metadata
license: mit
tags:
- chemistry
- biology
- medical
- molecular
- proteins
- smiles
- dna
- rna
- nucleotide
- amino_acid
pretty_name: Atomica Molecular Interactions | Sequence Data
size_categories:
- 100K<n<1M
Dataset Card: Atomica Molecular Interactions | Sequence Data
Summary
A dataset of atomic‑scale molecular interaction interfaces, ready for ML workflows. Each row contains up to five interacting sequences (or SMILES), their modalities, an example ID, and the original data split.
Citation
@article{
Fang2025ATOMICA,
author = {Fang, Ada and Zhang, Zaixi and Zhou, Andrew and Zitnik, Marinka},
title = {ATOMICA: Learning Universal Representations of Intermolecular Interactions},
year = {2025},
journal = {bioRxiv},
doi = {10.1101/2025.04.02.646906},
}
Raw files from ATOMICA Havard Dataverse
Available in: karina-zadorozhny/ATOMICA/raw/
Interaction Type | Count |
---|---|
small_molecule-small_molecule | 1,767,710 (86% self-pairs) |
protein-protein | 124,541 |
protein-small_molecule | 119,017 |
protein-ion | 74,514 |
protein-peptide | 8,475 |
rna-small_molecule | 5,185 |
protein-rna | 3,511 |
protein-dna | 2,750 |
Retrieved using:
IDENTIFIERS = {
"protein-peptide": "11033993",
"protein-rna": "11033983",
"protein-protein": "11033984",
"rna-small_molecule": "11033985",
"protein-small_molecule": "11033996",
"protein-ion": "11033989",
"protein-dna": "11033982",
"small_molecule-small_molecule": "11033997",
}
for fname, identifier in IDENTIFIERS.items():
pooch.retrieve(
f"https://dataverse.harvard.edu/api/access/datafile/{identifier}",
fname=f"{fname}.csv",
known_hash=None,
path=".",
progressbar=True,
)
Processed Files
Imporant note:
- Only contains sequences! This processed version does not contain any structural information unlike the original ATOMICA dataset.
- Only contains a subset of avaialable interactions
- See extra filtering steps applied to each interaction modality
Interaction Type | Count |
---|---|
small_molecule-small_molecule | 246,728 |
protein-protein | 60,624 |
protein-small_molecule | 32,120 |
protein-dna | 2,087 |
protein-rna | 1,785 |
The data is stored as Parquet files partitioned by:
- split: original data split (e.g.
train
,validation
,test
)
Each file contains columns:
id
– unique interaction identifiersequence1
…sequence5
– up to five extracted sequences or SMILES (strings, null if unused)modality1
…modality5
– corresponding modalities (amino_acid
,nucleotide
,smiles
)
| interaction_type | sequence1 | modality1 | sequence2 | modality2 | sequence3 | modality3 | sequence4 | modality4 | sequence5 | modality5 | split |
|-----------------------------------|--------------------------------------------------------------|--------------|-------------------------------------------------------------|-------------|-------------------------------------------------------------|-------------|-----------|-----------|-----------|-----------|-------|
| protein-dna | MAGVKNSIIWFRKGLRLHDNPALLEACKDAKHVYPVFVLDPHFLQQ... | amino_acid | CAGCGGTTGCCGTG | nucleotide | CACGGCAACCGCTG | nucleotide | None | None | None | None | test |
| protein-protein | GPLGSPEFGRPGWVIGVNPDIGGAIAVLSPDGSSQVFDNPFVHIVV... | amino_acid | GPLGSPEFGRPGWVIGVNPDIGGAIAVLSPDGSSQVFDNPFVHIVV... | amino_acid | None | None | None | None | None | None | test |
| protein-rna | MHHHHHHENLYFQGSGMAGSVGLALCGQTLVVRGGSRFLATSIASS... | amino_acid | MAAETRNVAGAEAPPPQKRYYRQRAHSNPMADHTLRYPVKPEEMDW... | amino_acid | GCCCGGAUAGCUCAGUCGGUAGAGCAUCAGACUUUUAAUCUGAGGG... | nucleotide | None | None | None | None | test |
| protein-small_molecule | MTSNNLPTVLESIVEGRRGHLEEIRARIAHVDVDALPKSTRSLFDS... | amino_acid | O=C(O)c1ccccc1NC[C@@H](O)[C@H](O)[C@H](O)COP(=... | smiles | None | None | None | None | None | None | test |
| small_molecule-small_molecule | c1ccccc1 | smiles | Cc1ccc([NH+]=P(C)(C)c2ccccc2)c(c1)S(=O)(=O)[O-] | smiles | None | None | None | None | None | None | test |
Processing Overview
Raw data retrieval
- Download CSVs per interaction type from Harvard Dataverse via file IDs.
Sequence & modality extraction
- Protein–nucleotide / protein–RNA
• Fetch all molecule entries for each PDB ID from PDBe REST API.
• Extractsequence
andmolecule_type
. - Protein–protein
• Identify the two chains in each interface ID fromid
• Fetch PDB entries and select sequences for those chains. - Protein–small molecule / protein–ion
• Extract protein sequences as above.
• Fetch ligand SMILES from PDBe API, canonicalize via RDKit. - Small molecule–small molecule
• Split the raw ID string into two SMILES, drop self‑pairs (since we're only using sequence information)
- Protein–nucleotide / protein–RNA
Data cleaning & formatting
- Pad or truncate to exactly five sequence/modality slots.
- Map raw molecule types to
{amino_acid, nucleotide, smiles}
. - Random train,test,val split stratified on interaction type.