Datasets:
language:
- en
license: mit
dataset_info:
features:
- name: source
dtype: string
- name: author
dtype: string
- name: title
dtype: string
- name: description
dtype: string
- name: url
dtype: string
- name: urlToImage
dtype: string
- name: publishedAt
dtype: string
- name: content
dtype: string
- name: category_nist
dtype: string
- name: category
dtype: string
- name: id
dtype: string
- name: subreddit
dtype: string
- name: score
dtype: int64
- name: num_comments
dtype: int64
- name: created_time
dtype: timestamp[ns]
- name: top_comments
dtype: string
splits:
- name: train
num_bytes: 649243675
num_examples: 93259
download_size: 364163308
dataset_size: 649243675
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
REALM: REAL-World Application of Large Language Models
Dataset Description
Paper: coming soon
Dashboard Demo: https://realm-e7682.web.app/
License: [mit]
Language(s) (NLP): English
Point of Contact: Jingwen
Dataset Summary
Large Language Models (LLMs), such as GPT-like models, have transformed industries and everyday life, creating significant societal impact. To better understand their real-world applications, we created the REALM Dataset, a collection of over 93k use cases sourced from Reddit posts and news articles, spanning 2020-06(when GPT was first released) to 2024-12. REALM focuses on two key aspects:
How LLMs are being used: Categorizing the wide range of applications, following AI Use Taxonomy: A Human-Centered Approach.
Who is using them: Extracting the occupation attributes of current or potential end-users, categorized based on the O*NET classification system.
Updates
2025-2-15: Content Update. Paper submitted to ACL 2025.
Languages
English
Data Fields
- `` (string):
Citation Information
Please consider citing our paper if you find this dataset useful:
@inproceedings{
\\\
}