amzn_sec_db / README.md
kurry's picture
Update README.md
940ff6d verified
metadata
pretty_name: AMZN SEC Filings  Chunk-level Corpus (10-K, 10-Q, 8-K)
license: mit
language:
  - en
tags:
  - finance
  - sec-edgar
  - chromadb
  - retrieval
  - embeddings
  - amzn
task_categories:
  - text-retrieval
  - question-answering
size_categories:
  - 100K<n<1M
source_datasets:
  - external:sec-edgar

AMZN SEC Filings – Chunk-level Corpus (10-K, 10-Q, 8-K)

Amazon logo

A ready-to-use, chunk-level corpus of Amazon's (AMZN) recent SEC filings (10-K, 10-Q, and 8-K).
Each paragraph and sentence is stored together with rich metadata, making the dataset ideal for:

  • semantic search / RAG pipelines (ChromaDB, FAISS, Weaviate, …)
  • question-answering over financial filings
  • experimenting with financial-domain embeddings

Time span : last 5 fiscal years (rolling window, as of 2025-05-11)
Collection : 10-K, 10-Q, 8-K (including MD&A summaries & optional exhibits)
Granularity: ~1000-char paragraphs and ≤80-token sentences


Contents

  1. Dataset structure
  2. Download & usage
  3. Creation process
  4. Intended use
  5. Limitations & ethical considerations
  6. Citation
  7. License
  8. Contact

Dataset structure

The data are stored in Arrow (the native format of 🤗 datasets) so they can be accessed in-memory or streamed on-the-fly.

Column Type Description
text str Plain-text chunk (paragraph or sentence)
metadata dict All fields defined in FilingMetadata (ticker, cik, filing_type, …)
id str SHA-1 hash → unique, deterministic identifier
chunk_type* str Paragraph / sentence / summary / exhibit / press_release

*chunk_type is embedded inside metadata.

Total size: ≈ 200-400 k chunks (depends on new filings).

Example metadata object

{
  "ticker": "AMZN",
  "cik": "0001018724",
  "company_name": "AMAZON.COM, INC.",
  "filing_type": "10-K",
  "filing_date": "2025-02-02",
  "filing_period": "2024-12-31",
  "filing_url": "https://www.sec.gov/Archives/...",
  "section_id": "item7",
  "section_title": "Management’s Discussion and Analysis",
  "section_level": 1,
  "chunk_index": 3,
  "chunk_count": 42,
  "chunk_type": "paragraph"
}