there is at least a cat=0 or cat=1 variable in the formula...
nbatchdims = max(len(arg.shape) for arg in args) - 2
use_ranges = nbatchdims > 0 or ranges
device_args = args[0].device
if tagCPUGPU == 1 & tagHostDevice == 1:
for i in range(1, len(args)):
if args[i].device.index != device_args.index:
raise ValueError(
"[KeOps] Input arrays must be all located on the same device."
)
if device_id_request == -1: # -1 means auto setting
if device_args.index: # means args are on Gpu
device_id_request = device_args.index
else:
device_id_request = default_device_id if tagCPUGPU == 1 else -1
else:
if device_args.index:
if device_args.index != device_id_request:
raise ValueError(
"[KeOps] Gpu device id of arrays is different from device id requested for computation."
)
from pykeops.common.keops_io import keops_binder
myconv = keops_binder["nvrtc" if tagCPUGPU else "cpp"](
tagCPUGPU,
tag1D2D,
tagHostDevice,
use_ranges,
device_id_request,
formula,
aliases,
len(args),
dtype,
"torch",
optional_flags,
).import_module()
# Context variables: save everything to compute the gradient:
ctx.formula = formula
ctx.aliases = aliases
ctx.backend = backend
ctx.dtype = dtype
ctx.device_id_request = device_id_request
ctx.ranges = ranges
ctx.rec_multVar_highdim = rec_multVar_highdim
ctx.myconv = myconv
ctx.nx = nx
ctx.ny = ny
# N.B.: KeOps C++ expects contiguous data arrays
test_contig = all(arg.is_contiguous() for arg in args)
if not test_contig:
pyKeOps_Warning(
"at least one of the input tensors is not contiguous. "
+ "Consider using contiguous data arrays to avoid unnecessary copies."
)
args = tuple(arg.contiguous() for arg in args)
# N.B.: KeOps C++ expects contiguous integer arrays as ranges
if ranges:
ranges = tuple(r.contiguous() for r in ranges)
result = myconv.genred_pytorch(
device_args, ranges, nx, ny, nbatchdims, out, *args
)
# relying on the 'ctx.saved_variables' attribute is necessary if you want to be able to differentiate the output
# of the backward once again. It helps pytorch to keep track of 'who is who'.
ctx.save_for_backward(*args, result)
return result
@staticmethod
def backward(ctx, G):
formula = ctx.formula
aliases = ctx.aliases
backend = ctx.backend
dtype = ctx.dtype
ranges = ctx.ranges
optional_flags = ctx.optional_flags
device_id_request = ctx.device_id_request
myconv = ctx.myconv
nx = ctx.nx
ny = ctx.ny
args = ctx.saved_tensors[:-1] # Unwrap the saved variables
nargs = len(args)
result = ctx.saved_tensors[-1].detach()
not_supported = [
"Min_ArgMin_Reduction",
"Min_Reduction",
"Max_ArgMax_Reduction",
"Max_Reduction",
"KMin_ArgKMin_Reduction",
"KMin_Reduction",
]
for red in not_supported:
if formula.startswith(red):
raise NotImplementedError(
"As of today, KeOps does not support "
+ "backpropagation through the "
+ red
+ " reduction. "
+ "Adding this feature to LazyTensors is on the cards "
+ "for future releases... But until then, you may want "
+ "to consider extracting the relevant integer indices "
+ "with a '.argmin()', '.argmax()' or '.argKmin()' reduction "
+ "before using PyTorch advanced indexing to create a fully-differentiable "
+ "tensor containing the relevant 'minimal' values."
)
# If formula takes 5 variables (numbered from 0 to 4), then the gradient
# wrt. the output, G, should be given as a 6-th variable (numbered 5),
# with the same dim-cat as the formula's output.
eta = (
"Var("
+ str(nargs)
+ ","
+ str(myconv.dimout)
+ ","
+ str(myconv.tagIJ)
+ ")"
)
# there is also a new variable for the formula's output
resvar = (
"Var("
+ str(nargs + 1)
+ ","
+ str(myconv.dimout)
+ ","
+ str(myconv.tagIJ)
+ ")"
)
# convert to contiguous:
G = G.contiguous()
grads = [] # list of gradients wrt. args;
for (var_ind, (sig, arg_ind)) in enumerate(
zip(aliases, args)
): # Run through the arguments
# If the current gradient is to be discarded immediatly...
if not ctx.needs_input_grad[
var_ind + 11
]: # because of (formula, aliases, backend, dtype, device_id_request, ranges, optional_flags, rec_multVar_highdim, nx, ny, out)
grads.append(None) # Don't waste time computing it.
else:
# Otherwise, the current gradient is really needed by the user. Adding new aliases is way too dangerous if we want to compute
# second derivatives, etc. So we make explicit references to Var<ind,dim,cat> instead.
# New here (Joan) : we still add the new variables to the list of "aliases" (without
# giving new aliases for them) these will not be used in the C++ code,
# but are useful to keep track of the actual variables used in the formula
_, cat, dim, pos = get_type(sig, position_in_list=var_ind)
var = "Var(" + str(pos) + "," + str(dim) + "," + str(cat) + ")" # V
formula_g = (
"Grad_WithSavedForward("
+ formula
+ ", "
+ var
+ ", "
+ eta
+ ", "
+ resvar
+ ")"
) # Grad<F,V,G,R>
aliases_g = aliases + [eta, resvar]
args_g = (
args + (G,) + (result,)
) # Don't forget the gradient to backprop !
# N.B.: if I understand PyTorch's doc, we should redefine this function every time we use it?
genconv = GenredAutograd.apply
# For a reduction of the type sum(F*b), with b a variable, and if we require the gradient
# with respect to b, the gradient will be of same type sum(F*eta). So we set again rec_multVar option
# in this case.
if pos == ctx.rec_multVar_highdim:
rec_multVar_highdim = (
nargs # nargs is the position of variable eta.
)
else:
rec_multVar_highdim = None
if (
cat == 2
): # we're referring to a parameter, so we'll have to sum both wrt 'i' and 'j'
# WARNING !! : here we rely on the implementation of DiffT in files in folder keopscore/core/formulas/reductions
# if tagI==cat of V is 2, then reduction is done wrt j, so we need to further sum output wrt i
grad = genconv(
formula_g,
aliases_g,
backend,
dtype,
device_id_request,
ranges,
optional_flags,
rec_multVar_highdim,
nx,
ny,
None,
*args_g
)
# Then, sum 'grad' wrt 'i' :
# I think that '.sum''s backward introduces non-contiguous arrays,
# and is thus non-compatible with GenredAutograd: grad = grad.sum(0)
# We replace it with a 'handmade hack' :
# grad = torch.ones(1, grad.shape[0]).type_as(grad.data) @ grad
# grad = grad.view(-1)
grad = (1.0 * grad).sum(-2)
dims_to_collapse = tuple(
i
for (i, (x, y)) in enumerate(
zip(arg_ind.shape[:-1], grad.shape[:-1])
)
if x < y
)
else:
grad = genconv(
formula_g,
aliases_g,
backend,
dtype,
device_id_request,
ranges,
optional_flags,
rec_multVar_highdim,
nx,
ny,
None,
*args_g
)
# N.B.: 'grad' is always a full [A, .., B, M, D] or [A, .., B, N, D] or [A, .., B, D] tensor,
# whereas 'arg_ind' may have some broadcasted batched dimensions.
# Before returning our gradient, we must collapse 'grad' with a .sum() operation,
# which is the adjoint of the good old "repmat" that could have been used
# to emulate the batch broadcasting.
dims_to_collapse = tuple(
i
for (i, (x, y)) in enumerate(
zip(arg_ind.shape[:-2], grad.shape[:-2])
)
if x < y
)
if dims_to_collapse != ():
grad = (1.0 * grad).sum(dims_to_collapse, keepdim=True)
grad = grad.reshape(
arg_ind.shape
) # The gradient should have the same shape as the input!
grads.append(grad)
# Grads wrt. formula, aliases, backend, dtype, device_id_request, ranges, optional_flags, rec_multVar_highdim, nx, ny, out, *args
return (
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
*grads,
)
class Genred:
r"""
Creates a new generic operation.
This is KeOps' main function, whose usage is documented in
the :doc:`user-guide <../../Genred>`,
the :doc:`gallery of examples <../../../_auto_examples/index>`
and the :doc:`high-level tutorials <../../../_auto_tutorials/index>`.
Taking as input a handful of strings and integers that specify
a custom Map-Reduce operation, it returns a C++ wrapper
that can be called just like any other PyTorch function.
Note:
:func:`Genred` is fully compatible with PyTorch's :mod:`autograd` engine:
You can **backprop** through the KeOps :meth:`__call__` just
as if it was a vanilla PyTorch operation (except for Min or Max reduction types,
see :ref:`reductions <part.reduction>`)
Example:
>>> my_conv = Genred('Exp(-SqNorm2(x - y))', # formula
... ['x = Vi(3)', # 1st input: dim-3 vector per line
... 'y = Vj(3)'], # 2nd input: dim-3 vector per column
... reduction_op='Sum', # we also support LogSumExp, Min, etc.
... axis=1) # reduce along the lines of the kernel matrix
>>> # Apply it to 2d arrays x and y with 3 columns and a (huge) number of lines
>>> x = torch.randn(1000000, 3, requires_grad=True).cuda()
>>> y = torch.randn(2000000, 3).cuda()
>>> a = my_conv(x, y) # a_i = sum_j exp(-|x_i-y_j|^2)
>>> print(a.shape)
torch.Size([1000000, 1])
>>> [g_x] = torch.autograd.grad((a ** 2).sum(), [x]) # KeOps supports autograd!
>>> print(g_x.shape)
torch.Size([1000000, 3])
"""
def __init__(
self,
formula,
aliases,
reduction_op="Sum",
axis=0,
dtype=None,
opt_arg=None,
formula2=None,
cuda_type=None,
dtype_acc="auto",
use_double_acc=False,
sum_scheme="auto",
enable_chunks=True,
rec_multVar_highdim=False,
):
r"""
Instantiate a new generic operation.
Note:
:class:`Genred` relies on C++ or CUDA kernels that are compiled on-the-fly,
and stored in a :ref:`cache directory <part.cache>` as shared libraries (".so" files) for later use.
Args:
formula (string): The scalar- or vector-valued expression
that should be computed and reduced.
The correct syntax is described in the :doc:`documentation <../../Genred>`,
using appropriate :doc:`mathematical operations <../../../api/math-operations>`.
aliases (list of strings): A list of identifiers of the form ``"AL = TYPE(DIM)"``
that specify the categories and dimensions of the input variables. Here:
- ``AL`` is an alphanumerical alias, used in the **formula**.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0.
- ``Vj``: indexation by :math:`j` along axis 1.
- ``Pm``: no indexation, the input tensor is a *vector* and not a 2d array.
- ``DIM`` is an integer, the dimension of the current variable.
As described below, :meth:`__call__` will expect as input Tensors whose
shape are compatible with **aliases**.
Keyword Args:
reduction_op (string, default = ``"Sum"``): Specifies the reduction
operation that is applied to reduce the values
of ``formula(x_i, y_j, ...)`` along axis 0 or axis 1.
The supported values are one of :ref:`part.reduction`.
axis (int, default = 0): Specifies the dimension of the "kernel matrix" that is reduced by our routine.
The supported values are:
- **axis** = 0: reduction with respect to :math:`i`, outputs a ``Vj`` or ":math:`j`" variable.
- **axis** = 1: reduction with respect to :math:`j`, outputs a ``Vi`` or ":math:`i`" variable.
opt_arg (int, default = None): If **reduction_op** is in ``["KMin", "ArgKMin", "KMin_ArgKMin"]``,
this argument allows you to specify the number ``K`` of neighbors to consider.
dtype_acc (string, default ``"auto"``): type for accumulator of reduction, before casting to dtype.
It improves the accuracy of results in case of large sized data, but is slower.
Default value "auto" will set this option to the value of dtype. The supported values are:
- **dtype_acc** = ``"float16"`` : allowed only if dtype is "float16".
- **dtype_acc** = ``"float32"`` : allowed only if dtype is "float16" or "float32".
- **dtype_acc** = ``"float64"`` : allowed only if dtype is "float32" or "float64"..
use_double_acc (bool, default False): same as setting dtype_acc="float64" (only one of the two options can be set)
If True, accumulate results of reduction in float64 variables, before casting to float32.
This can only be set to True when data is in float32 or float64.
It improves the accuracy of results in case of large sized data, but is slower.
sum_scheme (string, default ``"auto"``): method used to sum up results for reductions.
Default value "auto" will set this option to "block_red". Possible values are:
- **sum_scheme** = ``"direct_sum"``: direct summation
- **sum_scheme** = ``"block_sum"``: use an intermediate accumulator in each block before accumulating
in the output. This improves accuracy for large sized data.
- **sum_scheme** = ``"kahan_scheme"``: use Kahan summation algorithm to compensate for round-off errors. This improves
accuracy for large sized data.
enable_chunks (bool, default True): for Gpu mode only, enable automatic selection of special "chunked" computation mode for accelerating reductions
with formulas involving large dimension variables.
rec_multVar_highdim (bool, default False): for Gpu mode only, enable special "final chunked" computation mode for accelerating reductions
with formulas involving large dimension variables. Beware ! This will only work if the formula has the very special form
that allows such computation mode.
"""
if dtype:
pyKeOps_Warning(
"keyword argument dtype in Genred is deprecated ; argument is ignored."
)
if cuda_type:
pyKeOps_Warning(
"keyword argument cuda_type in Genred is deprecated ; argument is ignored."
)
self.reduction_op = reduction_op
reduction_op_internal, formula2 = preprocess(reduction_op, formula2)
self.optional_flags = get_optional_flags(
reduction_op_internal,
dtype_acc,
use_double_acc,
sum_scheme,
enable_chunks,
)
str_opt_arg = "," + str(opt_arg) if opt_arg else ""
str_formula2 = "," + formula2 if formula2 else ""
self.formula = (
reduction_op_internal
+ "_Reduction("
+ formula
+ str_opt_arg
+ ","
+ str(axis2cat(axis))
+ str_formula2
+ ")"
)
self.aliases = complete_aliases(
self.formula, list(aliases)
) # just in case the user provided a tuple
self.axis = axis
self.opt_arg = opt_arg
self.rec_multVar_highdim = rec_multVar_highdim
def __call__(self, *args, backend="auto", device_id=-1, ranges=None, out=None):
r"""
To apply the routine on arbitrary torch Tensors.
.. warning:
Even for variables of size 1 (e.g. :math:`a_i\in\mathbb{R}`
for :math:`i\in[0,M)`), KeOps expects inputs to be formatted
as 2d Tensors of size ``(M,dim)``. In practice,
``a.view(-1,1)`` should be used to turn a vector of weights
into a *list of scalar values*.
Args:
*args (2d Tensors (variables ``Vi(..)``, ``Vj(..)``) and 1d Tensors (parameters ``Pm(..)``)): The input numerical arrays,
which should all have the same ``dtype``, be **contiguous** and be stored on
the **same device**. KeOps expects one array per alias,
with the following compatibility rules:
- All ``Vi(Dim_k)`` variables are encoded as **2d-tensors** with ``Dim_k`` columns and the same number of lines :math:`M`.
- All ``Vj(Dim_k)`` variables are encoded as **2d-tensors** with ``Dim_k`` columns and the same number of lines :math:`N`.
- All ``Pm(Dim_k)`` variables are encoded as **1d-tensors** (vectors) of size ``Dim_k``.
Keyword Args:
backend (string): Specifies the map-reduce scheme.
The supported values are:
- ``"auto"`` (default): let KeOps decide which backend is best suited to your data, based on the tensors' shapes. ``"GPU_1D"`` will be chosen in most cases.
- ``"CPU"``: use a simple C++ ``for`` loop on a single CPU core.
- ``"GPU_1D"``: use a `simple multithreading scheme <https://github.com/getkeops/keops/blob/main/keops/core/GpuConv1D.cu>`_ on the GPU - basically, one thread per value of the output index.
- ``"GPU_2D"``: use a more sophisticated `2D parallelization scheme <https://github.com/getkeops/keops/blob/main/keops/core/GpuConv2D.cu>`_ on the GPU.
- ``"GPU"``: let KeOps decide which one of the ``"GPU_1D"`` or the ``"GPU_2D"`` scheme will run faster on the given input.
device_id (int, default=-1): Specifies the GPU that should be used
to perform the computation; a negative value lets your system
choose the default GPU. This parameter is only useful if your
system has access to several GPUs.
ranges (6-uple of IntTensors, None by default):
Ranges of integers that specify a
:doc:`block-sparse reduction scheme <../../sparsity>`
with *Mc clusters along axis 0* and *Nc clusters along axis 1*.
If None (default), we simply loop over all indices
:math:`i\in[0,M)` and :math:`j\in[0,N)`.
**The first three ranges** will be used if **axis** = 1
(reduction along the axis of ":math:`j` variables"),
and to compute gradients with respect to ``Vi(..)`` variables:
- ``ranges_i``, (Mc,2) IntTensor - slice indices
:math:`[\operatorname{start}^I_k,\operatorname{end}^I_k)` in :math:`[0,M]`
that specify our Mc blocks along the axis 0
of ":math:`i` variables".
- ``slices_i``, (Mc,) IntTensor - consecutive slice indices
:math:`[\operatorname{end}^S_1, ..., \operatorname{end}^S_{M_c}]`
that specify Mc ranges :math:`[\operatorname{start}^S_k,\operatorname{end}^S_k)` in ``redranges_j``,
with :math:`\operatorname{start}^S_k = \operatorname{end}^S_{k-1}`.
**The first 0 is implicit**, meaning that :math:`\operatorname{start}^S_0 = 0`, and we typically expect that
``slices_i[-1] == len(redrange_j)``.
- ``redranges_j``, (Mcc,2) IntTensor - slice indices
:math:`[\operatorname{start}^J_\ell,\operatorname{end}^J_\ell)` in :math:`[0,N]`
that specify reduction ranges along the axis 1
of ":math:`j` variables".
If **axis** = 1,
these integer arrays allow us to say
that ``for k in range(Mc)``, the output values for
indices ``i in range( ranges_i[k,0], ranges_i[k,1] )``
should be computed using a Map-Reduce scheme over
indices ``j in Union( range( redranges_j[l, 0], redranges_j[l, 1] ))``
for ``l in range( slices_i[k-1], slices_i[k] )``.
**Likewise, the last three ranges** will be used if **axis** = 0
(reduction along the axis of ":math:`i` variables"),
and to compute gradients with respect to ``Vj(..)`` variables:
- ``ranges_j``, (Nc,2) IntTensor - slice indices
:math:`[\operatorname{start}^J_k,\operatorname{end}^J_k)` in :math:`[0,N]`
that specify our Nc blocks along the axis 1
of ":math:`j` variables".
- ``slices_j``, (Nc,) IntTensor - consecutive slice indices
:math:`[\operatorname{end}^S_1, ..., \operatorname{end}^S_{N_c}]`
that specify Nc ranges :math:`[\operatorname{start}^S_k,\operatorname{end}^S_k)` in ``redranges_i``,
with :math:`\operatorname{start}^S_k = \operatorname{end}^S_{k-1}`.
**The first 0 is implicit**, meaning that :math:`\operatorname{start}^S_0 = 0`, and we typically expect that
``slices_j[-1] == len(redrange_i)``.
- ``redranges_i``, (Ncc,2) IntTensor - slice indices
:math:`[\operatorname{start}^I_\ell,\operatorname{end}^I_\ell)` in :math:`[0,M]`
that specify reduction ranges along the axis 0
of ":math:`i` variables".
If **axis** = 0,
these integer arrays allow us to say
that ``for k in range(Nc)``, the output values for
indices ``j in range( ranges_j[k,0], ranges_j[k,1] )``
should be computed using a Map-Reduce scheme over
indices ``i in Union( range( redranges_i[l, 0], redranges_i[l, 1] ))``
for ``l in range( slices_j[k-1], slices_j[k] )``.
out (2d Tensor, None by default): The output numerical array, for in-place computation.
If provided, the output array should all have the same ``dtype``, be **contiguous** and be stored on
the **same device** as the arguments. Moreover it should have the correct shape for the output.
Returns:
(M,D) or (N,D) Tensor:
The output of the reduction, stored on the same device
as the input Tensors. The output of a Genred call is always a
**2d-tensor** with :math:`M` or :math:`N` lines (if **axis** = 1
or **axis** = 0, respectively) and a number of columns
that is inferred from the **formula**.
"""
dtype = args[0].dtype.__str__().split(".")[1]
nx, ny = get_sizes(self.aliases, *args)
nout, nred = (nx, ny) if self.axis == 1 else (ny, nx)
if "Arg" in self.reduction_op:
# when using Arg type reductions,
# if nred is greater than 16 millions and dtype=float32, the result is not reliable
# because we encode indices as floats, so we raise an exception ;
# same with float16 type and nred>2048
if nred > 1.6e7 and dtype in ("float32", "float"):
raise ValueError(
"size of input array is too large for Arg type reduction with single precision. Use double precision."
)
elif nred > 2048 and dtype in ("float16", "half"):
raise ValueError(
"size of input array is too large for Arg type reduction with float16 dtype.."
)
out = GenredAutograd.apply(
self.formula,
self.aliases,
backend,
dtype,
device_id,
ranges,
self.optional_flags,
self.rec_multVar_highdim,
nx,
ny,
out,
*args
)
return postprocess(out, "torch", self.reduction_op, nout, self.opt_arg, dtype)
| keops-main | pykeops/pykeops/torch/generic/generic_red.py |
keops-main | pykeops/pykeops/torch/generic/__init__.py |
|
from pykeops.common.parse_type import get_type
from pykeops.common.utils import cat2axis
from pykeops.torch import Genred
def generic_sum(formula, output, *aliases, **kwargs):
r"""Alias for :class:`torch.Genred <pykeops.torch.Genred>` with a "Sum" reduction.
Args:
formula (string): Symbolic KeOps expression, as in :class:`torch.Genred <pykeops.torch.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(DIM)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
- ``DIM`` is an integer, the dimension of the output variable; it should be compatible with **formula**.
*aliases (strings): List of identifiers, as in :class:`torch.Genred <pykeops.torch.Genred>`.
Keyword Args:
Returns:
A generic reduction that can be called on arbitrary
Torch tensors, as documented in :class:`torch.Genred <pykeops.torch.Genred>`.
Example:
>>> my_conv = generic_sum( # Custom Kernel Density Estimator
... 'Exp(-SqNorm2(x - y))', # Formula
... 'a = Vi(1)', # Output: 1 scalar per line
... 'x = Vi(3)', # 1st input: dim-3 vector per line
... 'y = Vj(3)') # 2nd input: dim-3 vector per line
>>> # Apply it to 2d arrays x and y with 3 columns and a (huge) number of lines
>>> x = torch.randn(1000000, 3, requires_grad=True).cuda()
>>> y = torch.randn(2000000, 3).cuda()
>>> a = my_conv(x, y) # a_i = sum_j exp(-|x_i-y_j|^2)
>>> print(a.shape)
torch.Size([1000000, 1])
"""
_, cat, _, _ = get_type(output)
axis = cat2axis(cat)
return Genred(formula, aliases, reduction_op="Sum", axis=axis, **kwargs)
def generic_logsumexp(formula, output, *aliases, **kwargs):
r"""Alias for :class:`torch.Genred <pykeops.torch.Genred>` with a "LogSumExp" reduction.
Args:
formula (string): Scalar-valued symbolic KeOps expression, as in :class:`torch.Genred <pykeops.torch.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(1)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
*aliases (strings): List of identifiers, as in :class:`torch.Genred <pykeops.torch.Genred>`.
Keyword Args:
Returns:
A generic reduction that can be called on arbitrary
Torch tensors, as documented in :class:`torch.Genred <pykeops.torch.Genred>`.
Example:
Log-likelihood of a Gaussian Mixture Model,
.. math::
a_i~=~f(x_i)~&=~ \log \sum_{j=1}^{N} \exp(-\gamma\cdot\|x_i-y_j\|^2)\cdot b_j \\\\
~&=~ \log \sum_{j=1}^{N} \exp\big(-\gamma\cdot\|x_i-y_j\|^2 \,+\, \log(b_j) \big).
>>> log_likelihood = generic_logsumexp(
... '(-(g * SqNorm2(x - y))) + b', # Formula
... 'a = Vi(1)', # Output: 1 scalar per line
... 'x = Vi(3)', # 1st input: dim-3 vector per line
... 'y = Vj(3)', # 2nd input: dim-3 vector per line
... 'g = Pm(1)', # 3rd input: vector of size 1
... 'b = Vj(1)') # 4th input: 1 scalar per line
>>> x = torch.randn(1000000, 3, requires_grad=True).cuda()
>>> y = torch.randn(2000000, 3).cuda()
>>> g = torch.Tensor([.5]).cuda() # Parameter of our GMM
>>> b = torch.rand(2000000, 1).cuda() # Positive weights...
>>> b = b / b.sum() # Normalized to get a probability measure
>>> a = log_likelihood(x, y, g, b.log()) # a_i = log sum_j exp(-g*|x_i-y_j|^2) * b_j
>>> print(a.shape)
torch.Size([1000000, 1])
"""
_, cat, _, _ = get_type(output)
axis = cat2axis(cat)
return Genred(formula, aliases, reduction_op="LogSumExp", axis=axis, **kwargs)
def generic_argkmin(formula, output, *aliases, **kwargs):
r"""Alias for :class:`torch.Genred <pykeops.torch.Genred>` with an "ArgKMin" reduction.
Args:
formula (string): Scalar-valued symbolic KeOps expression, as in :class:`torch.Genred <pykeops.torch.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(K)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
- ``K`` is an integer, the number of values to extract.
*aliases (strings): List of identifiers, as in :class:`torch.Genred <pykeops.torch.Genred>`.
Keyword Args:
Returns:
A generic reduction that can be called on arbitrary
Torch tensors, as documented in :class:`torch.Genred <pykeops.torch.Genred>`.
Example:
Bruteforce K-nearest neighbors search in dimension 100:
>>> knn = generic_argkmin(
... 'SqDist(x, y)', # Formula
... 'a = Vi(3)', # Output: 3 scalars per line
... 'x = Vi(100)', # 1st input: dim-100 vector per line
... 'y = Vj(100)') # 2nd input: dim-100 vector per line
>>> x = torch.randn(5, 100)
>>> y = torch.randn(20000, 100)
>>> a = knn(x, y)
>>> print(a)
tensor([[ 9054., 11653., 11614.],
[13466., 11903., 14180.],
[14164., 8809., 3799.],
[ 2092., 3323., 18479.],
[14433., 11315., 11841.]])
>>> print( (x - y[ a[:,0].long() ]).norm(dim=1) ) # Distance to the nearest neighbor
tensor([10.7933, 10.3235, 10.1218, 11.4919, 10.5100])
>>> print( (x - y[ a[:,1].long() ]).norm(dim=1) ) # Distance to the second neighbor
tensor([11.3702, 10.6550, 10.7646, 11.5676, 11.1356])
>>> print( (x - y[ a[:,2].long() ]).norm(dim=1) ) # Distance to the third neighbor
tensor([11.3820, 10.6725, 10.8510, 11.6071, 11.1968])
"""
_, cat, k, _ = get_type(output)
axis = cat2axis(cat)
return Genred(
formula, aliases, reduction_op="ArgKMin", axis=axis, opt_arg=k, **kwargs
)
def generic_argmin(formula, output, *aliases, **kwargs):
r"""Alias for :class:`torch.Genred <pykeops.torch.Genred>` with an "ArgMin" reduction.
Args:
formula (string): Scalar-valued symbolic KeOps expression, as in :class:`torch.Genred <pykeops.torch.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(1)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
*aliases (strings): List of identifiers, as in :class:`torch.Genred <pykeops.torch.Genred>`.
Keyword Args:
Returns:
A generic reduction that can be called on arbitrary
Torch tensors, as documented in :class:`torch.Genred <pykeops.torch.Genred>`.
Example:
Bruteforce nearest neighbor search in dimension 100:
>>> nearest_neighbor = generic_argmin(
... 'SqDist(x, y)', # Formula
... 'a = Vi(1)', # Output: 1 scalar per line
... 'x = Vi(100)', # 1st input: dim-100 vector per line
... 'y = Vj(100)') # 2nd input: dim-100 vector per line
>>> x = torch.randn(5, 100)
>>> y = torch.randn(20000, 100)
>>> a = nearest_neighbor(x, y)
>>> print(a)
tensor([[ 8761.],
[ 2836.],
[ 906.],
[16130.],
[ 3158.]])
>>> dists = (x - y[ a.view(-1).long() ] ).norm(dim=1) # Distance to the nearest neighbor
>>> print(dists)
tensor([10.5926, 10.9132, 9.9694, 10.1396, 10.1955])
"""
_, cat, _, _ = get_type(output)
axis = cat2axis(cat)
return Genred(formula, aliases, reduction_op="ArgMin", axis=axis, **kwargs)
| keops-main | pykeops/pykeops/torch/generic/generic_ops.py |
##########################################################
# Import pyKeOps routines
from .generic.generic_red import Genred
from .operations import KernelSolve
from .generic.generic_ops import (
generic_sum,
generic_logsumexp,
generic_argmin,
generic_argkmin,
)
from .lazytensor.LazyTensor import LazyTensor, ComplexLazyTensor, Vi, Vj, Pm
__all__ = sorted(
[
"Genred",
"generic_sum",
"generic_logsumexp",
"generic_argmin",
"generic_argkmin",
"KernelSolve",
"LazyTensor",
"Vi",
"Vj",
"Pm",
]
)
| keops-main | pykeops/pykeops/numpy/__init__.py |
import numpy as np
from pykeops.common.get_options import get_tag_backend
from pykeops.common.keops_io import keops_binder
from pykeops.common.operations import ConjugateGradientSolver
from pykeops.common.parse_type import get_sizes, complete_aliases, get_optional_flags
from pykeops.common.utils import axis2cat
from pykeops import default_device_id
from pykeops.common.utils import pyKeOps_Warning
class KernelSolve:
r"""
Creates a new conjugate gradient solver.
Supporting the same :ref:`generic syntax <part.generic_formulas>` as :class:`numpy.Genred <pykeops.numpy.Genred>`,
this module allows you to solve generic optimization problems of
the form:
.. math::
& & a^{\star} & =\operatorname*{argmin}_a \tfrac 1 2 \langle a,( \alpha \operatorname{Id}+K_{xx}) a\rangle - \langle a,b \rangle, \\\\
&\text{i.e.}\quad & a^{\star} & = (\alpha \operatorname{Id} + K_{xx})^{-1} b,
where :math:`K_{xx}` is a **symmetric**, **positive** definite **linear** operator
and :math:`\alpha` is a **nonnegative regularization** parameter.
Example:
>>> formula = "Exp(-Norm2(x - y)) * a" # Exponential kernel
>>> aliases = ["x = Vi(3)", # 1st input: target points, one dim-3 vector per line
... "y = Vj(3)", # 2nd input: source points, one dim-3 vector per column
... "a = Vj(2)"] # 3rd input: source signal, one dim-2 vector per column
>>> K = Genred(formula, aliases, axis = 1) # Reduce formula along the lines of the kernel matrix
>>> K_inv = KernelSolve(formula, aliases, "a", # The formula above is linear wrt. 'a'
... axis = 1)
>>> # Generate some random data:
>>> x = np.random.randn(10000, 3) # Sampling locations
>>> b = np.random.randn(10000, 2) # Random observed signal
>>> a = K_inv(x, x, b, alpha = .1) # Linear solve: a_i = (.1*Id + K(x,x)) \ b
>>> print(a.shape)
(10000, 2)
>>> # Mean squared error:
>>> print( ( np.sum( np.sqrt( ( .1 * a + K(x,x,a) - b)**2 ) ) / len(x) ).item() )
1.5619025770417854e-06
"""
def __init__(
self,
formula,
aliases,
varinvalias,
axis=0,
dtype=None,
opt_arg=None,
dtype_acc="auto",
use_double_acc=False,
sum_scheme="auto",
enable_chunks=True,
rec_multVar_highdim=None,
):
r"""
Instantiate a new KernelSolve operation.
Note:
:class:`KernelSolve` relies on C++ or CUDA kernels that are compiled on-the-fly
and stored in a :ref:`cache directory <part.cache>` as shared libraries (".so" files) for later use.
Args:
formula (string): The scalar- or vector-valued expression
that should be computed and reduced.
The correct syntax is described in the :doc:`documentation <../../Genred>`,
using appropriate :doc:`mathematical operations <../../../api/math-operations>`.
aliases (list of strings): A list of identifiers of the form ``"AL = TYPE(DIM)"``
that specify the categories and dimensions of the input variables. Here:
- ``AL`` is an alphanumerical alias, used in the **formula**.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0.
- ``Vj``: indexation by :math:`j` along axis 1.
- ``Pm``: no indexation, the input tensor is a *vector* and not a 2d array.
- ``DIM`` is an integer, the dimension of the current variable.
As described below, :meth:`__call__` will expect input arrays whose
shape are compatible with **aliases**.
varinvalias (string): The alphanumerical **alias** of the variable with
respect to which we shall perform our conjugate gradient descent.
**formula** is supposed to be linear with respect to **varinvalias**,
but may be more sophisticated than a mere ``"K(x,y) * {varinvalias}"``.
Keyword Args:
axis (int, default = 0): Specifies the dimension of the kernel matrix :math:`K_{x_ix_j}` that is reduced by our routine.
The supported values are:
- **axis** = 0: reduction with respect to :math:`i`, outputs a ``Vj`` or ":math:`j`" variable.
- **axis** = 1: reduction with respect to :math:`j`, outputs a ``Vi`` or ":math:`i`" variable.
dtype_acc (string, default ``"auto"``): type for accumulator of reduction, before casting to dtype.
It improves the accuracy of results in case of large sized data, but is slower.
Default value "auto" will set this option to the value of dtype. The supported values are:
- **dtype_acc** = ``"float16"`` : allowed only if dtype is "float16".
- **dtype_acc** = ``"float32"`` : allowed only if dtype is "float16" or "float32".
- **dtype_acc** = ``"float64"`` : allowed only if dtype is "float32" or "float64"..
use_double_acc (bool, default False): same as setting dtype_acc="float64" (only one of the two options can be set)
If True, accumulate results of reduction in float64 variables, before casting to float32.
This can only be set to True when data is in float32 or float64.
It improves the accuracy of results in case of large sized data, but is slower.
sum_scheme (string, default ``"auto"``): method used to sum up results for reductions.
Default value "auto" will set this option to "block_red". Possible values are:
- **sum_scheme** = ``"direct_sum"``: direct summation
- **sum_scheme** = ``"block_sum"``: use an intermediate accumulator in each block before accumulating
in the output. This improves accuracy for large sized data.
- **sum_scheme** = ``"kahan_scheme"``: use Kahan summation algorithm to compensate for round-off errors. This improves
accuracy for large sized data.
enable_chunks (bool, default True): enable automatic selection of special "chunked" computation mode for accelerating reductions
with formulas involving large dimension variables.
"""
if dtype:
pyKeOps_Warning(
"keyword argument dtype in KernelSolve is deprecated ; argument is ignored."
)
reduction_op = "Sum"
if opt_arg:
self.formula = (
reduction_op
+ "_Reduction("
+ formula
+ ","
+ str(opt_arg)
+ ","
+ str(axis2cat(axis))
+ ")"
)
else:
self.formula = (
reduction_op + "_Reduction(" + formula + "," + str(axis2cat(axis)) + ")"
)
optional_flags = get_optional_flags(
reduction_op, dtype_acc, use_double_acc, sum_scheme, enable_chunks
)
if rec_multVar_highdim:
optional_flags["multVar_highdim"] = 1
else:
optional_flags["multVar_highdim"] = 0
self.aliases = complete_aliases(formula, aliases)
self.varinvalias = varinvalias
if varinvalias[:4] == "Var(":
# varinv is given directly as Var(*,*,*) so we just have to read the index
varinvpos = int(varinvalias[4 : varinvalias.find(",")])
else:
# we need to recover index from alias
tmp = self.aliases.copy()
for (i, s) in enumerate(tmp):
tmp[i] = s[: s.find("=")].strip()
varinvpos = tmp.index(varinvalias)
self.varinvpos = varinvpos
self.axis = axis
self.reduction_op = reduction_op
self.optional_flags = optional_flags
def __call__(
self, *args, backend="auto", device_id=-1, alpha=1e-10, eps=1e-6, ranges=None
):
r"""
To apply the routine on arbitrary NumPy arrays.
Warning:
Even for variables of size 1 (e.g. :math:`a_i\in\mathbb{R}`
for :math:`i\in[0,M)`), KeOps expects inputs to be formatted
as 2d arrays of size ``(M,dim)``. In practice,
``a.view(-1,1)`` should be used to turn a vector of weights
into a *list of scalar values*.
Args:
*args (2d arrays (variables ``Vi(..)``, ``Vj(..)``) and 1d arrays (parameters ``Pm(..)``)): The input numerical arrays,
which should all have the same ``dtype``, be **contiguous** and be stored on
the **same device**. KeOps expects one array per alias,
with the following compatibility rules:
- All ``Vi(Dim_k)`` variables are encoded as **2d-arrays** with ``Dim_k`` columns and the same number of lines :math:`M`.
- All ``Vj(Dim_k)`` variables are encoded as **2d-arrays** with ``Dim_k`` columns and the same number of lines :math:`N`.
- All ``Pm(Dim_k)`` variables are encoded as **1d-arrays** (vectors) of size ``Dim_k``.
Keyword Args:
alpha (float, default = 1e-10): Non-negative
**ridge regularization** parameter, added to the diagonal
of the Kernel matrix :math:`K_{xx}`.
backend (string): Specifies the map-reduce scheme,
as detailed in the documentation
of the :class:`numpy.Genred <pykeops.numpy.Genred>` module.
device_id (int, default=-1): Specifies the GPU that should be used
to perform the computation; a negative value lets your system
choose the default GPU. This parameter is only useful if your
system has access to several GPUs.
ranges (6-uple of IntTensors, None by default):
Ranges of integers that specify a
:doc:`block-sparse reduction scheme <../../sparsity>`
with *Mc clusters along axis 0* and *Nc clusters along axis 1*,
as detailed in the documentation
of the :class:`numpy.Genred <pykeops.numpy.Genred>` module.
If **None** (default), we simply use a **dense Kernel matrix**
as we loop over all indices
:math:`i\in[0,M)` and :math:`j\in[0,N)`.
Returns:
(M,D) or (N,D) array:
The solution of the optimization problem, which is always a
**2d-array** with :math:`M` or :math:`N` lines (if **axis** = 1
or **axis** = 0, respectively) and a number of columns
that is inferred from the **formula**.
"""
# Get tags
tagCPUGPU, tag1D2D, tagHostDevice = get_tag_backend(backend, args)
# number of batch dimensions
# N.B. we assume here that there is at least a cat=0 or cat=1 variable in the formula...
nbatchdims = max(len(arg.shape) for arg in args) - 2
use_ranges = nbatchdims > 0 or ranges
dtype = args[0].dtype.__str__()
if device_id == -1:
device_id = default_device_id if tagCPUGPU == 1 else -1
self.myconv = keops_binder["nvrtc" if tagCPUGPU else "cpp"](
tagCPUGPU,
tag1D2D,
tagHostDevice,
use_ranges,
device_id,
self.formula,
self.aliases,
len(args),
dtype,
"numpy",
self.optional_flags,
).import_module()
varinv = args[self.varinvpos]
def linop(var):
newargs = args[: self.varinvpos] + (var,) + args[self.varinvpos + 1 :]
nx, ny = get_sizes(self.aliases, *newargs)
res = self.myconv.genred_numpy(
-1, ranges, nx, ny, nbatchdims, None, *newargs
)
if alpha:
res += alpha * var
return res
return ConjugateGradientSolver("numpy", linop, varinv, eps=eps)
| keops-main | pykeops/pykeops/numpy/operations.py |
import numpy as np
from pykeops.numpy import Genred, KernelSolve
from pykeops.numpy.cluster import swap_axes as np_swap_axes
import pykeops.config
class numpytools:
norm = np.linalg.norm
arraysum = np.sum
exp = np.exp
log = np.log
Genred = Genred
KernelSolve = KernelSolve
swap_axes = np_swap_axes
arraytype = np.ndarray
float_types = [float, np.float16, np.float32, np.float64]
@staticmethod
def is_tensor(x):
return isinstance(x, np.ndarray)
@staticmethod
def copy(x):
return np.copy(x)
@staticmethod
def eq(x, y):
return np.equal(x, y)
@staticmethod
def transpose(x):
return x.T
@staticmethod
def permute(x, *args):
return x.transpose(*args)
@staticmethod
def contiguous(x):
return np.ascontiguousarray(x)
@staticmethod
def numpy(x):
return x
@staticmethod
def tile(*args):
return np.tile(*args)
@staticmethod
def solve(*args):
return np.linalg.solve(*args)
@staticmethod
def size(x):
return x.size
@staticmethod
def view(x, s):
return np.reshape(x, s)
@staticmethod
def long(x):
return x.astype("int64")
@staticmethod
def dtype(x):
return x.dtype
@staticmethod
def detect_complex(x):
if type(x) == list:
return any(type(v) == complex for v in x)
elif type(x) == np.ndarray:
return np.iscomplexobj(x)
else:
return type(x) == complex
@staticmethod
def view_as_complex(x):
if x.dtype == "float32":
return x.view("complex64")
elif x.dtype == "float64":
return x.view("complex128")
@staticmethod
def view_as_real(x):
if x.dtype == "complex64":
return x.view("float32")
elif x.dtype == "complex128":
return x.view("float64")
@staticmethod
def dtypename(dtype):
return dtype.name
@staticmethod
def rand(m, n, dtype):
return np.random.rand(m, n).astype(dtype)
@staticmethod
def randn(m, n, dtype):
return np.random.randn(m, n).astype(dtype)
@staticmethod
def zeros(shape, dtype, device=None, requires_grad=None):
return np.zeros(shape).astype(dtype)
@staticmethod
def empty(shape, dtype, device=None, requires_grad=None):
return np.empty(shape).astype(dtype)
@staticmethod
def eye(n, dtype):
return np.eye(n).astype(dtype)
@staticmethod
def array(x, dtype, device=None):
return np.array(x).astype(dtype)
@staticmethod
def get_pointer(x):
return x.__array_interface__["data"][0]
@staticmethod
def device(x):
return "cpu"
@staticmethod
def device_type_index(x):
return "cpu", None
@staticmethod
def device_dict(x):
return dict(cat="cpu")
def squared_distances(x, y):
x_norm = (x**2).sum(1).reshape(-1, 1)
y_norm = (y**2).sum(1).reshape(1, -1)
dist = x_norm + y_norm - 2.0 * np.matmul(x, y.T)
return dist
def differences(x, y):
return x.T[:, :, np.newaxis] - y.T[:, np.newaxis, :]
def np_kernel_sphere(nalpha, nbeta, s, kernel):
prs = nalpha @ nbeta.T
if kernel == "binet":
return prs**2
elif kernel == "linear":
return prs
elif kernel == "gaussian_unoriented":
return np.exp((-2.0 + 2.0 * prs * prs) / (s * s))
elif kernel == "gaussian_oriented":
return np.exp((-2.0 + 2.0 * prs) / (s * s))
def np_kernel(x, y, s, kernel):
sq = squared_distances(x, y)
if kernel == "gaussian":
return np.exp(-sq / (s * s))
elif kernel == "laplacian":
return np.exp(-np.sqrt(sq) / s)
elif kernel == "cauchy":
return 1.0 / (1 + sq / (s * s))
elif kernel == "inverse_multiquadric":
return np.sqrt(1.0 / (1 + sq / (s * s)))
def log_np_kernel(x, y, s, kernel):
sq = squared_distances(x, y)
if kernel == "gaussian":
return -sq / (s * s)
elif kernel == "laplacian":
return -np.sqrt(sq) / s
elif kernel == "cauchy":
return -np.log(1 + sq / (s * s))
elif kernel == "inverse_multiquadric":
return -0.5 * np.log(1.0 + sq / (s * s))
def grad_np_kernel(x, y, s, kernel):
sq = squared_distances(x, y)
if kernel == "gaussian":
return -np.exp(-sq / (s * s)) / (s * s)
elif kernel == "laplacian":
t = -np.sqrt(sq / (s * s))
return np.exp(t) / (2 * s * s * t)
elif kernel == "cauchy":
return -1.0 / (s * (sq / (s * s) + 1)) ** 2
elif kernel == "inverse_multiquadric":
return -0.5 / ((s**2) * ((sq / (s * s) + 1) ** 1.5))
def chain_rules(q, ax, by, Aa, p):
res = np.zeros(ax.shape).astype("float32")
for i in range(ax.shape[1]):
# Computation of 2*|x_i -x_j|*exp(-|x_i -x_j|^2/(lam^2))/(lam^2)
ximyj = np.tile(ax[:, i], [by.shape[0], 1]).T - np.tile(
by[:, i], [ax.shape[0], 1]
)
res[:, i] = np.sum(q * ((2 * ximyj * Aa) @ p), axis=1)
return res
def log_sum_exp(mat, axis=0):
"""
Computes the log-sum-exp of a matrix with a numerically stable scheme,
in the user-defined summation dimension: exp is never applied
to a number >= 0, and in each summation row, there is at least
one "exp(0)" to stabilize the sum.
For instance, if dim = 1 and mat is a 2d array, we output
log( sum_j exp( mat[i,j] ))
by factoring out the row-wise maximas.
"""
max_rc = mat.max(axis=axis)
return max_rc + np.log(
np.sum(np.exp(mat - np.expand_dims(max_rc, axis=axis)), axis=axis)
)
def WarmUpGpu():
# dummy first calls for accurate timing in case of GPU use
from pykeops.common.utils import pyKeOps_Message
pyKeOps_Message("Warming up the Gpu (numpy bindings) !!!")
if pykeops.config.gpu_available:
formula = "Exp(-oos2*SqDist(x,y))*b"
aliases = [
"x = Vi(1)", # First arg : i-variable, of size 1
"y = Vj(1)", # Second arg : j-variable, of size 1
"b = Vj(1)", # Third arg : j-variable, of size 1
"oos2 = Pm(1)",
] # Fourth arg : scalar parameter
my_routine = Genred(
formula, aliases, reduction_op="Sum", axis=1, dtype="float64"
)
dum = np.random.rand(10, 1)
dum2 = np.random.rand(10, 1)
my_routine(dum, dum, dum2, np.array([1.0]))
my_routine(dum, dum, dum2, np.array([1.0]))
| keops-main | pykeops/pykeops/numpy/utils.py |
import numpy as np
from pykeops.common.utils import pyKeOps_Message
formula = "SqNorm2(x - y)"
var = ["x = Vi(3)", "y = Vj(3)"]
expected_res = np.array([63.0, 90.0])
def test_numpy_bindings():
"""
This function try to compile a simple keops formula using the numpy binder.
"""
x = np.arange(1, 10).reshape(-1, 3).astype("float32")
y = np.arange(3, 9).reshape(-1, 3).astype("float32")
import pykeops.numpy as pknp
my_conv = pknp.Genred(formula, var)
if np.allclose(my_conv(x, y).flatten(), expected_res):
pyKeOps_Message("pyKeOps with numpy bindings is working!", use_tag=False)
else:
pyKeOps_Message("outputs wrong values...", use_tag=False)
| keops-main | pykeops/pykeops/numpy/test_install.py |
import numpy as np
def from_matrix(ranges_i, ranges_j, keep):
r"""Turns a boolean matrix into a KeOps-friendly **ranges** argument.
This routine is a helper for the **block-sparse** reduction mode of KeOps,
allowing you to turn clustering information (**ranges_i**,
**ranges_j**) and a cluster-to-cluster boolean mask (**keep**)
into integer tensors of indices that can be used to schedule the KeOps routines.
Suppose that you're working with variables :math:`x_i` (:math:`i \in [0,10^6)`),
:math:`y_j` (:math:`j \in [0,10^7)`), and that you want to compute a KeOps reduction
over indices :math:`i` or :math:`j`: Instead of performing the full
kernel dot product (:math:`10^6 \cdot 10^7 = 10^{13}` operations!),
you may want to restrict yourself to
interactions between points :math:`x_i` and :math:`y_j` that are "close" to each other.
With KeOps, the simplest way of doing so is to:
1. Compute cluster labels for the :math:`x_i`'s and :math:`y_j`'s, using e.g.
the :func:`grid_cluster` method.
2. Compute the ranges (**ranges_i**, **ranges_j**) and centroids associated
to each cluster, using e.g. the :func:`cluster_ranges_centroids` method.
3. Sort the tensors ``x_i`` and ``y_j`` with :func:`sort_clusters` to make sure that the
clusters are stored contiguously in memory (this step is **critical** for performance on GPUs).
At this point:
- the :math:`k`-th cluster of :math:`x_i`'s is given by ``x_i[ ranges_i[k,0]:ranges_i[k,1], : ]``, for :math:`k \in [0,M)`,
- the :math:`\ell`-th cluster of :math:`y_j`'s is given by ``y_j[ ranges_j[l,0]:ranges_j[l,1], : ]``, for :math:`\ell \in [0,N)`.
4. Compute the :math:`(M,N)` matrix **dist** of pairwise distances between cluster centroids.
5. Apply a threshold on **dist** to generate a boolean matrix ``keep = dist < threshold``.
6. Define a KeOps reduction ``my_genred = Genred(..., axis = 0 or 1)``, as usual.
7. Compute the block-sparse reduction through
``result = my_genred(x_i, y_j, ranges = from_matrix(ranges_i,ranges_j,keep) )``
:func:`from_matrix` is thus the routine that turns a **high-level description**
of your block-sparse computation (cluster ranges + boolean matrix)
into a set of **integer tensors** (the **ranges** optional argument),
used by KeOps to schedule computations on the GPU.
Args:
ranges_i ((M,2) integer array): List of :math:`[\text{start}_k,\text{end}_k)` indices.
For :math:`k \in [0,M)`, the :math:`k`-th cluster of ":math:`i`" variables is
given by ``x_i[ ranges_i[k,0]:ranges_i[k,1], : ]``, etc.
ranges_j ((N,2) integer array): List of :math:`[\text{start}_\ell,\text{end}_\ell)` indices.
For :math:`\ell \in [0,N)`, the :math:`\ell`-th cluster of ":math:`j`" variables is
given by ``y_j[ ranges_j[l,0]:ranges_j[l,1], : ]``, etc.
keep ((M,N) boolean array):
If the output ``ranges`` of :func:`from_matrix` is used in a KeOps reduction,
we will only compute and reduce the terms associated to pairs of "points"
:math:`x_i`, :math:`y_j` in clusters :math:`k` and :math:`\ell`
if ``keep[k,l] == 1``.
Returns:
A 6-uple of integer arrays that can be used as an optional **ranges**
argument of :func:`Genred <pykeops.numpy.Genred>`. See the documentation of :func:`Genred <pykeops.numpy.Genred>` for reference.
Example:
>>> r_i = np.array( [ [2,5], [7,12] ], dtype=int ) # 2 clusters: X[0] = x_i[2:5], X[1] = x_i[7:12]
>>> r_j = np.array( [ [1,4], [4,9], [20,30] ], dtype=int ) # 3 clusters: Y[0] = y_j[1:4], Y[1] = y_j[4:9], Y[2] = y_j[20:30]
>>> x,y = np.array([1., 0.]), np.array([1.5, .5, 2.5]) # dummy "centroids"
>>> dist = (x[:,None] - y[None,:])**2
>>> keep = (dist <= 1) # (2,3) matrix
>>> print(keep)
[[ True True False]
[False True False]]
--> X[0] interacts with Y[0] and Y[1], X[1] interacts with Y[1]
>>> (ranges_i,slices_i,redranges_j, ranges_j,slices_j,redranges_i) = from_matrix(r_i,r_j,keep)
--> (ranges_i,slices_i,redranges_j) will be used for reductions with respect to "j" (axis=1)
--> (ranges_j,slices_j,redranges_i) will be used for reductions with respect to "i" (axis=0)
Information relevant if **axis** = 1:
>>> print(ranges_i) # = r_i
[[ 2, 5],
[ 7, 12]]
--> Two "target" clusters in a reduction wrt. j
>>> print(slices_i)
[2, 3]
--> X[0] is associated to redranges_j[0:2]
--> X[1] is associated to redranges_j[2:3]
>>> print(redranges_j)
[[1, 4],
[4, 9],
[4, 9]]
--> For X[0], i in [2,3,4], we'll reduce over j in [1,2,3] and [4,5,6,7,8]
--> For X[1], i in [7,8,9,10,11], we'll reduce over j in [4,5,6,7,8]
Information relevant if **axis** = 0:
>>> print(ranges_j)
[[ 1, 4],
[ 4, 9],
[20, 30]]
--> Three "target" clusters in a reduction wrt. i
>>> print(slices_j)
[1, 3, 3]
--> Y[0] is associated to redranges_i[0:1]
--> Y[1] is associated to redranges_i[1:3]
--> Y[2] is associated to redranges_i[3:3] = no one...
>>> print(redranges_i)
[[ 2, 5],
[ 2, 5],
[ 7, 12]]
--> For Y[0], j in [1,2,3], we'll reduce over i in [2,3,4]
--> For Y[1], j in [4,5,6,7,8], we'll reduce over i in [2,3,4] and [7,8,9,10,11]
--> For Y[2], j in [20,21,...,29], there is no reduction to be done
"""
J, I = np.meshgrid(np.arange(0, keep.shape[1]), np.arange(0, keep.shape[0]))
redranges_i = ranges_i[
I.T[keep.T]
] # Use PyTorch indexing to "stack" copies of ranges_i[...]
redranges_j = ranges_j[J[keep]]
slices_i = np.cumsum(
np.sum(keep, axis=1), axis=0
) # slice indices in the "stacked" array redranges_j
slices_j = np.cumsum(
np.sum(keep, axis=0), axis=0
) # slice indices in the "stacked" array redranges_i
return (
ranges_i.astype("int32"),
slices_i.astype("int32"),
redranges_j.astype("int32"),
ranges_j.astype("int32"),
slices_j.astype("int32"),
redranges_i.astype("int32"),
)
| keops-main | pykeops/pykeops/numpy/cluster/matrix.py |
import numpy as np
def grid_cluster(x, size):
r"""Simplistic clustering algorithm which distributes points into cubic bins.
Args:
x ((M,D) array): List of points :math:`x_i \in \mathbb{R}^D`.
size (float or (D,) array): Dimensions of the cubic cells ("voxels").
Returns:
(M,) integer array:
Vector of integer **labels**. Two points ``x[i]`` and ``x[j]`` are
in the same cluster if and only if ``labels[i] == labels[j]``.
Labels are sorted in a compact range :math:`[0,C)`,
where :math:`C` is the number of non-empty cubic cells.
Example:
>>> x = np.array([ [0.], [.1], [.9], [.05], [.5] ]) # points in the unit interval
>>> labels = grid_cluster(x, .2) # bins of size .2
>>> print( labels )
[0, 0, 2, 0, 1]
"""
# Quantize the points' positions:
if x.shape[1] == 1:
weights = np.array([1], dtype=int)
elif x.shape[1] == 2:
weights = np.array([2**10, 1], dtype=int)
elif x.shape[1] == 3:
weights = np.array([2**20, 2**10, 1], dtype=int)
else:
raise NotImplementedError()
x_ = np.floor(x / size).astype(int)
x_ *= weights
lab = np.sum(x_, axis=1) # labels
lab = lab - np.min(lab)
# Replace arbitrary labels with unique identifiers in a compact arange:
u_lab = np.sort(np.unique(lab))
N_lab = len(u_lab)
foo = np.empty(np.max(u_lab) + 1, dtype=int)
foo[u_lab] = np.arange(N_lab, dtype=int)
lab = foo[lab]
return lab
| keops-main | pykeops/pykeops/numpy/cluster/grid_cluster.py |
from .grid_cluster import grid_cluster
from .matrix import from_matrix
from .utils import (
sort_clusters,
cluster_ranges,
cluster_centroids,
cluster_ranges_centroids,
swap_axes,
)
# N.B.: the order is important for the autodoc in sphinx!
__all__ = sorted(
[
"grid_cluster",
"from_matrix",
"sort_clusters",
"cluster_ranges",
"cluster_centroids",
"cluster_ranges_centroids",
"swap_axes",
]
)
| keops-main | pykeops/pykeops/numpy/cluster/__init__.py |
import numpy as np
def sort_clusters(x, lab):
r"""Sorts a list of points and labels to make sure that the clusters are contiguous in memory.
On the GPU, **contiguous memory accesses** are key to high performances.
By making sure that points in the same cluster are stored next
to each other in memory, this pre-processing routine allows
KeOps to compute block-sparse reductions with maximum efficiency.
Args:
x ((M,D) array or tuple/list of (M,..) arrays): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) integer arrays): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Returns:
(M,D) array or tuple/list of (M,..) arrays, (M,) integer array:
Sorted **point cloud(s)** and **vector of labels**.
Example:
>>> x = np.array([ [0.], [5.], [.4], [.3], [2.] ])
>>> lab = np.array([ 0, 2, 0, 0, 1 ], dtype=int)
>>> x_sorted, lab_sorted = sort_clusters(x, lab)
>>> print(x_sorted)
[[0. ]
[0.4]
[0.3]
[2. ]
[5. ]]
>>> print(lab_sorted)
[0 0 0 1 2]
"""
perm = np.argsort(lab.ravel())
lab = lab[perm]
if type(x) is tuple:
x_sorted = tuple(a[perm] for a in x)
elif type(x) is list:
x_sorted = list(a[perm] for a in x)
else:
x_sorted = x[perm]
return x_sorted, lab
def cluster_ranges(lab, Nlab=None):
r"""Computes the ``[start,end)`` indices that specify clusters in a sorted point cloud.
If **lab** denotes a vector of labels :math:`\ell_i\in[0,C)`,
:func:`sort_clusters` allows us to sort our point clouds and make sure
that points that share the same label are stored next to each other in memory.
:func:`cluster_ranges` is simply there to give you the **slice indices**
that correspond to each of those :math:`C` classes.
Args:
x ((M,D) array): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) integer array): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Keyword Args:
Nlab ((C,) integer array, optional): If you have computed it already,
you may specify the number of points per class through
this integer vector of length :math:`C`.
Returns:
(C,2) integer array:
Stacked array of :math:`[\text{start}_k,\text{end}_k)` indices in :math:`[0,M]`,
for :math:`k\in[0,C)`.
Example:
>>> x = np.array([ [0.], [5.], [.4], [.3], [2.] ])
>>> lab = np.array([ 0, 2, 0, 0, 1 ], dtype=int)
>>> x_sorted, lab_sorted = sort_clusters(x, lab)
>>> print(x_sorted)
[[0. ]
[0.4]
[0.3]
[2. ]
[5. ]]
>>> print(lab_sorted)
[0 0 0 1 2]
>>> ranges_i = cluster_ranges(lab)
>>> print( ranges_i )
[[0 3]
[3 4]
[4 5]]
--> cluster 0 = x_sorted[0:3, :]
--> cluster 1 = x_sorted[3:4, :]
--> cluster 2 = x_sorted[4:5, :]
"""
if Nlab is None:
Nlab = np.bincount(lab)
pivots = np.concatenate((np.array([0]), np.cumsum(Nlab, axis=0)))
return np.stack((pivots[:-1], pivots[1:]), axis=1).astype(int)
def cluster_centroids(x, lab, Nlab=None, weights=None, weights_c=None):
r"""Computes the (weighted) centroids of classes specified by a vector of labels.
If points :math:`x_i \in\mathbb{R}^D` are assigned to :math:`C` different classes
by the vector of integer labels :math:`\ell_i \in [0,C)`,
this function returns a collection of :math:`C` centroids
.. math::
c_k = \frac{\sum_{i, \ell_i = k} w_i\cdot x_i}{\sum_{i, \ell_i=k} w_i},
where the weights :math:`w_i` are set to 1 by default.
Args:
x ((M,D) array): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) integer array): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Keyword Args:
Nlab ((C,) integer array): Number of points per class. Recomputed if None.
weights ((N,) array): Positive weights :math:`w_i` of each point.
weights_c ((C,) array): Total weight of each class. Recomputed if None.
Returns:
(C,D) array:
List of centroids :math:`c_k \in \mathbb{R}^D`.
Example:
>>> x = np.array([ [0.], [1.], [4.], [5.], [6.] ])
>>> lab = np.array([ 0, 0, 1, 1, 1 ])
>>> weights = np.array([ .5, .5, 2., 1., 1. ])
>>> centroids = cluster_centroids(x, lab, weights=weights)
>>> print(centroids)
[[0.5 ]
[4.75]]
"""
if Nlab is None:
Nlab = np.bincount(lab).astype(float)
if weights is not None and weights_c is None:
weights_c = np.bincount(lab, weights=weights)[:, None]
c = np.zeros((len(Nlab), x.shape[1]), dtype=x.dtype)
for d in range(x.shape[1]):
if weights is None:
c[:, d] = np.bincount(lab, weights=x[:, d]) / Nlab
else:
c[:, d] = (
np.bincount(lab, weights=x[:, d] * weights.ravel()) / weights_c.ravel()
)
return c
def cluster_ranges_centroids(x, lab, weights=None):
r"""Computes the cluster indices and centroids of a (weighted) point cloud with labels.
If **x** and **lab** encode a cloud of points :math:`x_i\in\mathbb{R}^D`
with labels :math:`\ell_i\in[0,C)`, for :math:`i\in[0,M)`, this routine returns:
- Ranges :math:`[\text{start}_k,\text{end}_k)` compatible with
:func:`sort_clusters` for :math:`k\in[0,C)`.
- Centroids :math:`c_k` for each cluster :math:`k`, computed as barycenters
using the weights :math:`w_i \in \mathbb{R}_{>0}`:
.. math::
c_k = \frac{\sum_{i, \ell_i=k} w_i\cdot \ell_i}{\sum_{i, \ell_i=k} w_i}
- Total weights :math:`\sum_{i, \ell_i=k} w_i`, for :math:`k\in[0,C)`.
The weights :math:`w_i` can be given through a vector **weights**
of size :math:`M`, and are set by default to 1 for all points in the cloud.
Args:
x ((M,D) array): List of points :math:`x_i \in \mathbb{R}^D`.
lab ((M,) integer array): Vector of class labels :math:`\ell_i\in\mathbb{N}`.
Keyword Args:
weights ((M,) array): Positive weights :math:`w_i` that can be used to compute
our barycenters.
Returns:
(C,2) integer array, (C,D) array, (C,) array:
**ranges** - Stacked array of :math:`[\text{start}_k,\text{end}_k)` indices in :math:`[0,M]`,
for :math:`k\in[0,C)`, compatible with the :func:`sort_clusters` routine.
**centroids** - List of centroids :math:`c_k \in \mathbb{R}^D`.
**weights_c** - Total weight of each cluster.
Example:
>>> x = np.array([[0.], [.5], [1.], [2.], [3.] ])
>>> lab = np.array([ 0, 0, 1, 1, 1 ], dtype=int)
>>> ranges, centroids, weights_c = cluster_ranges_centroids(x, lab)
>>> print(ranges)
[[0 2]
[2 5]]
--> cluster 0 = x[0:2, :]
--> cluster 1 = x[2:5, :]
>>> print(centroids)
[[0.25]
[2. ]]
>>> print(weights_c)
[2. 3.]
>>> weights = np.array([ 1., .5, 1., 1., 10. ])
>>> ranges, centroids, weights_c = cluster_ranges_centroids(x, lab, weights=weights)
>>> print(ranges)
[[0 2]
[2 5]]
--> cluster 0 = x[0:2, :]
--> cluster 1 = x[2:5, :]
>>> print(centroids)
[[0.16666667]
[2.75 ]]
>>> print(weights_c)
[ 1.5 12. ]
"""
Nlab = np.bincount(lab).astype(float)
if weights is not None:
w_c = np.bincount(lab, weights=weights).ravel()
return (
cluster_ranges(lab, Nlab),
cluster_centroids(x, lab, Nlab, weights=weights, weights_c=w_c),
w_c,
)
else:
return cluster_ranges(lab, Nlab), cluster_centroids(x, lab, Nlab), Nlab
def swap_axes(ranges):
r"""Swaps the ":math:`i`" and ":math:`j`" axes of a reduction's optional **ranges** parameter.
This function returns **None** if **ranges** is **None**,
and swaps the :math:`i` and :math:`j` arrays of indices otherwise."""
if ranges is None:
return None
else:
return (*ranges[3:6], *ranges[0:3])
| keops-main | pykeops/pykeops/numpy/cluster/utils.py |
keops-main | pykeops/pykeops/numpy/lazytensor/__init__.py |
|
import numpy as np
from pykeops.common.lazy_tensor import GenericLazyTensor, ComplexGenericLazyTensor
from pykeops.numpy.utils import numpytools
# Convenient aliases:
def Var(x_or_ind, dim=None, cat=None):
if dim is None:
# init via data: we assume x_or_ind is data
return LazyTensor(x_or_ind, axis=cat)
else:
# init via symbolic variable given as triplet (ind,dim,cat)
return LazyTensor((x_or_ind, dim, cat))
def Vi(x_or_ind, dim=None):
r"""
Simple wrapper that returns an instantiation of :class:`LazyTensor` of type 0.
"""
return Var(x_or_ind, dim, 0)
def Vj(x_or_ind, dim=None):
r"""
Simple wrapper that returns an instantiation of :class:`LazyTensor` of type 1.
"""
return Var(x_or_ind, dim, 1)
def Pm(x_or_ind, dim=None):
r"""
Simple wrapper that returns an instantiation of :class:`LazyTensor` of type 2.
"""
return Var(x_or_ind, dim, 2)
class LazyTensor(GenericLazyTensor):
r"""Symbolic wrapper for NumPy arrays.
:class:`LazyTensor` encode numerical arrays through the combination
of a symbolic, **mathematical formula** and a list of **small data arrays**.
They can be used to implement efficient algorithms on objects
that are **easy to define**, but **impossible to store** in memory
(e.g. the matrix of pairwise distances between
two large point clouds).
:class:`LazyTensor` may be created from standard NumPy arrays or PyTorch tensors,
combined using simple mathematical operations and converted
back to NumPy arrays or PyTorch tensors with
efficient reduction routines, which outperform
standard tensorized implementations by two orders of magnitude.
"""
def __new__(self, x=None, axis=None, is_complex=False):
if is_complex or numpytools.detect_complex(x):
return ComplexLazyTensor(x, axis)
else:
return object.__new__(self)
def __init__(self, x=None, axis=None, is_complex=False):
super().__init__(x=x, axis=axis)
def get_tools(self):
self.tools = numpytools
self.Genred = numpytools.Genred
self.KernelSolve = numpytools.KernelSolve
def lt_constructor(self, x=None, axis=None, is_complex=False):
return LazyTensor(x=x, axis=axis, is_complex=is_complex)
class ComplexLazyTensor(ComplexGenericLazyTensor):
r"""Extension of the LazyTensor class for complex operations."""
def __init__(self, x=None, axis=None):
super().__init__(x=x, axis=axis)
def get_tools(self):
self.tools = numpytools
self.Genred = numpytools.Genred
self.KernelSolve = numpytools.KernelSolve
def lt_constructor(self, x=None, axis=None, is_complex=True):
return LazyTensor(x=x, axis=axis, is_complex=is_complex)
| keops-main | pykeops/pykeops/numpy/lazytensor/LazyTensor.py |
import numpy as np
from pykeops.common.get_options import get_tag_backend
from pykeops.common.operations import preprocess, postprocess
from pykeops.common.parse_type import get_sizes, complete_aliases, get_optional_flags
from pykeops.common.utils import axis2cat
from pykeops import default_device_id
from pykeops.common.utils import pyKeOps_Warning
class Genred:
r"""
Creates a new generic operation.
This is KeOps' main function, whose usage is documented in
the :doc:`user-guide <../../Genred>`,
the :doc:`gallery of examples <../../../_auto_examples/index>`
and the :doc:`high-level tutorials <../../../_auto_tutorials/index>`.
Taking as input a handful of strings and integers that specify
a custom Map-Reduce operation, it returns a C++ wrapper
that can be called just like any other NumPy function.
Note:
On top of the **Sum** and **LogSumExp** reductions, KeOps
supports
:ref:`variants of the ArgKMin reduction <part.reduction>`
that can be used
to implement k-nearest neighbor search.
These routines return indices encoded as **floating point numbers**, and
produce no gradient. Fortunately though, you can simply
turn them into ``LongTensors`` and use them to index
your arrays, as showcased in the documentation
of :func:`generic_argmin() <pykeops.numpy.generic_argmin>`, :func:`generic_argkmin() <pykeops.numpy.generic_argkmin>` and in the
:doc:`K-means tutorial <../../../_auto_tutorials/kmeans/plot_kmeans_numpy>`.
Example:
>>> my_conv = Genred('Exp(-SqNorm2(x - y))', # formula
... ['x = Vi(3)', # 1st input: dim-3 vector per line
... 'y = Vj(3)'], # 2nd input: dim-3 vector per column
... reduction_op='Sum', # we also support LogSumExp, Min, etc.
... axis=1) # reduce along the lines of the kernel matrix
>>> # Apply it to 2d arrays x and y with 3 columns and a (huge) number of lines
>>> x = np.random.randn(1000000, 3)
>>> y = np.random.randn(2000000, 3)
>>> a = my_conv(x, y) # a_i = sum_j exp(-|x_i-y_j|^2)
>>> print(a.shape)
[1000000, 1]
"""
def __init__(
self,
formula,
aliases,
reduction_op="Sum",
axis=0,
dtype=None,
opt_arg=None,
formula2=None,
cuda_type=None,
dtype_acc="auto",
use_double_acc=False,
sum_scheme="auto",
enable_chunks=True,
rec_multVar_highdim=False,
):
r"""
Instantiate a new generic operation.
Note:
:class:`Genred` relies on C++ or CUDA kernels that are compiled on-the-fly,
and stored in a :ref:`cache directory <part.cache>` as shared libraries (".so" files) for later use.
Args:
formula (string): The scalar- or vector-valued expression
that should be computed and reduced.
The correct syntax is described in the :doc:`documentation <../../Genred>`,
using appropriate :doc:`mathematical operations <../../../api/math-operations>`.
aliases (list of strings): A list of identifiers of the form ``"AL = TYPE(DIM)"``
that specify the categories and dimensions of the input variables. Here:
- ``AL`` is an alphanumerical alias, used in the **formula**.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0.
- ``Vj``: indexation by :math:`j` along axis 1.
- ``Pm``: no indexation, the input tensor is a *vector* and not a 2d array.
- ``DIM`` is an integer, the dimension of the current variable.
As described below, :meth:`__call__` will expect as input Tensors whose
shape are compatible with **aliases**.
Keyword Args:
reduction_op (string, default = ``"Sum"``): Specifies the reduction
operation that is applied to reduce the values
of ``formula(x_i, y_j, ...)`` along axis 0 or axis 1.
The supported values are one of :ref:`part.reduction`
axis (int, default = 0): Specifies the dimension of the "kernel matrix" that is reduced by our routine.
The supported values are:
- **axis** = 0: reduction with respect to :math:`i`, outputs a ``Vj`` or ":math:`j`" variable.
- **axis** = 1: reduction with respect to :math:`j`, outputs a ``Vi`` or ":math:`i`" variable.
opt_arg (int, default = None): If **reduction_op** is in ``["KMin", "ArgKMin", "KMinArgKMin"]``,
this argument allows you to specify the number ``K`` of neighbors to consider.
dtype_acc (string, default ``"auto"``): type for accumulator of reduction, before casting to dtype.
It improves the accuracy of results in case of large sized data, but is slower.
Default value "auto" will set this option to the value of dtype. The supported values are:
- **dtype_acc** = ``"float16"`` : allowed only if dtype is "float16".
- **dtype_acc** = ``"float32"`` : allowed only if dtype is "float16" or "float32".
- **dtype_acc** = ``"float64"`` : allowed only if dtype is "float32" or "float64"..
use_double_acc (bool, default False): same as setting dtype_acc="float64" (only one of the two options can be set)
If True, accumulate results of reduction in float64 variables, before casting to float32.
This can only be set to True when data is in float32 or float64.
It improves the accuracy of results in case of large sized data, but is slower.
sum_scheme (string, default ``"auto"``): method used to sum up results for reductions. This option may be changed only
when reduction_op is one of: "Sum", "MaxSumShiftExp", "LogSumExp", "Max_SumShiftExpWeight", "LogSumExpWeight", "SumSoftMaxWeight".
Default value "auto" will set this option to "block_red" for these reductions. Possible values are:
- **sum_scheme** = ``"direct_sum"``: direct summation
- **sum_scheme** = ``"block_sum"``: use an intermediate accumulator in each block before accumulating in the output. This improves accuracy for large sized data.
- **sum_scheme** = ``"kahan_scheme"``: use Kahan summation algorithm to compensate for round-off errors. This improves
accuracy for large sized data.
enable_chunks (bool, default True): enable automatic selection of special "chunked" computation mode for accelerating reductions
with formulas involving large dimension variables.
rec_multVar_highdim (bool, default False): for Gpu mode only, enable special "final chunked" computation mode for accelerating reductions
with formulas involving large dimension variables. Beware ! This will only work if the formula has the very special form
that allows such computation mode.
"""
if dtype:
pyKeOps_Warning(
"keyword argument dtype in Genred is deprecated ; argument is ignored."
)
if cuda_type:
pyKeOps_Warning(
"keyword argument cuda_type in Genred is deprecated ; argument is ignored."
)
self.reduction_op = reduction_op
reduction_op_internal, formula2 = preprocess(reduction_op, formula2)
self.optional_flags = get_optional_flags(
reduction_op_internal,
dtype_acc,
use_double_acc,
sum_scheme,
enable_chunks,
)
if rec_multVar_highdim:
self.optional_flags["multVar_highdim"] = 1
else:
self.optional_flags["multVar_highdim"] = 0
str_opt_arg = "," + str(opt_arg) if opt_arg else ""
str_formula2 = "," + formula2 if formula2 else ""
self.formula = (
reduction_op_internal
+ "_Reduction("
+ formula
+ str_opt_arg
+ ","
+ str(axis2cat(axis))
+ str_formula2
+ ")"
)
self.aliases = complete_aliases(self.formula, aliases)
self.axis = axis
self.opt_arg = opt_arg
def __call__(self, *args, backend="auto", device_id=-1, ranges=None, out=None):
r"""
Apply the routine on arbitrary NumPy arrays.
.. warning::
Even for variables of size 1 (e.g. :math:`a_i\in\mathbb{R}`
for :math:`i\in[0,M)`), KeOps expects inputs to be formatted
as 2d Tensors of size ``(M,dim)``. In practice,
``a.view(-1,1)`` should be used to turn a vector of weights
into a *list of scalar values*.
Args:
*args (2d arrays (variables ``Vi(..)``, ``Vj(..)``) and 1d arrays (parameters ``Pm(..)``)): The input numerical arrays,
which should all have the same ``dtype``, be **contiguous** and be stored on
the **same device**. KeOps expects one array per alias,
with the following compatibility rules:
- All ``Vi(Dim_k)`` variables are encoded as **2d-arrays** with ``Dim_k`` columns and the same number of lines :math:`M`.
- All ``Vj(Dim_k)`` variables are encoded as **2d-arrays** with ``Dim_k`` columns and the same number of lines :math:`N`.
- All ``Pm(Dim_k)`` variables are encoded as **1d-arrays** (vectors) of size ``Dim_k``.
Keyword Args:
backend (string): Specifies the map-reduce scheme.
The supported values are:
- ``"auto"`` (default): let KeOps decide which backend is best suited to your data, based on the tensors' shapes. ``"GPU_1D"`` will be chosen in most cases.
- ``"CPU"``: use a simple C++ ``for`` loop on a single CPU core.
- ``"GPU_1D"``: use a `simple multithreading scheme <https://github.com/getkeops/keops/blob/main/keops/core/GpuConv1D.cu>`_ on the GPU - basically, one thread per value of the output index.
- ``"GPU_2D"``: use a more sophisticated `2D parallelization scheme <https://github.com/getkeops/keops/blob/main/keops/core/GpuConv2D.cu>`_ on the GPU.
- ``"GPU"``: let KeOps decide which one of the ``"GPU_1D"`` or the ``"GPU_2D"`` scheme will run faster on the given input.
device_id (int, default=-1): Specifies the GPU that should be used
to perform the computation; a negative value lets your system
choose the default GPU. This parameter is only useful if your
system has access to several GPUs.
ranges (6-uple of integer arrays, None by default):
Ranges of integers that specify a
:doc:`block-sparse reduction scheme <../../sparsity>`
with *Mc clusters along axis 0* and *Nc clusters along axis 1*.
If None (default), we simply loop over all indices
:math:`i\in[0,M)` and :math:`j\in[0,N)`.
**The first three ranges** will be used if **axis** = 1
(reduction along the axis of ":math:`j` variables"),
and to compute gradients with respect to ``Vi(..)`` variables:
- ``ranges_i``, (Mc,2) integer array - slice indices
:math:`[\operatorname{start}^I_k,\operatorname{end}^I_k)` in :math:`[0,M]`
that specify our Mc blocks along the axis 0
of ":math:`i` variables".
- ``slices_i``, (Mc,) integer array - consecutive slice indices
:math:`[\operatorname{end}^S_1, ..., \operatorname{end}^S_{M_c}]`
that specify Mc ranges :math:`[\operatorname{start}^S_k,\operatorname{end}^S_k)` in ``redranges_j``,
with :math:`\operatorname{start}^S_k = \operatorname{end}^S_{k-1}`.
**The first 0 is implicit**, meaning that :math:`\operatorname{start}^S_0 = 0`, and we typically expect that
``slices_i[-1] == len(redrange_j)``.
- ``redranges_j``, (Mcc,2) integer array - slice indices
:math:`[\operatorname{start}^J_\ell,\operatorname{end}^J_\ell)` in :math:`[0,N]`
that specify reduction ranges along the axis 1
of ":math:`j` variables".
If **axis** = 1, these integer arrays allow us to say that ``for k in range(Mc)``, the output values for
indices ``i in range( ranges_i[k,0], ranges_i[k,1] )`` should be computed using a Map-Reduce scheme over
indices ``j in Union( range( redranges_j[l, 0], redranges_j[l, 1] ))`` for ``l in range( slices_i[k-1], slices_i[k] )``.
**Likewise, the last three ranges** will be used if **axis** = 0
(reduction along the axis of ":math:`i` variables"),
and to compute gradients with respect to ``Vj(..)`` variables:
- ``ranges_j``, (Nc,2) integer array - slice indices
:math:`[\operatorname{start}^J_k,\operatorname{end}^J_k)` in :math:`[0,N]`
that specify our Nc blocks along the axis 1
of ":math:`j` variables".
- ``slices_j``, (Nc,) integer array - consecutive slice indices
:math:`[\operatorname{end}^S_1, ..., \operatorname{end}^S_{N_c}]`
that specify Nc ranges :math:`[\operatorname{start}^S_k,\operatorname{end}^S_k)` in ``redranges_i``,
with :math:`\operatorname{start}^S_k = \operatorname{end}^S_{k-1}`.
**The first 0 is implicit**, meaning that :math:`\operatorname{start}^S_0 = 0`, and we typically expect that
``slices_j[-1] == len(redrange_i)``.
- ``redranges_i``, (Ncc,2) integer array - slice indices
:math:`[\operatorname{start}^I_\ell,\operatorname{end}^I_\ell)` in :math:`[0,M]`
that specify reduction ranges along the axis 0
of ":math:`i` variables".
If **axis** = 0,
these integer arrays allow us to say that ``for k in range(Nc)``, the output values for
indices ``j in range( ranges_j[k,0], ranges_j[k,1] )`` should be computed using a Map-Reduce scheme over
indices ``i in Union( range( redranges_i[l, 0], redranges_i[l, 1] ))`` for ``l in range( slices_j[k-1], slices_j[k] )``.
out (2d array, None by default): The output numerical array, for in-place computation.
If provided, the output array should all have the same ``dtype``, be **contiguous** and be stored on
the **same device** as the arguments. Moreover it should have the correct shape for the output.
Returns:
(M,D) or (N,D) array:
The output of the reduction,
a **2d-tensor** with :math:`M` or :math:`N` lines (if **axis** = 1
or **axis** = 0, respectively) and a number of columns
that is inferred from the **formula**.
"""
# Get tags
tagCPUGPU, tag1D2D, tagHostDevice = get_tag_backend(backend, args)
# number of batch dimensions
# N.B. we assume here that there is at least a cat=0 or cat=1 variable in the formula...
nbatchdims = max(len(arg.shape) for arg in args) - 2
use_ranges = nbatchdims > 0 or ranges
dtype = args[0].dtype.__str__()
if device_id == -1:
device_id = default_device_id if tagCPUGPU == 1 else -1
from pykeops.common.keops_io import keops_binder
self.myconv = keops_binder["nvrtc" if tagCPUGPU else "cpp"](
tagCPUGPU,
tag1D2D,
tagHostDevice,
use_ranges,
device_id,
self.formula,
self.aliases,
len(args),
dtype,
"numpy",
self.optional_flags,
).import_module()
# N.B.: KeOps C++ expects contiguous data arrays
test_contig = all(arg.flags["C_CONTIGUOUS"] for arg in args)
if not test_contig:
pyKeOps_Warning(
"at least one of the input tensors is not contiguous. "
+ "Consider using contiguous data arrays to avoid unnecessary copies."
)
args = tuple(np.ascontiguousarray(arg) for arg in args)
# N.B.: KeOps C++ expects contiguous integer arrays as ranges
if ranges:
ranges = tuple(np.ascontiguousarray(r) for r in ranges)
nx, ny = get_sizes(self.aliases, *args)
nout, nred = (nx, ny) if self.axis == 1 else (ny, nx)
if "Arg" in self.reduction_op:
# when using Arg type reductions,
# if nred is greater than 16 millions and dtype=float32, the result is not reliable
# because we encode indices as floats, so we raise an exception ;
# same with float16 type and nred>2048
if nred > 1.6e7 and dtype in ("float32", "float"):
raise ValueError(
"size of input array is too large for Arg type reduction with single precision. Use double precision."
)
elif nred > 2048 and dtype in ("float16", "half"):
raise ValueError(
"size of input array is too large for Arg type reduction with float16 dtype.."
)
out = self.myconv.genred_numpy(-1, ranges, nx, ny, nbatchdims, out, *args)
return postprocess(out, "numpy", self.reduction_op, nout, self.opt_arg, dtype)
| keops-main | pykeops/pykeops/numpy/generic/generic_red.py |
keops-main | pykeops/pykeops/numpy/generic/__init__.py |
|
from pykeops.common.parse_type import get_type
from pykeops.common.utils import cat2axis
from pykeops.numpy import Genred
def generic_sum(formula, output, *aliases, **kwargs):
r"""Alias for :class:`numpy.Genred <pykeops.numpy.Genred>` with a "Sum" reduction.
Args:
formula (string): Symbolic KeOps expression, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(DIM)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
- ``DIM`` is an integer, the dimension of the output variable; it should be compatible with **formula**.
*aliases (strings): List of identifiers, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Keyword Args:
dtype (string, default = ``"float64"``): Specifies the numerical **dtype** of the input and output arrays.
The supported values are:
- **dtype** = ``"float16"``,
- **dtype** = ``"float32"``,
- **dtype** = ``"float64"``.
Returns:
A generic reduction that can be called on arbitrary
NumPy arrays, as documented in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Example:
>>> my_conv = generic_sum( # Custom Kernel Density Estimator
... 'Exp(-SqNorm2(x - y))', # Formula
... 'a = Vi(1)', # Output: 1 scalar per line
... 'x = Vi(3)', # 1st input: dim-3 vector per line
... 'y = Vj(3)') # 2nd input: dim-3 vector per line
>>> # Apply it to 2d arrays x and y with 3 columns and a (huge) number of lines
>>> x = np.random.randn(1000000, 3)
>>> y = np.random.randn(2000000, 3)
>>> a = my_conv(x, y) # a_i = sum_j exp(-|x_i-y_j|^2)
>>> print(a.shape)
(1000000, 1)
"""
_, cat, _, _ = get_type(output)
return Genred(
formula, list(aliases), reduction_op="Sum", axis=cat2axis(cat), **kwargs
)
def generic_logsumexp(formula, output, *aliases, **kwargs):
r"""Alias for :class:`numpy.Genred <pykeops.numpy.Genred>` with a "LogSumExp" reduction.
Args:
formula (string): Scalar-valued symbolic KeOps expression, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(1)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
*aliases (strings): List of identifiers, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Keyword Args:
dtype (string, default = ``"float64"``): Specifies the numerical **dtype** of the input and output arrays.
The supported values are:
- **dtype** = ``"float16"``,
- **dtype** = ``"float32"``,
- **dtype** = ``"float64"``.
Returns:
A generic reduction that can be called on arbitrary
NumPy arrays, as documented in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Example:
Log-likelihood of a Gaussian Mixture Model,
.. math::
a_i = f(x_i) &= \log \sum_{j=1}^{N} \exp(-\gamma\cdot\|x_i-y_j\|^2)\cdot b_j \\
&= \log \sum_{j=1}^{N} \exp\big(-\gamma\cdot\|x_i-y_j\|^2 \,+\, \log(b_j) \big).
>>> log_likelihood = generic_logsumexp(
... '(-(g * SqNorm2(x - y))) + b', # Formula
... 'a = Vi(1)', # Output: 1 scalar per line
... 'x = Vi(3)', # 1st input: dim-3 vector per line
... 'y = Vj(3)', # 2nd input: dim-3 vector per line
... 'g = Pm(1)', # 3rd input: vector of size 1
... 'b = Vj(1)') # 4th input: 1 scalar per line
>>> x = np.random.randn(1000000, 3)
>>> y = np.random.randn(2000000, 3)
>>> g = np.array([.5]) # Parameter of our GMM
>>> b = np.random.rand(2000000, 1) # Positive weights...
>>> b = b / b.sum() # Normalized to get a probability measure
>>> a = log_likelihood(x, y, g, np.log(b)) # a_i = log sum_j exp(-g*|x_i-y_j|^2) * b_j
>>> print(a.shape)
(1000000, 1)
"""
_, cat, _, _ = get_type(output)
return Genred(
formula, list(aliases), reduction_op="LogSumExp", axis=cat2axis(cat), **kwargs
)
def generic_argkmin(formula, output, *aliases, **kwargs):
r"""Alias for :class:`numpy.Genred <pykeops.numpy.Genred>` with an "ArgKMin" reduction.
Args:
formula (string): Scalar-valued symbolic KeOps expression, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(K)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
- ``K`` is an integer, the number of values to extract.
*aliases (strings): List of identifiers, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Keyword Args:
dtype (string, default = ``"float64"``): Specifies the numerical **dtype** of the input and output arrays.
The supported values are:
- **dtype** = ``"float16"``,
- **dtype** = ``"float32"``,
- **dtype** = ``"float64"``.
Returns:
A generic reduction that can be called on arbitrary
NumPy arrays, as documented in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Example:
Bruteforce K-nearest neighbors search in dimension 100:
>>> knn = generic_argkmin(
... 'SqDist(x, y)', # Formula
... 'a = Vi(3)', # Output: 3 scalars per line
... 'x = Vi(100)', # 1st input: dim-100 vector per line
... 'y = Vj(100)') # 2nd input: dim-100 vector per line
>>> x = np.random.randn(5, 100)
>>> y = np.random.randn(20000, 100)
>>> a = knn(x, y)
>>> print(a)
[[ 9054., 11653., 11614.],
[13466., 11903., 14180.],
[14164., 8809., 3799.],
[ 2092., 3323., 18479.],
[14433., 11315., 11841.]]
>>> print( np.linalg.norm(x - y[ a[:,0].astype(int) ], axis=1) ) # Distance to the nearest neighbor
[10.7933, 10.3235, 10.1218, 11.4919, 10.5100]
>>> print( np.linalg.norm(x - y[ a[:,1].astype(int) ], axis=1) ) # Distance to the second neighbor
[11.3702, 10.6550, 10.7646, 11.5676, 11.1356]
>>> print( np.linalg.norm(x - y[ a[:,2].astype(int) ], axis=1) ) # Distance to the third neighbor
[11.3820, 10.6725, 10.8510, 11.6071, 11.1968]
"""
_, cat, k, _ = get_type(output)
return Genred(
formula,
list(aliases),
reduction_op="ArgKMin",
axis=cat2axis(cat),
opt_arg=k,
**kwargs
)
def generic_argmin(formula, output, *aliases, **kwargs):
r"""Alias for :class:`numpy.Genred <pykeops.numpy.Genred>` with an "ArgMin" reduction.
Args:
formula (string): Scalar-valued symbolic KeOps expression, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
output (string): An identifier of the form ``"AL = TYPE(1)"``
that specifies the category and dimension of the output variable. Here:
- ``AL`` is a dummy alphanumerical name.
- ``TYPE`` is a *category*. One of:
- ``Vi``: indexation by :math:`i` along axis 0; reduction is performed along axis 1.
- ``Vj``: indexation by :math:`j` along axis 1; reduction is performed along axis 0.
*aliases (strings): List of identifiers, as in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Keyword Args:
dtype (string, default = ``"float64"``): Specifies the numerical **dtype** of the input and output arrays.
The supported values are:
- **dtype** = ``"float16"``,
- **dtype** = ``"float32"``,
- **dtype** = ``"float64"``.
Returns:
A generic reduction that can be called on arbitrary
NumPy arrays, as documented in :class:`numpy.Genred <pykeops.numpy.Genred>`.
Example:
Bruteforce nearest neighbor search in dimension 100:
>>> nearest_neighbor = generic_argmin(
... 'SqDist(x, y)', # Formula
... 'a = Vi(1)', # Output: 1 scalar per line
... 'x = Vi(100)', # 1st input: dim-100 vector per line
... 'y = Vj(100)') # 2nd input: dim-100 vector per line
>>> x = np.random.randn(5, 100)
>>> y = np.random.randn(20000, 100)
>>> a = nearest_neighbor(x, y)
>>> print(a)
[[ 8761.],
[ 2836.],
[ 906.],
[16130.],
[ 3158.]]
>>> dists = np.linalg.norm(x - y[ a.view(-1).long() ], axis=1) # Distance to the nearest neighbor
>>> print(dists)
[10.5926, 10.9132, 9.9694, 10.1396, 10.1955]
"""
_, cat, _, _ = get_type(output)
return Genred(
formula, list(aliases), reduction_op="ArgMin", axis=cat2axis(cat), **kwargs
)
| keops-main | pykeops/pykeops/numpy/generic/generic_ops.py |
import copy
import re
import math
import numpy as np
from pykeops.common.utils import check_broadcasting
def same_or_one_test(*dims):
# test wether input dimensions are compatible with broadcasting
return len(set(list(dims) + [1])) <= 2
def is_scalar_and_equals(x, val):
# test wether the input x is a Python scalar and
# that its value equals val
if isinstance(x, (int, float, complex)) and not isinstance(x, bool):
return x == val
else:
return False
def is_complex_lazytensor(x):
return isinstance(x, ComplexGenericLazyTensor)
class GenericLazyTensor:
r"""Symbolic wrapper for NumPy arrays and PyTorch tensors. This is the abstract class,
end user should use :class:`pykeops.numpy.LazyTensor` or :class:`pykeops.torch.LazyTensor`.
:class:`LazyTensor` encode numerical arrays through the combination
of a symbolic, **mathematical formula** and a list of **small data arrays**.
They can be used to implement efficient algorithms on objects
that are **easy to define**, but **impossible to store** in memory
(e.g. the matrix of pairwise distances between
two large point clouds).
:class:`LazyTensor` may be created from standard NumPy arrays or PyTorch tensors,
combined using simple mathematical operations and converted
back to NumPy arrays or PyTorch tensors with
efficient reduction routines, which outperform
standard tensorized implementations by two orders of magnitude.
"""
variables = ()
symbolic_variables = ()
formula = None
formula2 = None
ndim = None
tools = None
Genred = None
KernelSolve = None
batchdims = None
ni = None
nj = None
axis = None
ranges = None # Block-sparsity pattern
backend = None # "CPU", "GPU", "GPU_2D", etc.
_dtype = None
is_complex = False
def __init__(self, x=None, axis=None):
r"""Creates a KeOps symbolic variable.
Args:
x: May be either:
- A *float*, a *list of floats*, a *NumPy float*, a *0D or 1D NumPy array*,
a *0D or 1D PyTorch tensor*, in which case the :class:`LazyTensor`
represents a constant **vector of parameters**, to be broadcasted
on other :class:`LazyTensor`.
- A *2D NumPy array* or *PyTorch tensor*, in which case the :class:`LazyTensor`
represents a **variable** indexed by :math:`i` if **axis=0** or :math:`j` if **axis=1**.
- A *3D+ NumPy array* or *PyTorch tensor* with a dummy dimension (=1) at position -3 or -2,
in which case the :class:`LazyTensor` represents a **variable** indexed by
:math:`i` or :math:`j`, respectively. Dimensions before the last three will be handled as
**batch dimensions**, that may support operator broadcasting.
- A *tuple of 3 integers* (ind,dim,cat), in which case the
:class:`LazyTensor` represents a :doc:`symbolic variable <../../../api/math-operations>`
that should be instantiated at call-time.
- An *integer*, in which case the :class:`LazyTensor` represents an **integer constant** handled
efficiently at compilation time.
- **None**, for internal use.
axis (int): should be equal to 0 or 1 if **x** is a 2D tensor, and **None** otherwise.
.. warning::
A :class:`LazyTensor` constructed
from a NumPy array or a PyTorch tensor retains its **dtype** (float16, float32 or float64)
and **device** properties (is it stored on the GPU?).
Since KeOps does **not** support automatic type conversions and data transfers,
please make sure **not to mix** :class:`LazyTensor`
that come from different frameworks/devices or which are stored
with different precisions.
"""
# Duck typing attribute, to be used instead of "isinstance(self, GenericLazyTensor)"
# This is a workaround for an importlib.reload messy situation,
# and will come handy when we'll start supporting Block GenericLazyTensors
# and other custom operators.
self.__GenericLazyTensor__ = True
self.get_tools()
# A KeOps LazyTensor can be built from many different objects:
if x is not None:
# Stage 1: Are we dealing with simple numbers? ---------------------
typex = type(x)
if typex == tuple: # x is not a Tensor but a triplet of integers
# (ind,dim,cat) that specifies an abstract variable
if (
len(x) != 3
or not isinstance(x[0], int)
or not isinstance(x[1], int)
or not isinstance(x[2], int)
):
raise ValueError(
"LazyTensors(tuple) is only valid if tuple = (ind,dim,cat) is a triplet of integers."
)
if axis is not None:
raise ValueError(
"'axis' parameter should not be given when 'x' is of the form (ind,dim,cat)."
)
self.symbolic_variables = (x,)
self.ndim = x[1]
self.axis = x[2]
self.formula = "VarSymb({},{},{})".format(x[0], self.ndim, self.axis)
return # That's it!
# Integer constants are best handled directly by the compiler
elif typex == int:
self.formula = "IntCst(" + str(x) + ")"
self.ndim = 1
self.axis = 2
return # That's it!
# Float numbers must be encoded as Parameters, as C++'s templating system cannot deal
# with floating point arithmetics.
elif typex in self.tools.float_types:
x = [x] # Convert to list and go to stage 2
typex = list
# Stage 2: Dealing with python lists, understood as arrays of floats,
# and handled as Parameter variables without fixed dtype
if typex == list:
if axis is not None and axis != 2:
raise ValueError(
"Lists of numbers are handled as Parameter "
"variables, with an optional 'axis' argument that is equal to 2."
)
self.variables = (x,)
self.ndim = len(x)
self.axis = 2
self.formula = "Var({},{},2)".format(id(x), self.ndim)
return # That's it!
else:
self._dtype = self.tools.dtypename(self.tools.dtype(x))
typex = type(x)
if (
typex
not in [type(None), tuple, int, float, list, self.tools.arraytype]
+ self.tools.float_types
):
raise TypeError(
"LazyTensors should be built from " + self.tools.arrayname + ", "
"float/integer numbers, lists of floats or 3-uples of integers. "
"Received: {}".format(typex)
)
if typex == self.tools.arraytype and len(x.shape) == 0:
x = x.view(1)
elif typex in self.tools.float_types:
x = self.tools.arraytype([x]).view(1)
if typex == self.tools.arraytype:
if len(x.shape) >= 3: # Infer axis from the input shape
# If x is a 3D+ array, its shape must be either (..,M,1,D) or (..,1,N,D) or (..,1,1,D).
# We infer axis from shape and squeeze out the "1" dimensions:
if axis is not None:
raise ValueError(
"'axis' parameter should not be given when 'x' is a 3D tensor."
)
if len(x.shape) > 3: # We're in "batch mode"
self.batchdims = tuple(x.shape[:-3])
if x.shape[-3] == 1:
if x.shape[-2] == 1: # (..,1,1,D) -> Pm(D)
x = x.squeeze(-2).squeeze(-2)
axis = 2
else: # (..,1,N,D) -> Vj(D)
x = x.squeeze(-3)
axis = 1
elif x.shape[-2] == 1: # (M,1,D) -> Vi(D)
x = x.squeeze(-2)
axis = 0
else:
raise ValueError(
"If 'x' is a 3D+ tensor, its shape should be one of (..,M,1,D), (..,1,N,D) or (..,1,1,D)."
)
# Stage 4: x is now encoded as a 2D or 1D array + batch dimensions --------------------
if (
len(x.shape) >= 2 and axis != 2
): # shape is (..,M,D) or (..,N,D), with an explicit 'axis' parameter
if axis is None or axis not in (0, 1):
raise ValueError(
"When 'x' is encoded as a 2D array, LazyTensor expects an explicit 'axis' value in {0,1}."
)
# id(x) is used as temporary identifier for KeOps "Var",
# this identifier will be changed when calling method "fixvariables"
# But first we do a small hack, in order to distinguish same array involved twice in a formula but with
# different axis (e.g. Vi(x)-Vj(x) formula): we do a dummy reshape in order to get a different id
if axis == 1:
x = self.tools.view(x, x.shape)
self.variables = (x,)
self.ndim = x.shape[-1]
self.axis = axis
self.formula = "Var({},{},{})".format(id(x), self.ndim, self.axis)
if axis == 0:
self.ni = x.shape[-2]
else:
self.nj = x.shape[-2]
self._dtype = self.tools.dtypename(self.tools.dtype(x))
elif (
len(x.shape) == 1 or axis == 2
): # shape is (D,): x is a "Pm(D)" parameter
if axis is not None and axis != 2:
raise ValueError(
"When 'x' is encoded as a 1D or 0D array, 'axis' must be None or 2 (= Parameter variable)."
)
self.variables = (x,)
self.ndim = x.shape[-1]
self.axis = 2
self.formula = "Var({},{},2)".format(id(x), self.ndim)
else:
raise ValueError(
"LazyTensors can be built from 0D, 1D, 2D or 3D+ tensors. "
+ "Received x of shape: {}.".format(x.shape)
)
def lt_constructor(self, x=None, axis=None):
r"""This method is specialized in :class:`pykeops.numpy.LazyTensor` and :class:`pykeops.torch.LazyTensor`. It
returns a new instance of a LazyTensor (numpy or pytorch)."""
pass
def get_tools(self):
r"""This method is specialized in :class:`pykeops.numpy.LazyTensor` and :class:`pykeops.torch.LazyTensor`. It
populates the tools class."""
pass
def fixvariables(self):
r"""If needed, assigns final labels to each variable and pads their batch dimensions prior to a :mod:`Genred()` call."""
newvars = ()
if self.formula2 is None:
self.formula2 = "" # We don't want to get regexp errors...
device = None # Useful to load lists (and float constants) on the proper device
for v in self.variables:
device = self.tools.device(v)
if device is not None:
break
i = len(self.symbolic_variables) # The first few labels are already taken...
# So let's loop over our tensors, and give them labels:
for v in self.variables:
idv = id(v)
if type(v) == list:
v = self.tools.array(v, self._dtype, device)
# Replace "Var(idv," by "Var(i," and increment 'i':
tag = "Var({},".format(idv)
if tag in self.formula + self.formula2:
self.formula = self.formula.replace(tag, "Var({},".format(i))
self.formula2 = self.formula2.replace(tag, "Var({},".format(i))
# Detect if v is meant to be used as a variable or as a parameter:
str_cat_v = re.search(
r"Var\({},\d+,([012])\)".format(i), self.formula + self.formula2
).group(1)
is_variable = 1 if str_cat_v in ("0", "1") else 0
dims_to_pad = self.nbatchdims + 1 + is_variable - len(v.shape)
padded_v = self.tools.view(v, (1,) * dims_to_pad + v.shape)
newvars += (padded_v,)
if (
hasattr(self, "rec_multVar_highdim")
and self.rec_multVar_highdim == idv
):
self.rec_multVar_highdim = i
i += 1
# "VarSymb(..)" appear when users rely on the "LazyTensor(Ind,Dim,Cat)" syntax,
# for the sake of disambiguation:
self.formula = self.formula.replace(
"VarSymb(", "Var("
) # We can now replace them with
self.formula2 = self.formula2.replace(
"VarSymb(", "Var("
) # actual "Var" symbols
if self.formula2 == "":
self.formula2 = None # The pre-processing step is now over
self.variables = newvars
def separate_kwargs(self, kwargs):
# separating keyword arguments for Genred init vs Genred call...
# Currently the only four additional optional keyword arguments that are passed to Genred init
# are accuracy options: dtype_acc, use_double_acc and sum_scheme,
# chunk mode option enable_chunks,
# and compiler option optional_flags.
kwargs_init = []
kwargs_call = []
for key in kwargs:
if key in (
"dtype_acc",
"use_double_acc",
"sum_scheme",
"enable_chunks",
"optional_flags",
):
kwargs_init += [(key, kwargs[key])]
else:
kwargs_call += [(key, kwargs[key])]
kwargs_init = dict(kwargs_init)
kwargs_call = dict(kwargs_call)
return kwargs_init, kwargs_call
def promote(self, other, props, is_complex=False):
r"""
Creates a new :class:`LazyTensor` whose **None** properties are set to those of **self** or **other**.
"""
res = self.lt_constructor(is_complex=is_complex)
for prop in props:
y, x = getattr(self, prop), getattr(other, prop)
if x is not None:
if y is not None:
if prop == "ranges":
x_eq_y = all(
tuple(
map(lambda x, y: self.tools.eq(x, y).all().item(), x, y)
)
)
else:
x_eq_y = x == y
if not (x_eq_y):
raise ValueError(
"Incompatible values for attribute {}: {} and {}.".format(
prop, x, y
)
)
setattr(res, prop, x)
else:
setattr(res, prop, y)
return res
def init(self, is_complex=False):
r"""
Creates a copy of a :class:`LazyTensor`, without **formula** attribute.
"""
res = self.lt_constructor(is_complex=is_complex)
res.tools = self.tools
res._dtype = self._dtype
res.Genred = self.Genred
res.KernelSolve = self.KernelSolve
res.batchdims = self.batchdims
res.ni = self.ni
res.nj = self.nj
res.ranges = self.ranges
res.backend = self.backend
res.variables = self.variables
res.symbolic_variables = self.symbolic_variables
return res
def join(self, other, is_complex=False):
r"""
Merges the variables and attributes of two :class:`LazyTensor`, with a compatibility check.
This method concatenates tuples of variables, without paying attention to repetitions.
"""
res = self.promote(
other,
(
"_dtype",
"tools",
"Genred",
"KernelSolve",
"ni",
"nj",
"ranges",
"backend",
),
is_complex=is_complex,
)
res.symbolic_variables = self.symbolic_variables + other.symbolic_variables
# Checks on the batch dimensions - we support broadcasting:
res.batchdims = check_broadcasting(self.batchdims, other.batchdims)
# N.B.: If needed, variables will be padded with "dummy 1's" just before the Genred call, in self/res.fixvariables():
res.variables = self.variables + other.variables
return res
# Prototypes for unary and binary operations ==============================
def unary(
self, operation, dimres=None, opt_arg=None, opt_arg2=None, is_complex=None
):
r"""
Symbolically applies **operation** to **self**, with optional arguments if needed.
The optional argument **dimres** may be used to specify the dimension of the output **result**.
"""
if is_complex is None:
is_complex = self.is_complex
# we must prevent any operation if self is the output of a reduction operation,
# i.e. if it has a reduction_op field
if hasattr(self, "reduction_op"):
raise ValueError(
"Input is a 'reduced' LazyTensor, no operation can be applied to it. "
)
if not dimres:
dimres = self.ndim
res = self.init(is_complex) # Copy of self, without a formula
if opt_arg2 is not None:
res.formula = "{}({},{},{})".format(
operation, self.formula, opt_arg, opt_arg2
)
elif opt_arg is not None:
res.formula = "{}({},{})".format(operation, self.formula, opt_arg)
else:
res.formula = "{}({})".format(operation, self.formula)
res.ndim = dimres
return res
def binary(
self,
other,
operation,
is_operator=False,
dimres=None,
dimcheck="sameor1",
opt_arg=None,
opt_pos="last",
rversion=False,
is_complex=None,
):
r"""Symbolically applies **operation** to **self**, with optional arguments if needed.
Keyword args:
- dimres (int): May be used to specify the dimension of the output **result**.
- is_operator (bool, default=False): May be used to specify if **operation** is
an operator like ``+``, ``-`` or a "genuine" function.
- dimcheck (string): shall we check the input dimensions?
Supported values are ``"same"``, ``"sameor1"``, or **None**.
- rversion (Boolean): shall we invert lhs and rhs of the binary op, e.g. as in __radd__, __rmut__, etc...
"""
# If needed, convert float numbers / lists / arrays / tensors to LazyTensors:
if not hasattr(other, "__GenericLazyTensor__"):
other = self.lt_constructor(other)
if is_complex is None:
is_complex = True if (self.is_complex or other.is_complex) else False
# we must prevent any operation if self or other is the output of a reduction operation,
# i.e. if it has a reduction_op field
if hasattr(self, "reduction_op") or hasattr(other, "reduction_op"):
raise ValueError(
"One of the inputs is a 'reduced' LazyTensor, no operation can be applied to it. "
)
# By default, the dimension of the output variable is the max of the two operands:
if not dimres:
dimres = max(self.ndim, other.ndim)
if dimcheck == "same":
if self.ndim != other.ndim:
raise ValueError(
"Operation {} expects inputs of the same dimension. ".format(
operation
)
+ "Received {} and {}.".format(self.ndim, other.ndim)
)
elif dimcheck == "sameor1":
if self.ndim != other.ndim and self.ndim != 1 and other.ndim != 1:
raise ValueError(
"Operation {} expects inputs of the same dimension or dimension 1. ".format(
operation
)
+ "Received {} and {}.".format(self.ndim, other.ndim)
)
elif dimcheck != None:
raise ValueError("incorrect dimcheck keyword in binary operation")
res = self.join(
other, is_complex=is_complex
) # Merge the attributes and variables of both operands
res.ndim = dimres
if not rversion:
lformula, rformula = self.formula, other.formula
else:
rformula, lformula = self.formula, other.formula
if is_operator:
res.formula = "({} {} {})".format(lformula, operation, rformula)
elif opt_arg is not None:
if hasattr(opt_arg, "__GenericLazyTensor__"):
opt_arg = opt_arg.formula
if opt_pos == "last":
res.formula = "{}({}, {}, {})".format(
operation, lformula, rformula, opt_arg
)
elif opt_pos == "middle":
res.formula = "{}({}, {}, {})".format(
operation, lformula, opt_arg, rformula
)
else:
res.formula = "{}({}, {})".format(operation, lformula, rformula)
# special case of multiplication with a variable V : we define a special tag to enable factorization in case
# the user requires a sum reduction over the opposite index (or any index if V is a parameter):
# for example sum_i V_j k(x_i,y_j) = V_j sum_i k(x_i,y_j), so we will use KeOps reduction for the kernel
# k(x_i,y_j) only, then multiply the result with V.
if operation == "*" and other.formula[:3] == "Var" and other.ndim > 100:
res.rec_multVar_highdim = (self, other)
return res
def ternary(
self, other1, other2, operation, dimres=None, dimcheck="sameor1", opt_arg=None
):
r"""Symbolically applies **operation** to **self**, with optional arguments if needed.
Keyword args:
- dimres (int): May be used to specify the dimension of the output **result**.
- is_operator (bool, default=False): May be used to specify if **operation** is
an operator like ``+``, ``-`` or a "genuine" function.
- dimcheck (string): shall we check the input dimensions?
Supported values are ``"same"``, ``"sameor1"``, or **None**.
"""
# If needed, convert float numbers / lists / arrays / tensors to LazyTensors:
if not hasattr(other1, "__GenericLazyTensor__"):
other1 = self.lt_constructor(other1)
if not hasattr(other2, "__GenericLazyTensor__"):
other2 = self.lt_constructor(other2)
# we must prevent any operation if self, other1 or other2 is the output of a reduction operation,
# i.e. if it has a reduction_op field
if (
hasattr(self, "reduction_op")
or hasattr(other1, "reduction_op")
or hasattr(other2, "reduction_op")
):
raise ValueError(
"One of the inputs is a 'reduced' LazyTensor, no operation can be applied to it. "
)
# By default, the dimension of the output variable is the max of the three operands:
if not dimres:
dimres = max(self.ndim, other1.ndim, other2.ndim)
if dimcheck == "same":
if (self.ndim != other1.ndim) or (self.ndim != other2.ndim):
raise ValueError(
"Operation {} expects inputs of the same dimension. ".format(
operation
)
+ "Received {}, {} and {}.".format(
self.ndim, other1.ndim, other2.ndim
)
)
elif dimcheck == "sameor1":
if not same_or_one_test(self.ndim, other1.ndim, other2.ndim):
raise ValueError(
"Operation {} expects inputs of the same dimension or dimension 1. ".format(
operation
)
+ "Received {}, {} and {}.".format(
self.ndim, other1.ndim, other2.ndim
)
)
elif dimcheck != None:
raise ValueError("incorrect dimcheck keyword in binary operation")
res = self.join(
other1.join(other2)
) # Merge the attributes and variables of operands
res.ndim = dimres
if opt_arg is not None:
if hasattr(opt_arg, "__GenericLazyTensor__"):
opt_arg = opt_arg.formula
res.formula = "{}({}, {}, {}, {})".format(
operation, self.formula, other1.formula, other2.formula, opt_arg
)
else:
res.formula = "{}({}, {}, {})".format(
operation, self.formula, other1.formula, other2.formula
)
return res
# Prototypes for reduction operations =====================================
def reduction(
self,
reduction_op,
other=None,
opt_arg=None,
axis=None,
dim=None,
call=True,
is_complex=None,
**kwargs
):
r"""
Applies a reduction to a :class:`LazyTensor`. This method is used internally by the LazyTensor class.
Args:
reduction_op (string): the string identifier of the reduction, which will be passed to the KeOps routines.
Keyword Args:
other: May be used to specify some **weights** ; depends on the reduction.
opt_arg: typically, some integer needed by ArgKMin reductions ; depends on the reduction.
axis (integer): The axis with respect to which the reduction should be performed.
Supported values are **nbatchdims** and **nbatchdims + 1**, where **nbatchdims** is the number of "batch" dimensions before the last three
(:math:`i` indices, :math:`j` indices, variables' dimensions).
dim (integer): alternative keyword for the **axis** argument.
call (True or False): Should we actually perform the reduction on the current variables?
If **True**, the returned object will be a NumPy array or a PyTorch tensor.
Otherwise, we simply return a callable :class:`LazyTensor` that may be used
as a :mod:`pykeops.numpy.Genred` or :mod:`pykeops.torch.Genred` function
on arbitrary tensor data.
backend (string): Specifies the map-reduce scheme,
as detailed in the documentation of the :mod:`Genred <pykeops.torch.Genred>` module.
device_id (int, default=-1): Specifies the GPU that should be used
to perform the computation; a negative value lets your system
choose the default GPU. This parameter is only useful if your
system has access to several GPUs.
ranges (6-uple of IntTensors, None by default):
Ranges of integers that specify a
:doc:`block-sparse reduction scheme <../../sparsity>`
as detailed in the documentation of the :mod:`Genred <pykeops.torch.Genred>` module.
If **None** (default), we simply use a **dense Kernel matrix**
as we loop over all indices
:math:`i\in[0,M)` and :math:`j\in[0,N)`.
dtype_acc (string, default ``"auto"``): type for accumulator of reduction, before casting to dtype.
It improves the accuracy of results in case of large sized data, but is slower.
Default value "auto" will set this option to the value of dtype. The supported values are:
- **dtype_acc** = ``"float16"`` : allowed only if dtype is "float16".
- **dtype_acc** = ``"float32"`` : allowed only if dtype is "float16" or "float32".
- **dtype_acc** = ``"float64"`` : allowed only if dtype is "float32" or "float64"..
use_double_acc (bool, default False): same as setting dtype_acc="float64" (only one of the two options can be set)
If True, accumulate results of reduction in float64 variables, before casting to float32.
This can only be set to True when data is in float32 or float64.
It improves the accuracy of results in case of large sized data, but is slower.
sum_scheme (string, default ``"auto"``): method used to sum up results for reductions. This option may be changed only
when reduction_op is one of: "Sum", "MaxSumShiftExp", "LogSumExp", "Max_SumShiftExpWeight", "LogSumExpWeight", "SumSoftMaxWeight".
Default value "auto" will set this option to "block_red" for these reductions. Possible values are:
- **sum_scheme** = ``"direct_sum"``: direct summation
- **sum_scheme** = ``"block_sum"``: use an intermediate accumulator in each block before accumulating
in the output. This improves accuracy for large sized data.
- **sum_scheme** = ``"kahan_scheme"``: use Kahan summation algorithm to compensate for round-off errors. This improves
accuracy for large sized data.
enable_chunks (bool, default True): enable automatic selection of special "chunked" computation mode for accelerating reductions
with formulas involving large dimension variables.
out (2d NumPy array or PyTorch Tensor, None by default): The output numerical array, for in-place computation.
If provided, the output array should all have the same ``dtype``, be **contiguous** and be stored on
the **same device** as the arguments. Moreover it should have the correct shape for the output.
"""
if is_complex is None:
if other is None:
is_complex = self.is_complex
else:
is_complex = self.is_complex or other.is_complex
if axis is None:
axis = dim # NumPy uses axis, PyTorch uses dim...
if axis - self.nbatchdims not in (0, 1):
raise ValueError(
"Reductions must be called with 'axis' (or 'dim') equal to the number of batch dimensions + 0 or 1."
)
if other is None:
res = self.init(is_complex=is_complex) # ~ self.copy()
res.formula2 = None
else:
res = self.join(other, is_complex=is_complex)
res.formula2 = other.formula
res.formula = self.formula
res.reduction_op = reduction_op
res.axis = axis - self.nbatchdims
res.opt_arg = opt_arg
kwargs_init, kwargs_call = self.separate_kwargs(kwargs)
res.kwargs = kwargs_call
res.ndim = self.ndim
if reduction_op == "Sum" and hasattr(self, "rec_multVar_highdim"):
if res.axis != self.rec_multVar_highdim[1].axis:
return (
self.rec_multVar_highdim[0].sum(axis=axis)
* self.rec_multVar_highdim[1].variables[0]
)
res.rec_multVar_highdim = id(self.rec_multVar_highdim[1].variables[0])
else:
res.rec_multVar_highdim = None
if res._dtype is not None:
res.fixvariables() # Turn the "id(x)" numbers into consecutive labels
# "res" now becomes a callable object:
res.callfun = res.Genred(
res.formula,
[],
reduction_op=res.reduction_op,
axis=res.axis,
opt_arg=res.opt_arg,
formula2=res.formula2,
**kwargs_init,
rec_multVar_highdim=res.rec_multVar_highdim
)
if call and len(res.symbolic_variables) == 0 and res._dtype is not None:
return res()
else:
return res
def solve(self, other, var=None, call=True, **kwargs):
r"""
Solves a positive definite linear system of the form ``sum(self) = other`` or ``sum(self*var) = other`` , using a conjugate gradient solver.
Args:
self (:class:`LazyTensor`): KeOps variable that encodes a symmetric positive definite matrix / linear operator.
other (:class:`LazyTensor`): KeOps variable that encodes the second member of the equation.
Keyword args:
var (:class:`LazyTensor`):
If **var** is **None**, **solve** will return the solution
of the ``self * var = other`` equation.
Otherwise, if **var** is a KeOps symbolic variable, **solve** will
assume that **self** defines an expression that is linear
with respect to **var** and solve the equation ``self(var) = other``
with respect to **var**.
alpha (float, default=1e-10): Non-negative **ridge regularization** parameter.
call (bool): If **True** and if no other symbolic variable than
**var** is contained in **self**, **solve** will return a tensor
solution of our linear system. Otherwise **solve** will return
a callable :class:`LazyTensor`.
backend (string): Specifies the map-reduce scheme,
as detailed in the documentation of the :mod:`Genred <pykeops.torch.Genred>` module.
device_id (int, default=-1): Specifies the GPU that should be used
to perform the computation; a negative value lets your system
choose the default GPU. This parameter is only useful if your
system has access to several GPUs.
ranges (6-uple of IntTensors, None by default):
Ranges of integers that specify a
:doc:`block-sparse reduction scheme <../../sparsity>`
as detailed in the documentation of the :mod:`Genred <pykeops.torch.Genred>` module.
If **None** (default), we simply use a **dense Kernel matrix**
as we loop over all indices :math:`i\in[0,M)` and :math:`j\in[0,N)`.
dtype_acc (string, default ``"auto"``): type for accumulator of reduction, before casting to dtype.
It improves the accuracy of results in case of large sized data, but is slower.
Default value "auto" will set this option to the value of dtype. The supported values are:
- **dtype_acc** = ``"float16"`` : allowed only if dtype is "float16".
- **dtype_acc** = ``"float32"`` : allowed only if dtype is "float16" or "float32".
- **dtype_acc** = ``"float64"`` : allowed only if dtype is "float32" or "float64"..
use_double_acc (bool, default False): same as setting dtype_acc="float64" (only one of the two options can be set)
If True, accumulate results of reduction in float64 variables, before casting to float32.
This can only be set to True when data is in float32 or float64.
It improves the accuracy of results in case of large sized data, but is slower.
sum_scheme (string, default ``"auto"``): method used to sum up results for reductions. This option may be changed only
when reduction_op is one of: "Sum", "MaxSumShiftExp", "LogSumExp", "Max_SumShiftExpWeight", "LogSumExpWeight", "SumSoftMaxWeight".
Default value "auto" will set this option to "block_red" for these reductions. Possible values are:
- **sum_scheme** = ``"direct_sum"``: direct summation
- **sum_scheme** = ``"block_sum"``: use an intermediate accumulator in each block before accumulating
in the output. This improves accuracy for large sized data.
- **sum_scheme** = ``"kahan_scheme"``: use Kahan summation algorithm to compensate for round-off errors. This improves
accuracy for large sized data.
enable_chunks (bool, default True): enable automatic selection of special "chunked" computation mode for accelerating reductions
with formulas involving large dimension variables.
.. warning::
Please note that **no check** of symmetry and definiteness will be
performed prior to our conjugate gradient descent.
"""
if not hasattr(other, "__GenericLazyTensor__"):
other = self.lt_constructor(
x=other, axis=0
) # a vector is normally indexed by "i"
# If given, var is symbolic variable corresponding to unknown
# other must be a variable equal to the second member of the linear system,
# and it may be symbolic. If it is symbolic, its index should match the index of var
# if other is not symbolic, all variables in self must be non symbolic
if len(other.symbolic_variables) == 0 and len(self.symbolic_variables) != 0:
raise ValueError("If 'self' has symbolic variables, so should 'other'.")
# we infer axis of reduction as the opposite of the axis of output
axis = 1 - other.axis
if var is None:
# this is the classical mode: we want to invert sum(self*var) = other
# we define var as a new symbolic variable with same dimension as other
# and we assume axis of var is same as axis of reduction
varindex = len(self.symbolic_variables)
var = self.lt_constructor((varindex, other.ndim, axis))
res = self * var
else:
# var is given and must be a symbolic variable which is already inside self
varindex = var.symbolic_variables[0][0]
res = self.init()
res.formula = self.formula
res.formula2 = None
res.reduction_op = "Solve"
res.varindex = varindex
res.varformula = var.formula.replace("VarSymb", "Var")
res.other = other
res.axis = axis
kwargs_init, res.kwargs = self.separate_kwargs(kwargs)
res.ndim = self.ndim
if other.ndim > 100:
res.rec_multVar_highdim = varindex
else:
res.rec_multVar_highdim = None
if res._dtype is not None:
res.fixvariables()
res.callfun = res.KernelSolve(
res.formula,
[],
res.varformula,
res.axis,
**kwargs_init,
rec_multVar_highdim=res.rec_multVar_highdim
)
# we call if call=True, if other is not symbolic, and if the dtype is set
if call and len(other.symbolic_variables) == 0 and res._dtype is not None:
return res()
else:
return res
def __call__(self, *args, **kwargs):
r"""
Executes a :mod:`Genred <pykeops.torch.Genred>` or :mod:`KernelSolve <pykeops.torch.KernelSolve>` call on the input data, as specified by **self.formula** .
"""
if not hasattr(self, "reduction_op"):
raise ValueError(
"A LazyTensor object may be called only if it corresponds to the output of a reduction operation or solve operation."
)
self.kwargs.update(kwargs)
if self.ranges is not None and "ranges" not in self.kwargs:
self.kwargs.update({"ranges": self.ranges})
if self.backend is not None and "backend" not in self.kwargs:
self.kwargs.update({"backend": self.backend})
if (
self._dtype is None
): # This can only happen if we haven't encountered 2D or 3D arrays just yet...
self.get_tools()
self._dtype = self.tools.dtypename(
self.tools.dtype(args[0])
) # crash if LazyTensor is called
self.fixvariables()
kwargs_init, self.kwargs = self.separate_kwargs(self.kwargs)
if self.reduction_op == "Solve":
self.callfun = self.KernelSolve(
self.formula,
[],
self.formula2,
self.axis,
self._dtype,
**kwargs_init,
rec_multVar_highdim=self.rec_multVar_highdim
)
else:
self.callfun = self.Genred(
self.formula,
[],
self.reduction_op,
self.axis,
self._dtype,
self.opt_arg,
self.formula2,
**kwargs_init,
rec_multVar_highdim=self.rec_multVar_highdim
)
if self.reduction_op == "Solve" and len(self.other.symbolic_variables) == 0:
# here args should be empty, according to our rule
if args != ():
raise ValueError("no input required")
# we replace by other
args = (self.other.variables[0],)
return self.callfun(*args, *self.variables, **self.kwargs)
def __str__(self):
r"""
Returns a verbose string identifier.
"""
tmp = self.init(is_complex=self.is_complex) # ~ self.copy()
tmp.formula = self.formula
tmp.formula2 = None if not hasattr(self, "formula2") else self.formula2
tmp.fixvariables() # Replace Var(id(x),...) with consecutive labels
string = "KeOps LazyTensor\n formula: {}".format(tmp.formula)
if len(self.symbolic_variables) > 0:
string += "\n symbolic variables: Var{}".format(
self.symbolic_variables[0]
)
for var in self.symbolic_variables[1:]:
string += ", Var{}".format(var)
string += "\n shape: {}".format(self.shape)
if hasattr(self, "reduction_op"):
string += "\n reduction: {} (axis={})".format(
self.reduction_op, self.axis
)
if tmp.formula2 is not None:
string += "\n formula2: {}".format(tmp.formula2)
if hasattr(self, "opt_arg") and self.opt_arg is not None:
string += "\n opt_arg: {}".format(self.opt_arg)
return string
@property
def dtype(self):
return self._dtype
@property
def _shape(self):
r"""Returns the internal shape of the LazyTensor."""
btch = () if self.batchdims is None else self.batchdims
ni = 1 if self.ni is None else self.ni
nj = 1 if self.nj is None else self.nj
ndim = 1 if self.ndim is None else self.ndim
return btch + (ni, nj, ndim)
@property
def shape(self):
r"""Returns the shape of the LazyTensor"""
s = self._shape
if s[-1] == 1:
return s[:-1]
else:
return s
def dim(self):
r"""
Just as in PyTorch, returns the number of dimensions of a :class:`LazyTensor`.
"""
return len(self._shape)
@property
def nbatchdims(self):
return 0 if self.batchdims is None else len(self.batchdims)
# List of supported operations ============================================
# N.B.: This flag prevents NumPy (and also PyTorch ?) from overriding
# the KeOps implementations of __radd__, __rdiv___, etc. written below.
# For instance, if x is a NumPy array and y is a KeOps LazyTensor,
# writing "x+y" will call y.__radd__(x) (LazyTensor method) instead
# of x.__add__(y) (NumPy method)
__array_ufunc__ = None
# Arithmetics --------------------------------------------------------------
def addop(self, other, **kwargs):
return self.binary(other, "+", is_operator=True, **kwargs)
def __add__(self, other):
r"""
Broadcasted addition operator - a binary operation.
``x + y`` returns a :class:`LazyTensor` that encodes,
symbolically, the addition of ``x`` and ``y``.
"""
if is_scalar_and_equals(other, 0):
return self
elif is_complex_lazytensor(other) and not is_complex_lazytensor(self):
return self.real2complex().addop(other)
else:
return self.addop(other)
def __radd__(self, other):
r"""
Broadcasted addition operator - a binary operation.
``x + y`` returns a :class:`LazyTensor` that encodes,
symbolically, the addition of ``x`` and ``y``.
"""
if is_scalar_and_equals(other, 0):
return self
else:
return self.addop(other, rversion=True)
def subop(self, other, **kwargs):
return self.binary(other, "-", is_operator=True, **kwargs)
def __sub__(self, other):
r"""
Broadcasted subtraction operator - a binary operation.
``x - y`` returns a :class:`LazyTensor` that encodes,
symbolically, the subtraction of ``x`` and ``y``.
"""
if is_scalar_and_equals(other, 0):
return self
elif is_complex_lazytensor(other) and not is_complex_lazytensor(self):
return self.real2complex().subop(other)
else:
return self.subop(other)
def __rsub__(self, other):
r"""
Broadcasted subtraction operator - a binary operation.
``x - y`` returns a :class:`LazyTensor` that encodes,
symbolically, the subtraction of ``x`` and ``y``.
"""
if is_scalar_and_equals(other, 0):
return self.unary("Minus")
else:
return self.subop(other, rversion=True)
def mulop(self, other, **kwargs):
return self.binary(other, "*", is_operator=True, **kwargs)
def __mul__(self, other):
r"""
Broadcasted element-wise product - a binary operation.
``x * y`` returns a :class:`LazyTensor` that encodes, symbolically,
the elementwise product of ``x`` and ``y``.
"""
if is_scalar_and_equals(other, 0):
return 0
elif is_scalar_and_equals(other, 1):
return self
elif is_scalar_and_equals(other, -1):
return self.unary("Minus")
elif is_complex_lazytensor(other) and not is_complex_lazytensor(self):
return other.mulop(self)
elif self.tools.detect_complex(other) and not is_complex_lazytensor(self):
return self.lt_constructor(other).mulop(self)
else:
return self.mulop(other)
def __rmul__(self, other):
r"""
Broadcasted element-wise product - a binary operation.
``x * y`` returns a :class:`LazyTensor` that encodes, symbolically,
the elementwise product of ``x`` and ``y``.
"""
if is_scalar_and_equals(other, 0):
return 0
elif is_scalar_and_equals(other, 1):
return self
elif is_scalar_and_equals(other, -1):
return self.unary("Minus")
elif self.tools.detect_complex(other) and not is_complex_lazytensor(self):
return self.real2complex().mulop(self.lt_constructor(other))
else:
return self.mulop(other, rversion=True)
def divop(self, other, **kwargs):
return self.binary(other, "/", is_operator=True, **kwargs)
def __truediv__(self, other):
r"""
Broadcasted element-wise division - a binary operation.
``x / y`` returns a :class:`LazyTensor` that encodes, symbolically,
the elementwise division of ``x`` by ``y``.
"""
if is_scalar_and_equals(other, 1):
return self
elif is_complex_lazytensor(other) and not is_complex_lazytensor(self):
return self.real2complex().divop(other)
else:
return self.divop(other)
def __rtruediv__(self, other):
r"""
Broadcasted element-wise division - a binary operation.
``x / y`` returns a :class:`LazyTensor` that encodes, symbolically,
the elementwise division of ``x`` by ``y``.
"""
if is_scalar_and_equals(other, 0):
return 0
elif is_scalar_and_equals(other, 1):
return self.unary("Inv")
else:
return self.divop(other, rversion=True)
def __or__(self, other):
r"""
Euclidean scalar product - a binary operation.
``(x|y)`` returns a :class:`LazyTensor` that encodes, symbolically,
the scalar product of ``x`` and ``y`` which are assumed to have the same shape.
"""
return self.binary(other, "|", is_operator=True, dimres=1, dimcheck="same")
def __ror__(self, other):
r"""
Euclidean scalar product - a binary operation.
``(x|y)`` returns a :class:`LazyTensor` that encodes, symbolically,
the scalar product of ``x`` and ``y`` which are assumed to have the same shape.
"""
return self.binary(
other, "|", is_operator=True, dimres=1, dimcheck="same", rversion=True
)
# Unary arithmetics --------------------------------------------------------
def __abs__(self):
r"""
Element-wise absolute value - a unary operation.
``abs(x)`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise absolute value of ``x``.
"""
return self.unary("Abs")
def abs(self):
r"""
Element-wise absolute value - a unary operation.
``x.abs()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise absolute value of ``x``.
"""
return abs(self)
def __neg__(self):
r"""
Element-wise minus - a unary operation.
``-x`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise opposite of ``x``.
"""
return self.unary("Minus")
# Simple functions ---------------------------------------------------------
def exp(self):
r"""
Element-wise exponential - a unary operation.
``x.exp()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise exponential of ``x``.
"""
return self.unary("Exp")
def log(self):
r"""
Element-wise logarithm - a unary operation.
``x.log()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise logarithm of ``x``.
"""
return self.unary("Log")
def xlogx(self):
r"""
Element-wise x*log(x) function - a unary operation.
``x.xlogx()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise ``x`` times logarithm of ``x`` (with value 0 at 0).
"""
return self.unary("XLogX")
def cos(self):
r"""
Element-wise cosine - a unary operation.
``x.cos()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise cosine of ``x``.
"""
return self.unary("Cos")
def sin(self):
r"""
Element-wise sine - a unary operation.
``x.sin()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise sine of ``x``.
"""
return self.unary("Sin")
def sinxdivx(self):
r"""
Element-wise sin(x)/x function - a unary operation.
``x.sinxdivx()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise sinxdivx function of ``x``.
"""
return self.unary("SinXDivX")
def sinc(self):
r"""
Element-wise sinc(x) = sin(pi x) / (pi x) function - a unary operation.
``x.sinc()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise sinc function of ``x``.
"""
return (math.pi * self).sinxdivx()
def asin(self):
r"""
Element-wise arcsine - a unary operation.
``x.asin()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise arcsine of ``x``.
"""
return self.unary("Asin")
def acos(self):
r"""
Element-wise arccosine - a unary operation.
``x.acos()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise arccosine of ``x``.
"""
return self.unary("Acos")
def atan(self):
r"""
Element-wise arctangent - a unary operation.
``x.atan()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise arctangent of ``x``.
"""
return self.unary("Atan")
def atan2(self, other):
r"""
Element-wise atan2 - a binary operation.
``y.atan2(x)`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise atan2 of ``x`` and ``y``.
"""
return self.binary(other, "Atan2", dimcheck="sameor1")
def sqrt(self):
r"""
Element-wise square root - a unary operation.
``x.sqrt()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise square root of ``x``.
"""
return self.unary("Sqrt")
def rsqrt(self):
r"""
Element-wise inverse square root - a unary operation.
``x.rsqrt()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise inverse square root of ``x``.
"""
return self.unary("Rsqrt")
def __pow__(self, other):
r"""
Broadcasted element-wise power operator - a binary operation.
``x**y`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise value of ``x`` to the power ``y``.
Note:
- if **y = 2**, ``x**y`` relies on the ``"Square"`` KeOps operation;
- if **y = 0.5**, ``x**y`` uses on the ``"Sqrt"`` KeOps operation;
- if **y = -0.5**, ``x**y`` uses on the ``"Rsqrt"`` KeOps operation.
"""
if type(other) == int:
return (
self.unary("Square") if other == 2 else self.unary("Pow", opt_arg=other)
)
elif type(other) == float:
if other == 0.5:
return self.unary("Sqrt")
elif other == -0.5:
return self.unary("Rsqrt")
else:
other = self.lt_constructor(other)
if hasattr(other, "__GenericLazyTensor__"):
if other.ndim == 1 or other.ndim == self.ndim:
return self.binary(other, "Powf", dimcheck=None)
else:
raise ValueError(
"Incompatible dimensions for the LazyTensor and its exponent: "
+ "{} and {}.".format(self.ndim, other.ndim)
)
else:
raise ValueError(
"The exponent should be an integer, a float number or a LazyTensor."
)
def power(self, other):
r"""
Broadcasted element-wise power operator - a binary operation.
``pow(x,y)`` is equivalent to ``x**y``.
"""
return self**other
def square(self):
r"""
Element-wise square - a unary operation.
``x.square()`` is equivalent to ``x**2`` and returns a :class:`LazyTensor`
that encodes, symbolically, the element-wise square of ``x``.
"""
return self.unary("Square")
def sign(self):
r"""
Element-wise sign in {-1,0,+1} - a unary operation.
``x.sign()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise sign of ``x``.
"""
return self.unary("Sign")
def step(self):
r"""
Element-wise step function - a unary operation.
``x.step()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise sign of ``x``.
"""
return self.unary("Step")
def relu(self):
r"""
Element-wise ReLU function - a unary operation.
``x.relu()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise positive part of ``x``.
"""
return self.unary("ReLU")
def clamp(self, other1, other2):
r"""
Element-wise Clamp function - a ternary operation.
``x.clamp(a,b)`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise clamping of ``x`` in ``(a,b)``. Broadcasting rules apply.
a and b may be fixed integers or floats, or other LazyTensors.
"""
if (type(other1) == int) and (type(other2) == int):
return self.unary("ClampInt", opt_arg=other1, opt_arg2=other2)
else:
return self.ternary(other1, other2, "Clamp", dimcheck="sameor1")
def ifelse(self, other1, other2):
r"""
Element-wise if-else function - a ternary operation.
``x.ifelse(a,b)`` returns a :class:`LazyTensor` that encodes, symbolically,
``a`` where ``x >= 0`` and ``b`` where ``x < 0``. Broadcasting rules apply.
a and b may be fixed integers or floats, or other LazyTensors.
"""
return self.ternary(other1, other2, "IfElse", dimcheck="sameor1")
def mod(self, modulus, offset=0):
r"""
Element-wise modulo with offset function - a ternary operation.
``x.mod(a,b)`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise modulo of ``x`` with modulus ``a`` and offset ``b``.
By default b=0, so that x.mod(a) becomes equivalent to the NumPy function mod.
Broadcasting rules apply. a and b are fixed integers or float.
"""
return self.ternary(modulus, offset, "Mod", dimcheck="sameor1")
def round(self, other=0):
r"""
Element-wise rounding function - a unary operation.
``x.round(d)`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise rounding of ``x`` to d decimal places. d is int.
"""
return self.unary("Round", opt_arg=other)
def sqnorm2(self):
r"""
Squared Euclidean norm - a unary operation.
``x.sqnorm2()`` returns a :class:`LazyTensor` that encodes, symbolically,
the squared Euclidean norm of a vector ``x``.
"""
return self.unary("SqNorm2", dimres=1)
def norm2(self):
r"""
Euclidean norm - a unary operation.
``x.norm2()`` returns a :class:`LazyTensor` that encodes, symbolically,
the Euclidean norm of a vector ``x``.
"""
return self.unary("Norm2", dimres=1)
def norm(self, dim):
r"""
Euclidean norm - a unary operation.
``x.norm(-1)`` is equivalent to ``x.norm2()`` and returns a
:class:`LazyTensor` that encodes, symbolically, the Euclidean norm of a vector ``x``.
"""
if dim not in [-1, len(self._shape) - 1]:
raise ValueError("KeOps only supports norms over the last dimension.")
return self.norm2()
def normalize(self):
r"""
Vector normalization - a unary operation.
``x.normalize()`` returns a :class:`LazyTensor` that encodes, symbolically,
a vector ``x`` divided by its Euclidean norm.
"""
return self.unary("Normalize")
def sqdist(self, other):
r"""
Squared distance - a binary operation.
``x.sqdist(y)`` returns a :class:`LazyTensor` that encodes, symbolically,
the squared Euclidean distance between two vectors ``x`` and ``y``.
"""
return self.binary(other, "SqDist", dimres=1)
def weightedsqnorm(self, other):
r"""
Weighted squared norm of a LazyTensor ``x`` - a binary operation.
``x.weightedsqnorm(s)`` returns a :class:`LazyTensor` that encodes, symbolically,
the weighted squared Norm of a vector ``x`` with weights stored in the LazyTensor ``s``- see
the :doc:`main reference page <../../../api/math-operations>` for details.
"""
if not hasattr(other, "__GenericLazyTensor__"):
other = self.lt_constructor(other)
if other.ndim not in (1, self.ndim, self.ndim**2):
raise ValueError(
"Squared norm weights should be of size 1 (scalar), "
+ "D (diagonal) or D^2 (full symmetric tensor), but received "
+ "{} with D={}.".format(other.ndim, self.ndim)
)
return self.binary(
other, "WeightedSqNorm", dimres=1, dimcheck=None, rversion=True
)
def weightedsqdist(self, g, s):
r"""
Weighted squared distance.
``x.weightedsqdist(y, s)`` is equivalent to ``(x - y).weightedsqnorm(s)``.
"""
if not hasattr(g, "__GenericLazyTensor__"):
g = self.lt_constructor(g)
if not hasattr(s, "__GenericLazyTensor__"):
s = self.lt_constructor(s)
return (self - g).weightedsqnorm(s)
def elem(self, i):
r"""
Indexing of a vector - a unary operation.
``x.elem(i)`` returns a :class:`LazyTensor` that encodes, symbolically,
the i-th element ``x[i]`` of the vector ``x``.
"""
if type(i) is not int:
raise ValueError("Elem indexing is only supported for integer indices.")
if i < 0 or i >= self.ndim:
raise ValueError(
"Index i={} is out of bounds [0,D) = [0,{}).".format(i, self.ndim)
)
return self.unary("Elem", dimres=1, opt_arg=i)
def extract(self, i, d):
r"""
Range indexing - a unary operation.
``x.extract(i, d)`` returns a :class:`LazyTensor` that encodes, symbolically,
the sub-vector ``x[i:i+d]`` of the vector ``x``.
"""
if (type(i) is not int) or (type(d) is not int):
raise ValueError("Indexing is only supported for integer indices.")
if i < 0 or i >= self.ndim:
raise ValueError("Starting index is out of bounds.")
if d < 1 or i + d > self.ndim:
raise ValueError("Slice dimension is out of bounds.")
return self.unary("Extract", dimres=d, opt_arg=i, opt_arg2=d)
def __getitem__(self, key):
r"""
Element or range indexing - a unary operation.
``x[key]`` redirects to the :meth:`elem` or :meth:`extract` methods, depending on the ``key`` argument.
Supported values are:
- an integer ``k``, in which case ``x[key]``
redirects to ``elem(x,k)``,
- a tuple ``..,:,:,k`` with ``k`` an integer,
which is equivalent to the case above,
- a slice of the form ``k:l``, ``k:`` or ``:l``, with ``k``
and ``l`` two integers, in which case ``x[key]`` redirects to ``extract(x,k,l-k)``,
- a tuple of slices of the form ``..,:,:,k:l``, ``..,:,:,k:`` or ``..,:,:,:l``,
with ``k`` and ``l`` two integers, which are equivalent to the case above.
"""
# we allow only these forms:
# [..,:,:,k], [..,:,:,k:l], [..,:,:,k:], [..,:,:,:l]
# or equivalent [k], [k:l], [k:], [:l]
if isinstance(key, tuple):
if len(key) == len(self._shape) and key[:-1] == (slice(None),) * (
len(self._shape) - 1
):
key = key[-1]
else:
raise ValueError(
"LazyTensors only support indexing with respect to their last dimension."
)
if isinstance(key, slice):
if not key.step in [None, 1]:
raise ValueError(
"LazyTensors do not support sliced indexing with stepsizes > 1."
)
if key.start is None:
key = slice(0, key.stop)
if key.stop is None:
key = slice(key.start, self.ndim)
return self.extract(key.start, key.stop - key.start)
elif isinstance(key, int):
return self.elem(key)
else:
raise ValueError(
"LazyTensors only support indexing with integers and vanilla python slices."
)
def one_hot(self, D):
r"""
Encodes a (rounded) scalar value as a one-hot vector of dimension D.
``x.one_hot(D)`` returns a :class:`LazyTensor` that encodes, symbolically,
a vector of length D whose round(x)-th coordinate is equal to 1, and the other ones to zero.
"""
if type(D) is not int:
raise ValueError(
"One-hot encoding expects an integer dimension of the output vector."
)
if self.ndim != 1:
raise ValueError("One-hot encoding is only supported for scalar formulas.")
return self.unary("OneHot", dimres=D, opt_arg=D)
def concat(self, other):
r"""
Concatenation of two :class:`LazyTensor` - a binary operation.
``x.concat(y)`` returns a :class:`LazyTensor` that encodes, symbolically,
the concatenation of ``x`` and ``y`` along their last dimension.
"""
return self.binary(
other, "Concat", dimres=(self.ndim + other.ndim), dimcheck=None
)
@staticmethod
def concatenate(tuple_of_lt, axis=-1):
r"""
Concatenation of a tuple of :class:`GenericLazyTensor`.
``GenericLazyTensor.concatenate( (x_1, x_2, ..., x_n), -1)`` returns a :class:`GenericLazyTensor` that encodes, symbolically,
the concatenation of ``x_1``, ``x_2``, ..., ``x_n`` along their last dimension.
Note that **axis** should be equal to -1 or 2 (if the ``x_i``'s are 3D GenericLazyTensor):
GenericLazyTensors only support concatenation and indexing operations with respect
to the last dimension.
"""
if isinstance(tuple_of_lt, tuple):
if len(tuple_of_lt) == 0:
raise ValueError("Received an empty tuple of LazyTensors.")
elif hasattr(tuple_of_lt[0], "__GenericLazyTensor__"):
if axis not in [-1, len(tuple_of_lt[0]._shape) - 1]:
raise ValueError(
"LazyTensor only supports concatenation along the last axis."
)
if len(tuple_of_lt) == 1:
return tuple_of_lt[0]
elif len(tuple_of_lt) == 2:
return tuple_of_lt[0].concat(tuple_of_lt[1])
else:
return GenericLazyTensor.concatenate(
(tuple_of_lt[0].concat(tuple_of_lt[1]),) + tuple_of_lt[2:],
axis=-1,
)
else:
raise ValueError(
"LazyTensor.concatenate is implemented on *tuples* of LazyTensors."
)
@staticmethod
def cat(tuple_of_lt, dim):
r"""
Concatenation of a tuple of LazyTensors.
``LazyTensor.cat( (x_1, x_2, ..., x_n), -1)``
is a PyTorch-friendly alias for ``LazyTensor.concatenate( (x_1, x_2, ..., x_n), -1)``;
just like indexing operations, it is only supported along the last dimension.
"""
return GenericLazyTensor.concatenate(tuple_of_lt, dim)
def matvecmult(self, other):
r"""
Matrix-vector product - a binary operation.
If ``x._shape[-1] == A*B`` and ``y._shape[-1] == B``,
``z = x.matvecmult(y)`` returns a :class:`GenericLazyTensor`
such that ``z._shape[-1] == A`` which encodes, symbolically,
the matrix-vector product of ``x`` and ``y`` along their last dimension.
For details, please check the documentation of the KeOps operation ``"MatVecMult"`` in
the :doc:`main reference page <../../../api/math-operations>`.
"""
return self.binary(
other, "MatVecMult", dimres=(self.ndim // other.ndim), dimcheck=None
)
def vecmatmult(self, other):
r"""
Vector-matrix product - a binary operation.
If ``x._shape[-1] == A`` and ``y._shape[-1] == A*B``,
``z = x.vecmatmult(y)`` returns a :class:`GenericLazyTensor`
such that ``z._shape[-1] == B`` which encodes, symbolically,
the vector-matrix product of ``x`` and ``y`` along their last dimension.
For details, please check the documentation of the KeOps operation ``"VecMacMult"`` in
the :doc:`main reference page <../../../api/math-operations>`.
"""
return self.binary(
other, "VecMatMult", dimres=(other.ndim // self.ndim), dimcheck=None
)
def tensorprod(self, other):
r"""
Tensor product of vectors - a binary operation.
If ``x._shape[-1] == A`` and ``y._shape[-1] == B``,
``z = x.tensorprod(y)`` returns a :class:`GenericLazyTensor`
such that ``z._shape[-1] == A*B`` which encodes, symbolically,
the tensor product of ``x`` and ``y`` along their last dimension.
For details, please check the documentation of the KeOps operation ``"TensorProd"`` in
the :doc:`main reference page <../../../api/math-operations>`.
"""
return self.binary(
other, "TensorProd", dimres=(other.ndim * self.ndim), dimcheck=None
)
def keops_tensordot(self, other, dimfa, dimfb, contfa, contfb, *args):
"""
Tensor dot product (on KeOps internal dimensions) - a binary operation.
:param other: a LazyTensor
:param dimfa: tuple of int
:param dimfb: tuple of int
:param contfa: tuple of int listing contraction dimension of a (could be empty)
:param contfb: tuple of int listing contraction dimension of b (could be empty)
:param args: a tuple of int containing the graph of a permutation of the output
:return:
"""
# permute = tuple(range(len(dimfa) + len(dimfb) - 2 * len(contfa)))
opt_arg = ""
for intseq in (dimfa, dimfb, contfa, contfb) + args:
opt_arg += "["
if isinstance(intseq, int):
intseq = (intseq,) # convert to tuple
for item in intseq:
opt_arg += "{},".format(item)
opt_arg = opt_arg[:-1] if len(intseq) else opt_arg # to remove last comma
opt_arg += "], "
opt_arg = opt_arg[:-2] # to remove last comma and space
dimres = np.array(dimfa).prod() * np.array(dimfb).prod()
dimres /= np.array(dimfa)[np.array(contfa)].prod() ** 2 if len(contfa) else 1
return self.binary(
other, "TensorDot", dimres=int(dimres), dimcheck=None, opt_arg=opt_arg
)
def grad(self, other, gradin):
r"""
Symbolic gradient operation.
``z = x.grad(v,e)`` returns a :class:`LazyTensor`
which encodes, symbolically,
the gradient (more precisely, the adjoint of the differential operator) of ``x``, with
respect to variable ``v``, and applied to ``e``.
For details, please check the documentation of the KeOps operation ``"Grad"`` in
the :doc:`main reference page <../../../api/math-operations>`.
"""
return self.binary(
gradin,
"Grad",
dimres=other.ndim,
dimcheck="same",
opt_arg=other,
opt_pos="middle",
)
# List of supported reductions ============================================
def sum(self, axis=-1, dim=None, **kwargs):
r"""
Summation unary operation, or Sum reduction.
``sum(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the sum reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the sum reduction of **self** over the "j" indexes.
- if **axis or dim = 2**, return a new :class:`LazyTensor` object representing the sum of the values of the vector **self**,
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
1 (= reduction over :math:`j`) or 2 (i.e. -1, sum along the
dimension of the vector variable).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
if dim is not None:
axis = dim
if axis in [-1, len(self._shape) - 1]:
return self.unary("Sum", dimres=1)
else:
return self.reduction("Sum", axis=axis, **kwargs)
def sum_reduction(self, axis=None, dim=None, **kwargs):
r"""
Sum reduction.
``sum_reduction(axis, dim, **kwargs)`` will return the sum reduction of **self**.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("Sum", axis=axis, dim=dim, **kwargs)
def logsumexp(self, axis=None, dim=None, weight=None, **kwargs):
r"""
Log-Sum-Exp reduction.
``logsumexp(axis, dim, weight, **kwargs)`` will:
- if **axis or dim = 0**, return the "log-sum-exp" reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the "log-sum-exp" reduction of **self** over the "j" indexes.
For details, please check the documentation of the KeOps reductions ``LogSumExp`` and ``LogSumExpWeight`` in
the :doc:`main reference page <../../../api/math-operations>`.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
weight (:class:`LazyTensor`): optional object that specifies scalar or vector-valued weights
in the log-sum-exp operation
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
if weight is None:
return self.reduction("LogSumExp", axis=axis, dim=dim, **kwargs)
else:
return self.reduction(
"LogSumExp", other=weight, axis=axis, dim=dim, **kwargs
)
def logsumexp_reduction(self, **kwargs):
r"""
Log-Sum-Exp reduction. Redirects to :meth:`logsumexp` method.
"""
return self.logsumexp(**kwargs)
def sumsoftmaxweight(self, weight, axis=None, dim=None, **kwargs):
r"""
Sum of weighted Soft-Max reduction.
``sumsoftmaxweight(weight, axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the "sum of weighted Soft-Max" reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the "sum of weighted Soft-Max" reduction of **self** over the "j" indexes.
For details, please check the documentation of the KeOps reduction ``SumSoftMaxWeight`` in
the :doc:`main reference page <../../../api/math-operations>`.
Keyword Args:
weight (:class:`LazyTensor`): object that specifies scalar or vector-valued weights.
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction(
"SumSoftMaxWeight", other=weight, axis=axis, dim=dim, **kwargs
)
def sumsoftmaxweight_reduction(self, **kwargs):
r"""
Sum of weighted Soft-Max reduction. Redirects to :meth:`sumsoftmaxweight` method.
"""
return self.sumsoftmaxweight(**kwargs)
def min(self, axis=-1, dim=None, **kwargs):
r"""
Minimum unary operation, or Min reduction.
``min(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the min reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the min reduction of **self** over the "j" indexes.
- if **axis or dim = 2**, return a new :class:`LazyTensor` object representing the min of the values of the vector **self**,
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
1 (= reduction over :math:`j`) or 2 (i.e. -1, min along the
dimension of the vector variable).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
if dim is not None:
axis = dim
if axis in [-1, len(self._shape) - 1]:
return self.unary("Min", dimres=1)
else:
return self.reduction("Min", axis=axis, **kwargs)
def min_reduction(self, axis=None, dim=None, **kwargs):
r"""
Min reduction.
``min_reduction(axis, dim, **kwargs)`` will return the min reduction of **self**.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("Min", axis=axis, dim=dim, **kwargs)
def __min__(self, **kwargs):
r"""
Minimum unary operation, or Min reduction. Redirects to :meth:`min` method.
"""
return self.min(**kwargs)
def argmin(self, axis=-1, dim=None, **kwargs):
r"""
ArgMin unary operation, or ArgMin reduction.
``argmin(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the argmin reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the argmin reduction of **self** over the "j" indexes.
- if **axis or dim = 2**, return a new :class:`LazyTensor` object representing the argmin of the values of the vector **self**,
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
1 (= reduction over :math:`j`) or 2 (i.e. -1, argmin along the
dimension of the vector variable).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
if dim is not None:
axis = dim
if axis in [-1, len(self._shape) - 1]:
return self.unary("ArgMin", dimres=1)
else:
return self.reduction("ArgMin", axis=axis, **kwargs)
def argmin_reduction(self, axis=None, dim=None, **kwargs):
r"""
ArgMin reduction.
``argmin_reduction(axis, dim, **kwargs)`` will return the argmin reduction of **self**.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("ArgMin", axis=axis, dim=dim, **kwargs)
def min_argmin(self, axis=None, dim=None, **kwargs):
r"""
Min-ArgMin reduction.
``min_argmin(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the minimal values and its indices of **self** over the "i" indexes.
- if **axis or dim = 1**, return the minimal values and its indices of **self** over the "j" indexes.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("Min_ArgMin", axis=axis, dim=dim, **kwargs)
def min_argmin_reduction(self, **kwargs):
r"""
Min-ArgMin reduction. Redirects to :meth:`min_argmin` method.
"""
return self.min_argmin(**kwargs)
def max(self, axis=-1, dim=None, **kwargs):
r"""
Miaximum unary operation, or Max reduction.
``max(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the max reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the max reduction of **self** over the "j" indexes.
- if **axis or dim = 2**, return a new :class:`LazyTensor` object representing the max of the values of the vector **self**,
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
1 (= reduction over :math:`j`) or 2 (i.e. -1, max along the
dimension of the vector variable).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
if dim is not None:
axis = dim
if axis in [-1, len(self._shape) - 1]:
return self.unary("Max", dimres=1)
else:
return self.reduction("Max", axis=axis, **kwargs)
def max_reduction(self, axis=None, dim=None, **kwargs):
r"""
Max reduction.
``max_reduction(axis, dim, **kwargs)`` will return the max reduction of **self**.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("Max", axis=axis, dim=dim, **kwargs)
def __max__(self, **kwargs):
r"""
Maximum unary operation, or Max reduction. Redirects to :meth:`max` method.
"""
return self.max(**kwargs)
def argmax(self, axis=-1, dim=None, **kwargs):
r"""
ArgMax unary operation, or ArgMax reduction.
``argmax(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the argmax reduction of **self** over the "i" indexes.
- if **axis or dim = 1**, return the argmax reduction of **self** over the "j" indexes.
- if **axis or dim = 2**, return a new :class:`LazyTensor` object representing the argmax of the values of the vector **self**,
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
1 (= reduction over :math:`j`) or 2 (i.e. -1, argmax along the
dimension of the vector variable).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
if dim is not None:
axis = dim
if axis in [-1, len(self._shape) - 1]:
return self.unary("ArgMax", dimres=1)
else:
return self.reduction("ArgMax", axis=axis, **kwargs)
def argmax_reduction(self, axis=None, dim=None, **kwargs):
r"""
ArgMax reduction.
``argmax_reduction(axis, dim, **kwargs)`` will return the argmax reduction of **self**.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("ArgMax", axis=axis, dim=dim, **kwargs)
def max_argmax(self, axis=None, dim=None, **kwargs):
r"""
Max-ArgMax reduction.
``max_argmax(axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the maximal values and its indices of **self** over the "i" indexes.
- if **axis or dim = 1**, return the maximal values and its indices of **self** over the "j" indexes.
Keyword Args:
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("Max_ArgMax", axis=axis, dim=dim, **kwargs)
def max_argmax_reduction(self, **kwargs):
r"""
Max-ArgMax reduction. Redirects to :meth:`max_argmax` method.
"""
return self.max_argmax(**kwargs)
def Kmin(self, K, axis=None, dim=None, **kwargs):
r"""
K-Min reduction.
``Kmin(K, axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the K minimal values of **self** over the "i" indexes.
- if **axis or dim = 1**, return the K minimal values of **self** over the "j" indexes.
Keyword Args:
K (integer): number of minimal values required
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("KMin", opt_arg=K, axis=axis, dim=dim, **kwargs)
def Kmin_reduction(self, **kwargs):
r"""
Kmin reduction. Redirects to :meth:`Kmin` method.
"""
return self.Kmin(**kwargs)
def argKmin(self, K, axis=None, dim=None, **kwargs):
r"""
argKmin reduction.
``argKmin(K, axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the indices of the K minimal values of **self** over the "i" indexes.
- if **axis or dim = 1**, return the indices of the K minimal values of **self** over the "j" indexes.
Keyword Args:
K (integer): number of minimal values required
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("ArgKMin", opt_arg=K, axis=axis, dim=dim, **kwargs)
def argKmin_reduction(self, **kwargs):
r"""
argKmin reduction. Redirects to :meth:`argKmin` method.
"""
return self.argKmin(**kwargs)
def Kmin_argKmin(self, K, axis=None, dim=None, **kwargs):
r"""
K-Min-argK-min reduction.
``Kmin_argKmin(K, axis, dim, **kwargs)`` will:
- if **axis or dim = 0**, return the K minimal values and its indices of **self** over the "i" indexes.
- if **axis or dim = 1**, return the K minimal values and its indices of **self** over the "j" indexes.
Keyword Args:
K (integer): number of minimal values required
axis (integer): reduction dimension, which should be equal to the number
of batch dimensions plus 0 (= reduction over :math:`i`),
or 1 (= reduction over :math:`j`).
dim (integer): alternative keyword for the axis parameter.
**kwargs: optional parameters that are passed to the :meth:`reduction` method.
"""
return self.reduction("KMin_ArgKMin", opt_arg=K, axis=axis, dim=dim, **kwargs)
def Kmin_argKmin_reduction(self, **kwargs):
r"""
Kmin_argKmin reduction. Redirects to :meth:`Kmin_argKmin` method.
"""
return self.Kmin_argKmin(**kwargs)
# LazyTensors as linear operators =========================================
def __matmul__(self, v, **kwargs):
r"""
Matrix-vector or Matrix-matrix product, supporting batch dimensions.
If ``K`` is a :class:`LazyTensor` whose trailing dimension ``K._shape[-1]`` is equal to 1,
we can understand it as a linear operator and apply it to arbitrary NumPy arrays
or PyTorch Tensors. Assuming that ``v`` is a 1D (resp. ND) tensor such that
``K.shape[-1] == v.shape[-1]`` (resp. ``v.shape[-2]``), ``K @ v`` denotes the matrix-vector (resp. matrix-matrix)
product between the two objects, encoded as a vanilla NumPy or PyTorch 1D (resp. ND) tensor.
Example:
>>> x, y = torch.randn(1000, 3), torch.randn(2000, 3)
>>> x_i, y_j = LazyTensor( x[:,None,:] ), LazyTensor( y[None,:,:] )
>>> K = (- ((x_i - y_j)**2).sum(2) ).exp() # Symbolic (1000,2000,1) Gaussian kernel matrix
>>> v = torch.rand(2000, 2)
>>> print( (K @ v).shape )
... torch.Size([1000, 2])
"""
if self._shape[-1] != 1:
raise ValueError(
"The 'K @ v' syntax is only supported for LazyTensors "
+ "'K' whose trailing dimension is equal to 1. Here, K.shape = {}.".format(
self.shape
)
)
if len(v.shape) == 1:
newdims = (1, v.shape[0], 1)
else:
newdims = v.shape[:-2] + (1,) + v.shape[-2:]
v_ = self.lt_constructor(self.tools.view(v, newdims))
Kv = self * v_ # Supports broadcasting
Kv = Kv.sum(Kv.dim() - 2, **kwargs) # Matrix-vector or Matrix-matrix product
# Expected behavior: if v is a vector, so should K @ v.
return self.tools.view(Kv, -1) if len(v.shape) == 1 else Kv
def t(self):
r"""
Matrix transposition, permuting the axes of :math:`i`- and :math:`j`-variables.
For instance, if ``K`` is a LazyTensor of shape ``(B,M,N,D)``,
``K.t()`` returns a symbolic copy of ``K`` whose axes 1 and 2 have
been switched with each other: ``K.t().shape == (B,N,M,D)``.
Example:
>>> x, y = torch.randn(1000, 3), torch.randn(2000, 3)
>>> x_i, y_j = LazyTensor( x[:,None,:] ), LazyTensor( y[None,:,:] )
>>> K = (- (( x_i - y_j )**2).sum(2) ).exp() # Symbolic (1000,2000) Gaussian kernel matrix
>>> K_ = (- ((x[:,None,:] - y[None,:,:])**2).sum(2) ).exp() # Explicit (1000,2000) Gaussian kernel matrix
>>> w = torch.rand(1000, 2)
>>> print( (K.t() @ w - K_.t() @ w).abs().mean() )
... tensor(1.7185e-05)
"""
res = copy.copy(self)
res.ni, res.nj = res.nj, res.ni # Switch the "M" and "N" dimensions
res.ranges = res.tools.swap_axes(res.ranges)
if res.axis == 0:
res.axis = 1
elif res.axis == 1:
res.axis = 0
if res.formula is not None: # Switch variables with CAT=0 and CAT=1
res.formula = re.sub(
r"(Var|VarSymb)\((\d+),(\d+),0\)", r"\1(\2,\3,i)", res.formula
)
res.formula = re.sub(
r"(Var|VarSymb)\((\d+),(\d+),1\)", r"\1(\2,\3,0)", res.formula
)
res.formula = re.sub(
r"(Var|VarSymb)\((\d+),(\d+),i\)", r"\1(\2,\3,1)", res.formula
)
if res.formula2 is not None: # Switch variables with CAT=0 and CAT=1
res.formula2 = re.sub(
r"(Var|VarSymb)\((\d+),(\d+),0\)", r"\1(\2,\3,i)", res.formula2
)
res.formula2 = re.sub(
r"(Var|VarSymb)\((\d+),(\d+),1\)", r"\1(\2,\3,0)", res.formula2
)
res.formula2 = re.sub(
r"(Var|VarSymb)\((\d+),(\d+),i\)", r"\1(\2,\3,1)", res.formula2
)
# we need also to make copies of references for all variables in the formula
# that were switched
newvars = []
for x in self.variables:
if type(x) == list:
# here we are dealing with a parameter variable, so no need to do any copy
newvars.append(x)
else:
y = self.tools.view(x, x.shape)
newvars.append(y)
# now we replace all occurrences of old ids by new ids in formulas
if res.formula is not None:
res.formula = re.sub(
r"(Var|VarSymb)\({},(\d+),(\d+)\)".format(id(x)),
r"\1({},\2,\3)".format(id(y)),
res.formula,
)
if res.formula2 is not None:
res.formula2 = re.sub(
r"(Var|VarSymb)\({},(\d+),(\d+)\)".format(id(x)),
r"\1({},\2,\3)".format(id(y)),
res.formula2,
)
res.variables = tuple(newvars)
return res
@property
def T(self):
r"""
Numpy-friendly alias for the matrix transpose ``self.t()``.
"""
return self.t()
def matvec(self, v):
r"""
Alias for the matrix-vector product, added for compatibility with :mod:`scipy.sparse.linalg`.
If ``K`` is a :class:`LazyTensor` whose trailing dimension ``K._shape[-1]`` is equal to 1,
we can understand it as a linear operator and wrap it into a
:mod:`scipy.sparse.linalg.LinearOperator` object, thus getting access
to robust solvers and spectral routines.
Example:
>>> import numpy as np
>>> x = np.random.randn(1000,3)
>>> x_i, x_j = LazyTensor( x[:,None,:] ), LazyTensor( x[None,:,:] )
>>> K_xx = (- ((x_i - x_j)**2).sum(2) ).exp() # Symbolic (1000,1000) Gaussian kernel matrix
>>> from scipy.sparse.linalg import eigsh, aslinearoperator
>>> eigenvalues, eigenvectors = eigsh( aslinearoperator( K_xx ), k=5 )
>>> print(eigenvalues)
... [ 35.5074527 59.01096445 61.35075268 69.34038814 123.77540277]
>>> print( eigenvectors.shape)
... (1000, 5)
"""
return self @ v
def rmatvec(self, v):
r"""
Alias for the transposed matrix-vector product, added for compatibility with :mod:`scipy.sparse.linalg`.
See :meth:`matvec` for further reference.
"""
return self.T @ v
def real2complex(self):
r"""
Element-wise "real 2 complex" operation - a unary operation.
``x.real2complex()`` returns a :class:`ComplexLazyTensor` that encodes, symbolically,
the same tensor as ``x``, but seen as complex-valued (with zero imaginary part for each coefficient)
"""
return self.unary("Real2Complex", dimres=2 * self._shape[-1], is_complex=True)
def imag2complex(self):
r"""
Element-wise "imag 2 complex" operation - a unary operation.
``x.real2complex()`` returns a :class:`ComplexLazyTensor` that encodes, symbolically,
the multiplication of ``1j`` with ``x``.
"""
return self.unary("Imag2Complex", dimres=2 * self._shape[-1], is_complex=True)
def exp1j(self):
r"""
Element-wise "complex exponential of 1j x" operation - a unary operation.
``x.exp1j()`` returns a :class:`ComplexLazyTensor` that encodes, symbolically,
the complex exponential of ``1j*x``.
"""
return self.unary("ComplexExp1j", dimres=2 * self._shape[-1], is_complex=True)
class ComplexGenericLazyTensor(GenericLazyTensor):
r"""Extension of the LazyTensor class for complex operations."""
def __init__(self, x=None, axis=None):
r"""Creates a KeOps symbolic variable of complex dtype."""
self.get_tools()
if type(x) == complex:
x = [x]
if type(x) == list:
x_ = [None] * (2 * len(x))
for i in range(len(x)):
x_[2 * i] = x[i].real
x_[2 * i + 1] = x[i].imag
x = x_
elif self.tools.is_tensor(x):
x = self.tools.view_as_real(x)
super().__init__(x=x, axis=axis)
self.is_complex = True
def __call__(self, *args, **kwargs):
res = super().__call__(*args, **kwargs)
return self.tools.view_as_complex(res)
@property
def dtype(self):
if self._dtype == "float32":
return "complex64"
elif self._dtype == "float64":
return "complex128"
@property
def shape(self):
r"""returns the shape of the complex LazyTensor."""
s = super()._shape
s = s[:-1] + (s[-1] // 2,)
if s[-1] == 1:
return s[:-1]
else:
return s
# List of supported operations ============================================
@property
def real(self):
r"""
Element-wise real part of complex - a unary operation.
``z.real`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise real part of ``z``.
"""
return self.unary("ComplexReal", dimres=self._shape[-1] // 2, is_complex=False)
@property
def imag(self):
r"""
Element-wise imaginary part of complex - a unary operation.
``z.imag`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise imaginary part of ``z``.
"""
return self.unary("ComplexImag", dimres=self._shape[-1] // 2, is_complex=False)
def angle(self):
r"""
Element-wise angle (or argument) of complex - a unary operation.
``z.angle()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise angle of ``z``.
"""
return self.unary("ComplexAngle", dimres=self._shape[-1] // 2, is_complex=False)
def conj(self):
r"""
Element-wise complex conjugate - a unary operation.
``z.conj()`` returns a :class:`ComplexLazyTensor` that encodes, symbolically,
the element-wise complex conjugate of ``z``.
"""
return self.unary("Conj", dimres=self._shape[-1], is_complex=True)
def sum(self, axis=-1, dim=None, **kwargs):
if dim is not None:
axis = dim
if axis in [-1, len(self._shape) - 1]:
return self.unary("ComplexSum", dimres=2, is_complex=True)
else:
return self.reduction("Sum", axis=axis, **kwargs)
def __abs__(self):
r"""
Element-wise absolute value (or modulus) of complex - a unary operation.
``z.abs()`` returns a :class:`LazyTensor` that encodes, symbolically,
the element-wise absolute value of ``z``.
"""
return self.unary("ComplexAbs", dimres=self._shape[-1] // 2, is_complex=False)
def exp(self):
r"""
Element-wise complex exponential - a unary operation.
``z.exp()`` returns a :class:`ComplexLazyTensor` that encodes, symbolically,
the element-wise complex exponential of ``z``.
"""
return self.unary("ComplexExp", dimres=self._shape[-1], is_complex=True)
def mulop(self, other, **kwargs):
if other._shape[-1] == 1:
return other.binary(self, "ComplexRealScal", **kwargs, is_complex=True)
elif not is_complex_lazytensor(other):
return self.mulop(other.real2complex())
else:
return self.binary(
other, "ComplexMult", **kwargs, is_complex=True, dimcheck=None
)
def addop(self, other, **kwargs):
if not is_complex_lazytensor(other):
return self.addop(other.real2complex())
else:
return self.binary(
other, "ComplexAdd", **kwargs, is_complex=True, dimcheck=None
)
def subop(self, other, **kwargs):
if not is_complex_lazytensor(other):
return self.subop(other.real2complex())
else:
return self.binary(
other, "ComplexSubtract", **kwargs, is_complex=True, dimcheck=None
)
def divop(self, other, **kwargs):
if not is_complex_lazytensor(other):
return self.divop(other.real2complex())
else:
return self.binary(
other, "ComplexDivide", **kwargs, is_complex=True, dimcheck=None
)
def real2complex(self):
raise ValueError("real2complex cannot be applied to a complex LazyTensor.")
def imag2complex(self):
raise ValueError("imag2complex cannot be applied to a complex LazyTensor.")
def exp1j(self):
raise ValueError("exp1j cannot be applied to a complex LazyTensor.")
def __call__(self, *args, **kwargs):
res = super().__call__(*args, **kwargs)
return self.tools.view_as_complex(res)
| keops-main | pykeops/pykeops/common/lazy_tensor.py |
import re
from collections import OrderedDict
from pykeops.common.utils import pyKeOps_Message
categories = OrderedDict([("Vi", 0), ("Vj", 1), ("Pm", 2)])
def complete_aliases(formula, aliases):
"""
This function parse formula (a string) to find pattern like 'Var(x,x,x)'.
It then append to aliases (list of strings), the extra 'Var(x,x,x)'.
"""
# first we detect all instances of Var(*,*,*) in formula.
# These may be extra variables that are not listed in the aliases
extravars = re.findall(r"Var\([0-9]+,[0-9]+,[0-9]+\)", formula.replace(" ", ""))
# we get unicity
extravars = list(set(extravars))
# now we loop through extravars
newind = () # this will give the indices in extravars list of new variables
newpos = () # this will give the indices in aliases list of new variables
for (ind, var) in enumerate(extravars):
# we get the "position" of the variable as the first integer value in the string
# (i.e. the "a" in "Var(a,b,c)")
pos = int(re.search(r"[0-9]+", var).group(0))
if pos < len(aliases):
# this means that in fact var is not an extra variable, it is already in the list of aliases
# We could check that the "dimension" and "category" are consistent, but we assume here
# that the formula is consistent. The check will be done in the C++ code.
pass
else:
# we need to append var to aliases, but with correct position, so we first record the indices
newind += (ind,)
newpos += (pos,)
# finally we append the new variables with correct ordering to the aliases list. We assume here again
# that formula is consistent, more precisely
# that pos is a permutation of len(aliases):len(aliases)+len(newind)
aliases += [None] * len(newind)
for i in range(len(newind)):
aliases[newpos[i]] = extravars[newind[i]]
return aliases
def get_sizes(aliases, *args):
nx, ny = None, None
for (var_ind, sig) in enumerate(aliases):
_, cat, dim, pos = get_type(sig, position_in_list=var_ind)
if cat == 0:
nx = args[pos].shape[-2]
elif cat == 1:
ny = args[pos].shape[-2]
if (nx is not None) and (ny is not None):
return nx, ny
# At this point, we know that our formula is degenerate,
# with no "x" or no "y" variable. The sensible behavior is to assume that
# the corresponding "empty" dimension is equal to 1,
# in accordance with the dimcheck of keops_io.h: TODO: check the new Size !
if nx is None:
nx = 1
if ny is None:
ny = 1
return nx, ny
def get_type(type_str, position_in_list=None):
"""
Get the type of the variable declared in type_str.
:param type_str: is a string of the form
"var = Xy(dim)" or "var = Xy(pos,dim)" or "Xy(pos,dim)" or "Xy(dim)" with Xy being either Vi, Vj, Vx, Vy, or Pm,
or "var = Var(pos,dim,cat)" (N.B. Vx and Vy are equivalent to resp. Vi and Vj and kept for backward compatibility)
:param position_in_list: an optional integer used if the position is not given
in type_str (ie is of the form "var = Xy(dim)" or "Xy(dim)")
:return: name : a string (here "var"), cat : an int (0,1 or 2), dim : an int
"""
# switch old Vx Vy syntax to Vi Vj
if ("Vx" in type_str) or ("Vy" in type_str):
type_str = type_str.replace("Vx", "Vi")
type_str = type_str.replace("Vy", "Vj")
import warnings
warnings.warn("'Vx' and 'Vy' variables types are now renamed 'Vi' and 'Vj'")
m = re.match(
r"([a-zA-Z_][a-zA-Z_0-9]*)=(Vi|Vj|Pm)\(([0-9]*?),?([0-9]*)\)",
type_str.replace(" ", ""),
)
if m is None:
m = re.match(r"(Vi|Vj|Pm)\(([0-9]*?),?([0-9]*)\)", type_str.replace(" ", ""))
if m is None:
m = re.match(
r"Var\(([0-9]*?),?([0-9]*),?([0-9]*)\)", type_str.replace(" ", "")
)
if m is None:
raise ValueError(
type_str
+ " type_str does not match the 'var = [Vi|Vj|Pm](dim)' or 'var = [Vi|Vj|Pm](pos,dim) or '[Vi|Vj|Pm](dim) or '[Vi|Vj|Pm](pos,dim) or Var(pos,dim,cat)' format: "
+ type_str
)
else:
# output: varname, cat , dim , pos
return None, int(m.group(3)), int(m.group(2)), int(m.group(1))
else:
# Try to infer position
if m.group(2):
pos = int(m.group(2))
elif position_in_list is not None:
pos = int(position_in_list)
else:
pos = None
# output: varname, cat , dim , pos
return None, categories[m.group(1)], int(m.group(3)), pos
else:
# Try to infer position
if m.group(3):
pos = int(m.group(3))
elif position_in_list is not None:
pos = int(position_in_list)
else:
pos = None
# output: varname, cat , dim , pos
return m.group(1), categories[m.group(2)], int(m.group(4)), pos
def get_optional_flags(
reduction_op_internal, dtype_acc, use_double_acc, sum_scheme, enable_chunks
):
# 1. Options for accuracy
if dtype_acc != "auto" and use_double_acc:
raise ValueError(
pyKeOps_Message("you cannot set both options use_double_acc and dtype_acc.")
)
if use_double_acc:
dtype_acc = "float64"
if dtype_acc != "auto" and reduction_op_internal not in (
"Sum",
"Max_SumShiftExp",
"Max_SumShiftExpWeight",
):
raise ValueError(
pyKeOps_Message(
"parameter dtype_acc should be set to 'auto' for no-sum type reductions (Min, Max, ArgMin, etc.)"
)
)
if sum_scheme == "auto":
if reduction_op_internal in ("Sum", "Max_SumShiftExp", "Max_SumShiftExpWeight"):
sum_scheme = "block_sum"
else:
sum_scheme = "direct_sum"
if sum_scheme == "block_sum":
if reduction_op_internal not in (
"Sum",
"Max_SumShiftExp",
"Max_SumShiftExpWeight",
):
raise ValueError(
pyKeOps_Message(
'sum_scheme="block_sum" is only valid for sum type reductions.'
)
)
elif sum_scheme == "kahan_scheme":
if reduction_op_internal not in (
"Sum",
"Max_SumShiftExp",
"Max_SumShiftExpWeight",
):
raise ValueError(
pyKeOps_Message(
'sum_scheme="kahan_scheme" is only valid for sum type reductions.'
)
)
elif sum_scheme != "direct_sum":
raise ValueError(
pyKeOps_Message(
'invalid value for option sum_scheme : should be one of "auto", "direct_sum", "block_sum" or "kahan_scheme".'
)
)
optional_flags = dict()
optional_flags["dtype_acc"] = dtype_acc
optional_flags["sum_scheme"] = sum_scheme
# 2. Option for chunk mode
if enable_chunks:
optional_flags["enable_chunks"] = 1
else:
optional_flags["enable_chunks"] = 0
return optional_flags
def parse_dtype_acc(dtype_acc, dtype):
if dtype_acc == "auto":
dtype_acc = dtype
if dtype == "float32" and dtype_acc not in ("float32", "float64"):
raise ValueError(
"[KeOps] invalid parameter dtype_acc : should be either 'float32' or 'float64' when dtype is 'float32'"
)
elif dtype == "float16" and dtype_acc not in ("float16", "float32"):
raise ValueError(
"[KeOps] invalid parameter dtype_acc : should be either 'float16' or 'float32' when dtype is 'float16'"
)
elif dtype == "float64" and dtype_acc not in "float64":
raise ValueError(
"[KeOps] invalid parameter dtype_acc : should be 'float64' when dtype is 'float64'"
)
if dtype_acc == "float64":
dtype_acc = "double"
elif dtype_acc == "float32":
if dtype == "float16":
dtype_acc = "float2"
else:
dtype_acc = "float"
elif dtype_acc == "float16":
dtype_acc = "half2"
else:
raise ValueError(
'[KeOps] invalid value for option dtype_acc : should be one of "auto", "float16", "float32" or "float64".'
)
return dtype_acc
| keops-main | pykeops/pykeops/common/parse_type.py |
keops-main | pykeops/pykeops/common/__init__.py |
|
import numpy as np
from pykeops.common.utils import get_tools
# Some advance operations defined at user level use in fact other reductions.
def preprocess(reduction_op, formula2):
reduction_op = reduction_op
if (
reduction_op == "SumSoftMaxWeight" or reduction_op == "SoftMax"
): # SoftMax is just old naming for SumSoftMaxWeight
# SumSoftMaxWeight relies on KeOps Max_SumShiftExpWeight reduction, with a custom finalize
reduction_op_internal = "Max_SumShiftExpWeight"
# we concatenate the 2nd formula (g) with a constant 1, so that we get sum_j exp(m_i-f_ij) g_ij and sum_j exp(m_i-f_ij) together
formula2 = "Concat(IntCst(1)," + formula2 + ")"
elif reduction_op == "LogSumExp":
# LogSumExp relies also on Max_SumShiftExp or Max_SumShiftExpWeight reductions, with a custom finalize
if formula2:
# here we want to compute a log-sum-exp with weights: log(sum_j(exp(f_ij)g_ij))
reduction_op_internal = "Max_SumShiftExpWeight"
else:
# here we want to compute a usual log-sum-exp: log(sum_j(exp(f_ij)))
reduction_op_internal = "Max_SumShiftExp"
else:
reduction_op_internal = reduction_op
return reduction_op_internal, formula2
def postprocess(out, binding, reduction_op, nout, opt_arg, dtype):
tools = get_tools(binding)
# Post-processing of the output:
if reduction_op == "SumSoftMaxWeight" or reduction_op == "SoftMax":
# we compute sum_j exp(f_ij) g_ij / sum_j exp(f_ij) from sum_j exp(m_i-f_ij) [1,g_ij]
out = out[..., 2:] / out[..., 1][..., None]
elif reduction_op == "ArgMin" or reduction_op == "ArgMax":
# outputs are encoded as floats but correspond to indices, so we cast to integers
out = tools.long(out)
elif (
reduction_op == "Min_ArgMin"
or reduction_op == "MinArgMin"
or reduction_op == "Max_ArgMax"
or reduction_op == "MaxArgMax"
):
# output is one array of size N x 2D, giving min and argmin value for each dimension.
# We convert to one array of floats of size NxD giving mins, and one array of size NxD giving argmins (casted to integers)
shape_out = out.shape
tmp = tools.view(out, shape_out[:-1] + (2, -1))
vals = tmp[..., 0, :]
indices = tmp[..., 1, :]
out = (vals, tools.long(indices))
elif reduction_op == "KMin":
# output is of size N x KD giving K minimal values for each dim. We convert to array of size N x K x D
shape_out = out.shape
out = tools.view(out, shape_out[:-1] + (opt_arg, -1))
if out.shape[-1] == 1:
out = out.squeeze(-1)
elif reduction_op == "ArgKMin":
# output is of size N x KD giving K minimal values for each dim. We convert to array of size N x K x D
# and cast to integers
shape_out = out.shape
out = tools.view(tools.long(out), shape_out[:-1] + (opt_arg, -1))
if out.shape[-1] == 1:
out = out.squeeze(-1)
elif reduction_op == "KMin_ArgKMin" or reduction_op == "KMinArgKMin":
# output is of size N x 2KD giving K min and argmin for each dim. We convert to 2 arrays of size N x K x D
# and cast to integers the second array
shape_out = out.shape
out = tools.view(out, shape_out[:-1] + (opt_arg, 2, -1))
out = (out[..., 0, :], tools.long(out[..., 1, :]))
if out[0].shape[-1] == 1:
out = (out[0].squeeze(-1), out[1].squeeze(-1))
elif reduction_op == "LogSumExp":
# finalize the log-sum-exp computation as m + log(s)
if out.shape[-1] == 2: # means (m,s) with m scalar and s scalar
out = (out[..., 0] + tools.log(out[..., 1]))[..., None]
else: # here out.shape[-1]>2, means (m,s) with m scalar and s vectorial
out = out[..., 0][..., None] + tools.log(out[..., 1:])
return out
def ConjugateGradientSolver(binding, linop, b, eps=1e-6):
# Conjugate gradient algorithm to solve linear system of the form
# Ma=b where linop is a linear operation corresponding
# to a symmetric and positive definite matrix
tools = get_tools(binding)
delta = tools.size(b) * eps**2
a = 0
r = tools.copy(b)
nr2 = (r**2).sum()
if nr2 < delta:
return 0 * r
p = tools.copy(r)
k = 0
while True:
Mp = linop(p)
alp = nr2 / (p * Mp).sum()
a += alp * p
r -= alp * Mp
nr2new = (r**2).sum()
if nr2new < delta:
break
p = r + (nr2new / nr2) * p
nr2 = nr2new
k += 1
return a
def KernelLinearSolver(
binding, K, x, b, alpha=0, eps=1e-6, precond=False, precondKernel=None
):
tools = get_tools(binding)
dtype = tools.dtype(x)
def PreconditionedConjugateGradientSolver(linop, b, invprecondop, eps=1e-6):
# Preconditioned conjugate gradient algorithm to solve linear system of the form
# Ma=b where linop is a linear operation corresponding
# to a symmetric and positive definite matrix
# invprecondop is linear operation corresponding to the inverse of the preconditioner matrix
a = 0
r = tools.copy(b)
z = invprecondop(r)
p = tools.copy(z)
rz = (r * z).sum()
k = 0
while True:
alp = rz / (p * linop(p)).sum()
a += alp * p
r -= alp * linop(p)
if (r**2).sum() < eps**2:
break
z = invprecondop(r)
rznew = (r * z).sum()
p = z + (rznew / rz) * p
rz = rznew
k += 1
return a
def NystromInversePreconditioner(K, Kspec, x, alpha):
N, D = x.shape
m = int(np.sqrt(N))
ind = np.random.choice(range(N), m, replace=False)
u = x[ind, :]
M = K(u, u) + Kspec(
tools.tile(u, (m, 1)), tools.tile(u, (1, m)).reshape(-1, D), x
).reshape(m, m)
def invprecondop(r):
a = tools.solve(M, K(u, x, r))
return (r - K(x, u, a)) / alpha
return invprecondop
def KernelLinOp(a):
return K(x, x, a) + alpha * a
def GaussKernel(D, Dv, sigma):
formula = "Exp(-oos2*SqDist(x,y))*b"
variables = [
"x = Vi(" + str(D) + ")", # First arg : i-variable, of size D
"y = Vj(" + str(D) + ")", # Second arg : j-variable, of size D
"b = Vj(" + str(Dv) + ")", # Third arg : j-variable, of size Dv
"oos2 = Pm(1)",
] # Fourth arg : scalar parameter
my_routine = tools.Genred(
formula, variables, reduction_op="Sum", axis=1, dtype=dtype
)
oos2 = tools.array([1.0 / sigma**2], dtype=dtype)
KernelMatrix = GaussKernelMatrix(sigma)
def K(x, y, b=None):
if b is None:
return KernelMatrix(x, y)
else:
return my_routine(x, y, b, oos2)
return K
def GaussKernelNystromPrecond(D, sigma):
formula = "Exp(-oos2*(SqDist(u,x)+SqDist(v,x)))"
variables = [
"u = Vi(" + str(D) + ")", # First arg : i-variable, of size D
"v = Vi(" + str(D) + ")", # Second arg : i-variable, of size D
"x = Vj(" + str(D) + ")", # Third arg : j-variable, of size D
"oos2 = Pm(1)",
] # Fourth arg : scalar parameter
my_routine = tools.Genred(
formula, variables, reduction_op="Sum", axis=1, dtype=tools.dtypename(dtype)
)
oos2 = tools.array([1.0 / sigma**2], dtype=dtype)
KernelMatrix = GaussKernelMatrix(sigma)
def K(u, v, x):
return my_routine(u, v, x, oos2)
return K
def GaussKernelMatrix(sigma):
oos2 = 1.0 / sigma**2
def f(x, y):
D = x.shape[1]
sqdist = 0
for k in range(D):
sqdist += (x[:, k][:, None] - tools.transpose(y[:, k][:, None])) ** 2
return tools.exp(-oos2 * sqdist)
return f
if type(K) == tuple:
if K[0] == "gaussian":
D = K[1]
Dv = K[2]
sigma = K[3]
K = GaussKernel(D, Dv, sigma)
if precond:
precondKernel = GaussKernelNystromPrecond(D, sigma)
if precond:
invprecondop = NystromInversePreconditioner(K, precondKernel, x, alpha)
a = PreconditionedConjugateGradientSolver(KernelLinOp, b, invprecondop, eps)
else:
a = ConjugateGradientSolver(binding, KernelLinOp, b, eps=eps)
return a
| keops-main | pykeops/pykeops/common/operations.py |
import fcntl
import functools
import importlib.util
import os
import pykeops.config
c_type = dict(float16="half2", float32="float", float64="double")
def axis2cat(axis):
"""
Axis is the dimension to sum (the pythonic way). Cat is the dimension that
remains at the end (the Keops way).
:param axis: 0 or 1
:return: cat: 1 or 0
"""
if axis in [0, 1]:
return (axis + 1) % 2
else:
raise ValueError("Axis should be 0 or 1.")
def cat2axis(cat):
"""
Axis is the dimension to sum (the pythonic way). Cat is the dimension that
remains at the end (the Keops way).
:param cat: 0 or 1
:return: axis: 1 or 0
"""
if cat in [0, 1]:
return (cat + 1) % 2
else:
raise ValueError("Category should be Vi or Vj.")
def get_tools(lang):
"""
get_tools is used to simulate template as in Cpp code. Depending on the langage
it import the right classes.
:param lang: a string with the langage ('torch'/'pytorch' or 'numpy')
:return: a class tools
"""
if lang == "numpy":
from pykeops.numpy.utils import numpytools
tools = numpytools()
elif lang == "torch" or lang == "pytorch":
from pykeops.torch.utils import torchtools
tools = torchtools()
return tools
def WarmUpGpu(lang):
tools = get_tools(lang)
# dummy first calls for accurate timing in case of GPU use
my_routine = tools.Genred(
"SqDist(x,y)",
["x = Vi(1)", "y = Vj(1)"],
reduction_op="Sum",
axis=1,
dtype=tools.dtype,
)
dum = tools.rand(10, 1)
my_routine(dum, dum)
my_routine(dum, dum)
def max_tuple(a, b):
return tuple(max(a_i, b_i) for (a_i, b_i) in zip(a, b))
def check_broadcasting(dims_1, dims_2):
r"""
Checks that the shapes **dims_1** and **dims_2** are compatible with each other.
"""
if dims_1 is None:
return dims_2
if dims_2 is None:
return dims_1
padded_dims_1 = (1,) * (len(dims_2) - len(dims_1)) + dims_1
padded_dims_2 = (1,) * (len(dims_1) - len(dims_2)) + dims_2
for (dim_1, dim_2) in zip(padded_dims_1, padded_dims_2):
if dim_1 != 1 and dim_2 != 1 and dim_1 != dim_2:
raise ValueError(
"Incompatible batch dimensions: {} and {}.".format(dims_1, dims_2)
)
return max_tuple(padded_dims_1, padded_dims_2)
def pyKeOps_Message(message, use_tag=True, **kwargs):
if pykeops.verbose:
tag = "[pyKeOps] " if use_tag else ""
message = tag + message
print(message, **kwargs)
def pyKeOps_Warning(message):
if pykeops.verbose:
message = "[pyKeOps] Warning : " + message
print(message)
| keops-main | pykeops/pykeops/common/utils.py |
import re
import numpy as np
from collections import OrderedDict
import pykeops
import pykeops.config
############################################################
# define backend
############################################################
class SetBackend:
"""
This class is used to centralized the options used in PyKeops.
"""
dev = OrderedDict([("CPU", 0), ("GPU", 1)])
grid = OrderedDict([("1D", 0), ("2D", 1)])
memtype = OrderedDict([("host", 0), ("device", 1)])
possible_options_list = [
"auto",
"CPU",
"GPU",
"GPU_1D",
"GPU_1D_device",
"GPU_1D_host",
"GPU_2D",
"GPU_2D_device",
"GPU_2D_host",
]
def define_tag_backend(self, backend, variables):
"""
Try to make a good guess for the backend... available methods are: (host means Cpu, device means Gpu)
CPU : computations performed with the host from host arrays
GPU_1D_device : computations performed on the device from device arrays, using the 1D scheme
GPU_2D_device : computations performed on the device from device arrays, using the 2D scheme
GPU_1D_host : computations performed on the device from host arrays, using the 1D scheme
GPU_2D_host : computations performed on the device from host data, using the 2D scheme
:param backend (str), variables (tuple)
:return (tagCPUGPU, tag1D2D, tagHostDevice)
"""
# check that the option is valid
if backend not in self.possible_options_list:
raise ValueError(
"Invalid backend. Should be one of ", self.possible_options_list
)
# auto : infer everything
if backend == "auto":
return (
int(pykeops.config.gpu_available),
self._find_grid(),
self._find_mem(variables),
)
split_backend = re.split("_", backend)
if len(split_backend) == 1: # CPU or GPU
return (
self.dev[split_backend[0]],
self._find_grid(),
self._find_mem(variables),
)
elif len(split_backend) == 2: # GPU_1D or GPU_2D
return (
self.dev[split_backend[0]],
self.grid[split_backend[1]],
self._find_mem(variables),
)
elif len(split_backend) == 3: # the option is known
return (
self.dev[split_backend[0]],
self.grid[split_backend[1]],
self.memtype[split_backend[2]],
)
def define_backend(self, backend, variables):
tagCPUGPU, tag1D2D, tagHostDevice = self.define_tag_backend(backend, variables)
return self.dev[tagCPUGPU], self.grid[tag1D2D], self.memtype[tagHostDevice]
@staticmethod
def _find_dev():
return int(pykeops.config.gpu_available)
@staticmethod
def _find_mem(variables):
if all(
[type(var) is np.ndarray for var in variables]
): # Infer if we're working with numpy arrays or torch tensors:
MemType = 0
elif pykeops.config.torch_found:
import torch
if all(
[
type(var) in [torch.Tensor, torch.nn.parameter.Parameter]
for var in variables
]
):
from pykeops.torch.utils import is_on_device
VarsAreOnGpu = tuple(map(is_on_device, tuple(variables)))
if all(VarsAreOnGpu):
MemType = 1
elif not any(VarsAreOnGpu):
MemType = 0
else:
raise ValueError(
"At least two input variables have different memory locations (Cpu/Gpu)."
)
else:
raise TypeError(
"All variables should either be numpy arrays or torch tensors."
)
else:
raise TypeError(
"All variables should either be numpy arrays or torch tensors."
)
return MemType
@staticmethod
def _find_grid():
return 0
def get_tag_backend(backend, variables, str=False):
"""
entry point to get the correct backend
"""
res = SetBackend()
if not str:
return res.define_tag_backend(backend, variables)
else:
return res.define_backend(backend, variables)
| keops-main | pykeops/pykeops/common/get_options.py |
from keopscore.utils.gpu_utils import get_gpu_props
def get_gpu_number():
return get_gpu_props()[0]
| keops-main | pykeops/pykeops/common/gpu_utils.py |
import os
import keopscore.config.config
from keopscore.config.config import get_build_folder
import pykeops
from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile
from keopscore.utils.Cache import Cache_partial
from pykeops.common.keops_io.LoadKeOps import LoadKeOps
from pykeops.common.utils import pyKeOps_Message
from keopscore.utils.misc_utils import KeOps_OS_Run
class LoadKeOps_nvrtc_class(LoadKeOps):
def __init__(self, *args, fast_init=False):
super().__init__(*args, fast_init=fast_init)
def init_phase2(self):
import importlib
pykeops_nvrtc = importlib.import_module("pykeops_nvrtc")
if self.params.c_dtype == "float":
self.launch_keops = pykeops_nvrtc.KeOps_module_float(
self.params.device_id_request,
self.params.nargs,
self.params.low_level_code_file,
)
elif self.params.c_dtype == "double":
self.launch_keops = pykeops_nvrtc.KeOps_module_double(
self.params.device_id_request,
self.params.nargs,
self.params.low_level_code_file,
)
elif self.params.c_dtype == "half2":
self.launch_keops = pykeops_nvrtc.KeOps_module_half2(
self.params.device_id_request,
self.params.nargs,
self.params.low_level_code_file,
)
def call_keops(self, nx, ny):
self.launch_keops(
self.params.tagHostDevice,
self.params.dimy,
nx,
ny,
self.params.tagI,
self.params.tagZero,
self.params.use_half,
self.params.tag1D2D,
self.params.dimred,
self.params.cuda_block_size,
self.params.use_chunk_mode,
self.params.indsi,
self.params.indsj,
self.params.indsp,
self.params.dim,
self.params.dimsx,
self.params.dimsy,
self.params.dimsp,
self.ranges_ptr_new,
self.outshape,
self.out_ptr,
self.args_ptr_new,
self.argshapes_new,
)
def import_module(self):
return self
def compile_jit_binary():
"""
This function compile the main .so entry point to keops_nvrt binder...
"""
compile_command = Gpu_link_compile.get_compile_command(
extra_flags=pykeops.config.python_includes,
sourcename=pykeops.config.pykeops_nvrtc_name(type="src"),
dllname=pykeops.config.pykeops_nvrtc_name(type="target"),
)
pyKeOps_Message("Compiling nvrtc binder for python ... ", flush=True, end="")
KeOps_OS_Run(compile_command)
pyKeOps_Message("OK", use_tag=False, flush=True)
LoadKeOps_nvrtc = Cache_partial(
LoadKeOps_nvrtc_class,
use_cache_file=True,
save_folder=get_build_folder(),
)
| keops-main | pykeops/pykeops/common/keops_io/LoadKeOps_nvrtc.py |
import types
from functools import reduce
import numpy as np
from keopscore.get_keops_dll import get_keops_dll
from pykeops.common.parse_type import parse_dtype_acc
class LoadKeOps:
null_range = np.array([-1], dtype="int32")
empty_ranges_new = tuple([null_range.__array_interface__["data"][0]] * 7)
def __init__(self, *args, fast_init):
if fast_init:
self.params = args[0]
else:
self.init(*args)
self.dimout = self.params.dim
self.tagIJ = self.params.tagI
if self.params.lang == "torch":
from pykeops.torch.utils import torchtools
self.tools = torchtools
elif self.params.lang == "numpy":
from pykeops.numpy.utils import numpytools
self.tools = numpytools
self.init_phase2()
def init(
self,
tagCPUGPU,
tag1D2D,
tagHostDevice,
use_ranges,
device_id_request,
formula,
aliases,
nargs,
dtype,
lang,
optional_flags,
):
aliases_new = []
for k, alias in enumerate(aliases):
alias = alias.replace(" ", "")
if "=" in alias:
varname, var = alias.split("=")
if "Vi" in var:
cat = 0
elif "Vj" in var:
cat = 1
elif "Pm" in var:
cat = 2
alias_args = var[3:-1].split(",")
if len(alias_args) == 1:
ind, dim = k, eval(alias_args[0])
elif len(alias_args) == 2:
ind, dim = eval(alias_args[0]), eval(alias_args[1])
alias = f"{varname}=Var({ind},{dim},{cat})"
aliases_new.append(alias)
self.params = types.SimpleNamespace()
self.params.aliases_old = aliases
self.params.aliases = aliases_new
self.params.lang = lang
self.params.red_formula_string = formula
self.params.dtype = dtype
dtype_acc = optional_flags["dtype_acc"]
dtype_acc = parse_dtype_acc(dtype_acc, dtype)
self.params.c_dtype_acc = dtype_acc
self.params.sum_scheme = optional_flags["sum_scheme"]
self.params.enable_chunks = optional_flags["enable_chunks"]
self.params.enable_final_chunks = -1
self.params.mult_var_highdim = optional_flags["multVar_highdim"]
self.params.tagHostDevice = tagHostDevice
if dtype == "float32":
self.params.c_dtype = "float"
self.params.use_half = False
elif dtype == "float64":
self.params.c_dtype = "double"
self.params.use_half = False
elif dtype == "float16":
self.params.c_dtype = "half2"
self.params.use_half = True
else:
raise ValueError("not implemented")
if not self.params.c_dtype_acc:
self.params.c_dtype_acc = self.params.c_dtype
if tagCPUGPU == 0:
map_reduce_id = "CpuReduc"
else:
map_reduce_id = "GpuReduc"
map_reduce_id += "1D" if tag1D2D == 0 else "2D"
if use_ranges:
map_reduce_id += "_ranges"
(
self.params.tag,
self.params.source_name,
self.params.low_level_code_file,
self.params.tagI,
self.params.tagZero,
self.params.use_half,
self.params.cuda_block_size,
self.params.use_chunk_mode,
self.params.tag1D2D,
self.params.dimred,
self.params.dim,
self.params.dimy,
indsi,
indsj,
indsp,
dimsx,
dimsy,
dimsp,
) = get_keops_dll(
map_reduce_id,
self.params.red_formula_string,
self.params.enable_chunks,
self.params.enable_final_chunks,
self.params.mult_var_highdim,
self.params.aliases,
nargs,
self.params.c_dtype,
self.params.c_dtype_acc,
self.params.sum_scheme,
self.params.tagHostDevice,
tagCPUGPU,
tag1D2D,
self.params.use_half,
device_id_request,
)
# now we switch indsi, indsj and dimsx, dimsy in case tagI=1.
# This is to be consistent with the convention used in the old
# bindings (see functions GetIndsI, GetIndsJ, GetDimsX, GetDimsY
# from file binder_interface.h. Clearly we could do better if we
# carefully rewrite some parts of the code
if self.params.tagI == 1:
indsi, indsj = indsj, indsi
dimsx, dimsy = dimsy, dimsx
self.params.indsi = indsi
self.params.indsj = indsj
self.params.indsp = indsp
self.params.dimsx = dimsx
self.params.dimsy = dimsy
self.params.dimsp = dimsp
self.params.tagCPUGPU = tagCPUGPU
self.params.device_id_request = device_id_request
self.params.nargs = nargs
self.params.reduction_op = self.params.red_formula_string.split("(")[0]
self.params.axis = 1 - self.params.tagI
self.init_phase1()
def init_phase1(self):
pass
def init_phase2(self):
pass
def genred(
self,
device_args,
ranges,
nx,
ny,
nbatchdims,
out,
*args,
):
if self.params.use_half:
from pykeops.torch.half2_convert import preprocess_half2
args, ranges, tag_dummy, N = preprocess_half2(
args, self.params.aliases_old, self.params.axis, ranges, nx, ny
)
# get ranges argument
if not ranges:
self.ranges_ptr_new = self.empty_ranges_new
else:
ranges_shapes = self.tools.array(
[r.shape[0] for r in ranges], dtype="int32", device="cpu"
)
ranges = [*ranges, ranges_shapes]
self.ranges_ptr_new = tuple([self.tools.get_pointer(r) for r in ranges])
self.args_ptr_new = tuple([self.tools.get_pointer(arg) for arg in args])
# get all shapes of arguments
self.argshapes_new = tuple([arg.shape for arg in args])
# initialize output array
M = nx if self.params.tagI == 0 else ny
if self.params.use_half:
M += M % 2
if nbatchdims:
batchdims_shapes = []
for arg in args:
batchdims_shapes.append(list(arg.shape[:nbatchdims]))
tmp = reduce(
np.maximum, batchdims_shapes
) # this is faster than np.max(..., axis=0)
shapeout = tuple(tmp) + (M, self.params.dim)
else:
shapeout = (M, self.params.dim)
if out is None:
out = self.tools.empty(shapeout, dtype=args[0].dtype, device=device_args)
self.out_ptr = self.tools.get_pointer(out)
self.outshape = out.shape
self.call_keops(nx, ny)
if self.params.dtype == "float16":
from pykeops.torch.half2_convert import postprocess_half2
out = postprocess_half2(out, tag_dummy, self.params.reduction_op, N)
return out
genred_pytorch = genred
genred_numpy = genred
def call_keops(self):
pass
def import_module(self):
return self
| keops-main | pykeops/pykeops/common/keops_io/LoadKeOps.py |
import keopscore.config
if keopscore.config.config.use_cuda:
from . import LoadKeOps_nvrtc, LoadKeOps_cpp
keops_binder = {
"nvrtc": LoadKeOps_nvrtc.LoadKeOps_nvrtc,
"cpp": LoadKeOps_cpp.LoadKeOps_cpp,
}
else:
from . import LoadKeOps_cpp
keops_binder = {"cpp": LoadKeOps_cpp.LoadKeOps_cpp}
| keops-main | pykeops/pykeops/common/keops_io/__init__.py |
Subsets and Splits