seed
int64
42
46
dataset
stringclasses
6 values
model
stringclasses
13 values
n_topics
int64
10
50
topic_descriptions
sequencelengths
1
50
runtime_s
float64
0.93
52.3k
encoder
stringclasses
5 values
diversity
float64
0.09
1
c_npmi
float64
-0.38
0.21
wec_ex
float64
0.11
0.49
wec_in
float64
0.07
0.94
42
ArXiv ML Papers
BERTopic
10
[ [ "the", "to", "and", "of", "in", "with", "network", "neural", "is", "on" ], [ "of", "and", "the", "we", "algorithm", "to", "is", "for", "in", "that" ], [ "of", "and", "learning", "the", "to", "in", "we", "that", "this", "for" ], [ "of", "the", "bound", "is", "we", "algorithm", "in", "delta", "for", "lower" ], [ "of", "the", "forecast", "day", "forecasting", "for", "demand", "in", "and", "forecasts" ], [ "adversarial", "attacks", "the", "and", "attack", "to", "of", "we", "in", "model" ], [ "in", "we", "is", "of", "and", "to", "the", "on", "for", "that" ], [ "the", "of", "graph", "graphs", "and", "to", "node", "we", "on", "in" ], [ "of", "and", "the", "we", "word", "visual", "language", "to", "in", "that" ], [ "in", "image", "with", "the", "of", "for", "and", "to", "images", "we" ] ]
12.458354
average_word_embeddings_glove.6B.300d
0.36
-0.017372
0.226473
0.56269
42
ArXiv ML Papers
BERTopic
20
[ [ "devices", "to", "and", "with", "on", "in", "the", "of", "for", "accuracy" ], [ "neural", "networks", "network", "to", "the", "and", "of", "with", "in", "is" ], [ "of", "to", "adversarial", "and", "attacks", "the", "we", "attack", "model", "against" ], [ "to", "language", "the", "we", "of", "in", "and", "word", "that", "visual" ], [ "of", "to", "the", "in", "and", "we", "that", "representations", "as", "data" ], [ "in", "learning", "the", "this", "that", "tasks", "and", "of", "we", "to" ], [ "and", "the", "research", "in", "of", "we", "user", "users", "to", "learning" ], [ "to", "node", "the", "of", "graph", "graphs", "we", "and", "in", "on" ], [ "image", "in", "images", "of", "and", "the", "for", "with", "to", "we" ], [ "the", "for", "forecast", "day", "forecasting", "forecasts", "demand", "and", "of", "weather" ], [ "and", "of", "data", "to", "the", "in", "traffic", "is", "network", "deep" ], [ "the", "to", "in", "is", "model", "for", "and", "of", "pooling", "methods" ], [ "algorithms", "and", "we", "in", "structured", "the", "clustering", "to", "of", "on" ], [ "we", "of", "bound", "delta", "for", "the", "lower", "is", "algorithm", "in" ], [ "we", "algorithm", "the", "that", "and", "for", "to", "of", "in", "is" ] ]
9.810699
average_word_embeddings_glove.6B.300d
0.366667
-0.016607
0.19747
0.567104
42
ArXiv ML Papers
BERTopic
30
[ [ "devices", "to", "and", "with", "on", "in", "the", "of", "for", "accuracy" ], [ "neural", "networks", "network", "to", "the", "and", "of", "with", "in", "is" ], [ "of", "to", "adversarial", "and", "attacks", "the", "we", "attack", "model", "against" ], [ "to", "language", "the", "we", "of", "in", "and", "word", "that", "visual" ], [ "of", "to", "the", "in", "and", "we", "that", "representations", "as", "data" ], [ "in", "learning", "the", "this", "that", "tasks", "and", "of", "we", "to" ], [ "and", "the", "research", "in", "of", "we", "user", "users", "to", "learning" ], [ "to", "node", "the", "of", "graph", "graphs", "we", "and", "in", "on" ], [ "image", "in", "images", "of", "and", "the", "for", "with", "to", "we" ], [ "the", "for", "forecast", "day", "forecasting", "forecasts", "demand", "and", "of", "weather" ], [ "and", "of", "data", "to", "the", "in", "traffic", "is", "network", "deep" ], [ "the", "to", "in", "is", "model", "for", "and", "of", "pooling", "methods" ], [ "algorithms", "and", "we", "in", "structured", "the", "clustering", "to", "of", "on" ], [ "we", "of", "bound", "delta", "for", "the", "lower", "is", "algorithm", "in" ], [ "we", "algorithm", "the", "that", "and", "for", "to", "of", "in", "is" ] ]
8.606691
average_word_embeddings_glove.6B.300d
0.366667
-0.016607
0.19747
0.564008
42
ArXiv ML Papers
BERTopic
40
[ [ "devices", "to", "and", "with", "on", "in", "the", "of", "for", "accuracy" ], [ "neural", "networks", "network", "to", "the", "and", "of", "with", "in", "is" ], [ "of", "to", "adversarial", "and", "attacks", "the", "we", "attack", "model", "against" ], [ "to", "language", "the", "we", "of", "in", "and", "word", "that", "visual" ], [ "of", "to", "the", "in", "and", "we", "that", "representations", "as", "data" ], [ "in", "learning", "the", "this", "that", "tasks", "and", "of", "we", "to" ], [ "and", "the", "research", "in", "of", "we", "user", "users", "to", "learning" ], [ "to", "node", "the", "of", "graph", "graphs", "we", "and", "in", "on" ], [ "image", "in", "images", "of", "and", "the", "for", "with", "to", "we" ], [ "the", "for", "forecast", "day", "forecasting", "forecasts", "demand", "and", "of", "weather" ], [ "and", "of", "data", "to", "the", "in", "traffic", "is", "network", "deep" ], [ "the", "to", "in", "is", "model", "for", "and", "of", "pooling", "methods" ], [ "algorithms", "and", "we", "in", "structured", "the", "clustering", "to", "of", "on" ], [ "we", "of", "bound", "delta", "for", "the", "lower", "is", "algorithm", "in" ], [ "we", "algorithm", "the", "that", "and", "for", "to", "of", "in", "is" ] ]
9.002439
average_word_embeddings_glove.6B.300d
0.366667
-0.016607
0.19747
0.570943
42
ArXiv ML Papers
BERTopic
50
[ [ "devices", "to", "and", "with", "on", "in", "the", "of", "for", "accuracy" ], [ "neural", "networks", "network", "to", "the", "and", "of", "with", "in", "is" ], [ "of", "to", "adversarial", "and", "attacks", "the", "we", "attack", "model", "against" ], [ "to", "language", "the", "we", "of", "in", "and", "word", "that", "visual" ], [ "of", "to", "the", "in", "and", "we", "that", "representations", "as", "data" ], [ "in", "learning", "the", "this", "that", "tasks", "and", "of", "we", "to" ], [ "and", "the", "research", "in", "of", "we", "user", "users", "to", "learning" ], [ "to", "node", "the", "of", "graph", "graphs", "we", "and", "in", "on" ], [ "image", "in", "images", "of", "and", "the", "for", "with", "to", "we" ], [ "the", "for", "forecast", "day", "forecasting", "forecasts", "demand", "and", "of", "weather" ], [ "and", "of", "data", "to", "the", "in", "traffic", "is", "network", "deep" ], [ "the", "to", "in", "is", "model", "for", "and", "of", "pooling", "methods" ], [ "algorithms", "and", "we", "in", "structured", "the", "clustering", "to", "of", "on" ], [ "we", "of", "bound", "delta", "for", "the", "lower", "is", "algorithm", "in" ], [ "we", "algorithm", "the", "that", "and", "for", "to", "of", "in", "is" ] ]
8.378359
average_word_embeddings_glove.6B.300d
0.366667
-0.016607
0.19747
0.559362
42
ArXiv ML Papers
NMF
10
[ [ "the", "and", "of", "proposed", "to", "on", "by", "based", "method", "is" ], [ "to", "the", "be", "this", "neural", "model", "from", "can", "networks", "an" ], [ "to", "an", "of", "this", "the", "number", "these", "are", "our", "with" ], [ "models", "both", "are", "with", "based", "on", "and", "methods", "as", "performance" ], [ "show", "as", "the", "we", "on", "with", "our", "propose", "that", "can" ], [ "are", "the", "has", "in", "this", "we", "or", "which", "as", "been" ], [ "for", "with", "an", "we", "are", "be", "as", "algorithm", "can", "used" ], [ "training", "the", "for", "is", "data", "from", "as", "on", "model", "models" ], [ "machine", "to", "tasks", "on", "of", "algorithms", "and", "learning", "deep", "reinforcement" ], [ "algorithm", "and", "this", "is", "it", "that", "are", "be", "by", "which" ] ]
1.617862
average_word_embeddings_glove.6B.300d
0.49
-0.008151
0.195331
0.466071
42
ArXiv ML Papers
NMF
20
[ [ "using", "information", "between", "proposed", "to", "the", "results", "by", "of", "two" ], [ "from", "the", "it", "due", "an", "to", "their", "framework", "this", "approach" ], [ "these", "set", "the", "this", "number", "an", "of", "new", "state", "art" ], [ "ml", "research", "models", "and", "both", "the", "their", "including", "two", "are" ], [ "problem", "which", "our", "show", "we", "and", "the", "propose", "in", "algorithm" ], [ "in", "or", "are", "work", "paper", "the", "this", "been", "has", "many" ], [ "time", "are", "the", "each", "for", "test", "also", "used", "using", "analysis" ], [ "from", "to", "we", "data", "training", "real", "is", "classification", "of", "time" ], [ "deep", "of", "learning", "machine", "algorithms", "reinforcement", "tasks", "policy", "supervised", "has" ], [ "it", "problem", "which", "where", "algorithm", "is", "and", "this", "an", "at" ], [ "based", "an", "on", "performance", "by", "datasets", "this", "tasks", "classification", "task" ], [ "the", "representations", "are", "this", "show", "not", "more", "than", "also", "that" ], [ "training", "deep", "convolutional", "to", "is", "network", "networks", "neural", "we", "layer" ], [ "model", "which", "trained", "we", "performance", "models", "inference", "in", "our", "based" ], [ "to", "have", "an", "are", "as", "such", "or", "well", "these", "using" ], [ "with", "dataset", "high", "accuracy", "an", "by", "low", "performance", "results", "while" ], [ "and", "state", "methods", "gradient", "based", "method", "optimization", "proposed", "propose", "our" ], [ "we", "training", "models", "robustness", "attacks", "adversarial", "attack", "to", "against", "the" ], [ "by", "be", "this", "can", "from", "it", "or", "which", "used", "how" ], [ "the", "graphs", "graph", "gnns", "representation", "nodes", "node", "and", "our", "we" ] ]
2.621725
average_word_embeddings_glove.6B.300d
0.565
0.013258
0.170953
0.559186
42
ArXiv ML Papers
NMF
30
[ [ "of", "the", "to", "proposed", "between", "problem", "results", "information", "two", "space" ], [ "end", "human", "it", "have", "search", "due", "their", "to", "use", "framework" ], [ "and", "terms", "these", "the", "of", "number", "set", "analysis", "art", "large" ], [ "accuracy", "the", "two", "and", "research", "both", "between", "including", "ml", "their" ], [ "present", "the", "we", "propose", "show", "use", "which", "in", "demonstrate", "where" ], [ "been", "in", "or", "applications", "has", "work", "many", "recent", "have", "high" ], [ "using", "the", "prediction", "time", "test", "used", "each", "regression", "for", "also" ], [ "data", "and", "classification", "real", "training", "time", "to", "synthetic", "large", "supervised" ], [ "supervised", "of", "deep", "reinforcement", "learning", "machine", "tasks", "has", "metric", "agent" ], [ "it", "which", "where", "one", "is", "not", "at", "than", "when", "information" ], [ "on", "performance", "tasks", "datasets", "task", "classification", "art", "trained", "work", "or" ], [ "that", "show", "than", "not", "representations", "the", "results", "also", "more", "find" ], [ "training", "convolutional", "neural", "networks", "network", "and", "deep", "to", "layer", "performance" ], [ "the", "model", "performance", "and", "which", "in", "trained", "proposed", "inference", "parameters" ], [ "as", "well", "have", "such", "to", "these", "or", "been", "not", "using" ], [ "dataset", "high", "compared", "performance", "accuracy", "low", "results", "with", "while", "achieve" ], [ "using", "approach", "an", "which", "input", "features", "classification", "image", "high", "its" ], [ "attacks", "to", "adversarial", "training", "the", "we", "robustness", "attack", "against", "examples" ], [ "paper", "this", "problem", "approach", "the", "distribution", "process", "new", "work", "been" ], [ "generative", "fidelity", "models", "these", "of", "trained", "language", "performance", "inference", "have" ], [ "the", "detection", "based", "on", "system", "propose", "proposed", "have", "feature", "recognition" ], [ "be", "can", "used", "which", "how", "or", "it", "quantum", "they", "image" ], [ "where", "different", "are", "algorithms", "these", "they", "their", "more", "when", "the" ], [ "the", "graphs", "and", "node", "nodes", "graph", "representation", "gnns", "we", "which" ], [ "deep", "feature", "proposed", "prediction", "method", "methods", "existing", "datasets", "classification", "large" ], [ "time", "by", "images", "approach", "the", "feature", "series", "high", "between", "into" ], [ "gradient", "optimization", "stochastic", "and", "policy", "function", "convergence", "problems", "convex", "optimal" ], [ "framework", "results", "our", "approach", "method", "we", "state", "at", "art", "to" ], [ "algorithms", "algorithm", "to", "problem", "matrix", "clustering", "proposed", "linear", "sample", "rank" ], [ "from", "task", "using", "tasks", "language", "representations", "different", "knowledge", "information", "object" ] ]
3.656396
average_word_embeddings_glove.6B.300d
0.563333
0.022051
0.15894
0.631439
42
ArXiv ML Papers
NMF
40
[ [ "of", "proposed", "between", "results", "the", "information", "test", "error", "two", "strategy" ], [ "to", "due", "human", "their", "it", "use", "have", "framework", "used", "approach" ], [ "these", "number", "of", "set", "terms", "new", "large", "analysis", "art", "study" ], [ "both", "including", "and", "research", "two", "accuracy", "ml", "between", "their", "study" ], [ "propose", "we", "show", "demonstrate", "new", "study", "use", "present", "provide", "introduce" ], [ "been", "work", "or", "has", "in", "many", "applications", "recent", "the", "have" ], [ "analysis", "test", "also", "the", "using", "for", "used", "regression", "one", "large" ], [ "large", "data", "classification", "real", "synthetic", "the", "high", "driven", "and", "techniques" ], [ "framework", "policy", "learn", "learning", "machine", "metric", "reinforcement", "supervised", "agent", "of" ], [ "than", "the", "at", "information", "one", "is", "when", "where", "it", "its" ], [ "all", "datasets", "rely", "previous", "work", "on", "or", "focus", "real", "dataset" ], [ "that", "show", "also", "more", "than", "not", "results", "representations", "find", "prior" ], [ "neural", "architectures", "convolutional", "have", "physics", "and", "recurrent", "over", "cnns", "networks" ], [ "trained", "model", "and", "inference", "the", "to", "uncertainty", "predictions", "parameters", "in" ], [ "have", "these", "well", "the", "been", "to", "such", "as", "or", "not" ], [ "high", "accuracy", "results", "the", "dataset", "with", "compared", "all", "low", "while" ], [ "between", "the", "by", "approach", "into", "filter", "high", "while", "class", "function" ], [ "robustness", "of", "to", "adversarial", "the", "against", "attack", "attacks", "detection", "robust" ], [ "this", "approach", "paper", "new", "work", "been", "process", "system", "challenge", "presents" ], [ "information", "two", "which", "not", "propose", "feature", "has", "only", "the", "of" ], [ "problems", "optimal", "problem", "samples", "matrix", "to", "and", "the", "rank", "where" ], [ "can", "how", "it", "used", "be", "or", "to", "quantum", "they", "systems" ], [ "algorithms", "these", "more", "are", "when", "where", "they", "some", "their", "different" ], [ "graph", "the", "and", "graphs", "node", "representation", "nodes", "gnns", "we", "clustering" ], [ "proposed", "propose", "prediction", "and", "method", "feature", "optimization", "noise", "large", "using" ], [ "inference", "fidelity", "trained", "models", "generative", "these", "have", "machine", "prediction", "language" ], [ "function", "convex", "optimization", "stochastic", "and", "gradient", "policy", "convergence", "problems", "descent" ], [ "approach", "framework", "results", "our", "state", "to", "we", "first", "art", "best" ], [ "to", "proposed", "clustering", "the", "label", "linear", "algorithms", "algorithm", "matrix", "sample" ], [ "different", "from", "using", "object", "features", "set", "language", "between", "information", "representations" ], [ "based", "detection", "the", "proposed", "system", "propose", "information", "systems", "user", "approaches" ], [ "time", "series", "real", "in", "of", "at", "forecasting", "temporal", "world", "state" ], [ "datasets", "methods", "have", "problems", "existing", "both", "the", "been", "other", "many" ], [ "high", "accuracy", "state", "art", "performance", "of", "classification", "better", "using", "achieve" ], [ "generative", "image", "segmentation", "gan", "images", "text", "we", "object", "resolution", "to" ], [ "network", "neural", "to", "layer", "prediction", "architecture", "structure", "nodes", "convolutional", "show" ], [ "language", "the", "tasks", "task", "domain", "knowledge", "to", "multi", "different", "source" ], [ "input", "an", "approach", "features", "its", "using", "system", "it", "high", "technique" ], [ "in", "loss", "training", "we", "trained", "during", "pre", "to", "set", "federated" ], [ "has", "deep", "learning", "feature", "features", "have", "been", "speech", "accuracy", "results" ] ]
5.210731
average_word_embeddings_glove.6B.300d
0.545
0.015451
0.157201
0.652538
42
ArXiv ML Papers
NMF
50
[ [ "results", "of", "proposed", "the", "between", "test", "error", "was", "strategy", "conditions" ], [ "due", "their", "use", "framework", "to", "able", "compared", "often", "human", "end" ], [ "number", "these", "set", "new", "terms", "study", "parameters", "large", "analysis", "of" ], [ "and", "both", "two", "including", "accuracy", "ml", "research", "study", "between", "respectively" ], [ "propose", "we", "show", "use", "present", "new", "study", "demonstrate", "provide", "introduce" ], [ "particular", "in", "dimensional", "terms", "or", "context", "many", "work", "addition", "space" ], [ "large", "one", "test", "used", "day", "also", "analysis", "fast", "for", "regression" ], [ "labeled", "synthetic", "real", "driven", "large", "data", "samples", "process", "framework", "techniques" ], [ "machine", "metric", "active", "learn", "learning", "framework", "of", "supervised", "reinforcement", "to" ], [ "than", "show", "not", "find", "more", "results", "that", "representations", "prior", "also" ], [ "focus", "rely", "datasets", "all", "on", "work", "or", "trained", "real", "previous" ], [ "where", "more", "these", "when", "they", "are", "their", "some", "new", "different" ], [ "convolutional", "networks", "neural", "and", "architectures", "over", "cnns", "more", "physics", "weights" ], [ "the", "model", "trained", "predictions", "parameters", "inference", "uncertainty", "while", "global", "free" ], [ "or", "as", "such", "known", "through", "to", "using", "well", "processing", "continuous" ], [ "dataset", "with", "while", "high", "accuracy", "respect", "compared", "results", "all", "multiple" ], [ "propose", "the", "has", "prediction", "noise", "proposed", "method", "large", "using", "optimization" ], [ "large", "federated", "during", "pre", "train", "training", "we", "trained", "set", "loss" ], [ "be", "can", "used", "how", "they", "quantum", "or", "systems", "the", "such" ], [ "knowledge", "source", "adaptation", "domains", "domain", "target", "the", "transfer", "datasets", "proposed" ], [ "presents", "work", "new", "this", "paper", "process", "challenge", "approach", "system", "strategies" ], [ "have", "been", "the", "these", "machine", "has", "or", "such", "research", "their" ], [ "filter", "between", "by", "while", "the", "into", "approach", "images", "function", "dimensional" ], [ "the", "graphs", "graph", "node", "and", "nodes", "we", "gnns", "representation", "clustering" ], [ "of", "state", "the", "we", "propose", "datasets", "art", "results", "over", "approaches" ], [ "generative", "fidelity", "models", "trained", "inference", "prediction", "these", "language", "high", "at" ], [ "system", "input", "its", "high", "framework", "3d", "an", "using", "technique", "approach" ], [ "results", "framework", "approach", "first", "best", "our", "at", "work", "experiments", "only" ], [ "algorithm", "the", "to", "proposed", "regret", "clustering", "sample", "exchange", "selection", "at" ], [ "different", "using", "set", "between", "object", "representations", "from", "knowledge", "the", "language" ], [ "on", "proposed", "based", "the", "propose", "approaches", "user", "systems", "flow", "better" ], [ "forecasting", "series", "real", "each", "time", "world", "at", "temporal", "of", "hierarchical" ], [ "methods", "both", "datasets", "existing", "other", "linear", "many", "be", "hierarchical", "several" ], [ "than", "the", "is", "one", "where", "when", "its", "most", "at", "there" ], [ "generative", "gan", "segmentation", "text", "images", "image", "resolution", "trained", "we", "visual" ], [ "network", "neural", "layer", "structure", "architecture", "nodes", "convolutional", "show", "prediction", "to" ], [ "attacks", "adversarial", "the", "against", "robustness", "to", "attack", "of", "and", "robust" ], [ "classifiers", "label", "the", "accuracy", "class", "high", "classification", "classifier", "classes", "using" ], [ "reinforcement", "the", "policy", "rl", "agent", "reward", "agents", "policies", "learning", "optimal" ], [ "learning", "deep", "accuracy", "in", "results", "speech", "paper", "ensemble", "recognition", "dnn" ], [ "convex", "function", "gradient", "optimization", "stochastic", "convergence", "problems", "descent", "order", "non" ], [ "achieve", "their", "performance", "better", "design", "proposed", "computing", "different", "cost", "to" ], [ "search", "the", "algorithms", "variance", "two", "other", "more", "problems", "to", "than" ], [ "of", "selection", "and", "features", "the", "feature", "to", "attention", "speech", "results" ], [ "different", "multi", "language", "task", "tasks", "knowledge", "each", "prediction", "meta", "solving" ], [ "propose", "two", "of", "distribution", "which", "not", "only", "has", "to", "novel" ], [ "its", "but", "has", "be", "and", "not", "also", "at", "it", "well" ], [ "the", "low", "problems", "optimal", "matrix", "problem", "rank", "samples", "distribution", "linear" ], [ "between", "semantic", "information", "user", "each", "two", "channel", "multi", "local", "the" ], [ "dataset", "object", "detection", "detect", "attacks", "system", "using", "in", "rate", "the" ] ]
6.391296
average_word_embeddings_glove.6B.300d
0.57
0.003507
0.147042
0.675528
42
ArXiv ML Papers
LDA
10
[ [ "and", "object", "of", "the", "in", "we", "for", "objects", "on", "shape" ], [ "of", "the", "data", "and", "in", "for", "to", "series", "is", "time" ], [ "and", "of", "the", "to", "we", "models", "in", "that", "adversarial", "training" ], [ "and", "data", "to", "for", "of", "model", "in", "the", "is", "prediction" ], [ "is", "to", "for", "the", "in", "we", "of", "and", "that", "with" ], [ "to", "and", "detection", "of", "the", "based", "is", "in", "user", "this" ], [ "of", "the", "to", "and", "in", "we", "that", "on", "is", "for" ], [ "ad", "establishing", "too", "devise", "exhaustive", "82", "definition", "note", "go", "want" ], [ "to", "we", "of", "is", "the", "in", "and", "for", "that", "this" ], [ "of", "to", "the", "and", "is", "we", "learning", "in", "that", "this" ] ]
11.326483
average_word_embeddings_glove.6B.300d
0.37
-0.069928
0.242925
0.555165
42
ArXiv ML Papers
LDA
20
[ [ "object", "objects", "shape", "on", "compact", "in", "geometric", "geometry", "3d", "and" ], [ "of", "signals", "noise", "quantum", "frequency", "the", "to", "an", "in", "machine" ], [ "the", "and", "to", "we", "of", "models", "in", "image", "that", "generative" ], [ "for", "to", "traffic", "data", "and", "the", "we", "of", "devices", "flow" ], [ "to", "of", "and", "the", "in", "we", "for", "that", "is", "with" ], [ "attacks", "black", "to", "box", "and", "the", "attack", "concepts", "demand", "of" ], [ "of", "the", "and", "we", "to", "in", "networks", "graph", "neural", "network" ], [ "describes", "composed", "appealing", "establishing", "nas", "correctness", "occur", "storing", "integrating", "ell_2" ], [ "the", "to", "of", "we", "in", "and", "that", "are", "for", "this" ], [ "video", "and", "to", "in", "the", "of", "label", "is", "we", "labels" ], [ "and", "for", "on", "in", "of", "to", "with", "is", "the", "we" ], [ "data", "to", "and", "in", "the", "of", "for", "is", "that", "we" ], [ "for", "gradient", "and", "optimization", "convergence", "stochastic", "convex", "method", "we", "descent" ], [ "data", "in", "the", "of", "and", "with", "to", "we", "stream", "identity" ], [ "and", "to", "the", "we", "of", "in", "is", "on", "learning", "this" ], [ "shape", "design", "sentence", "sentences", "optical", "assisted", "space", "translation", "interesting", "task" ], [ "of", "the", "we", "adversarial", "that", "in", "and", "training", "to", "on" ], [ "on", "the", "we", "learning", "of", "task", "and", "to", "that", "in" ], [ "planning", "private", "bias", "the", "that", "and", "ensemble", "vae", "of", "variance" ], [ "and", "of", "this", "in", "to", "the", "that", "we", "for", "is" ] ]
15.574985
average_word_embeddings_glove.6B.300d
0.415
-0.06419
0.203814
0.61154
42
ArXiv ML Papers
LDA
30
[ [ "objects", "shape", "the", "3d", "in", "geometric", "and", "sequences", "geometry", "of" ], [ "and", "the", "of", "text", "documents", "classification", "boosting", "for", "day", "multi" ], [ "and", "that", "to", "visual", "of", "models", "in", "the", "we", "image" ], [ "and", "for", "inference", "the", "we", "to", "of", "data", "in", "posterior" ], [ "of", "to", "the", "and", "we", "in", "that", "for", "is", "this" ], [ "attacks", "the", "box", "attack", "adversarial", "to", "black", "detection", "and", "of" ], [ "the", "of", "and", "we", "to", "networks", "graph", "network", "in", "neural" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "in", "to", "and", "of", "we", "the", "that", "is", "for", "on" ], [ "to", "the", "of", "label", "in", "and", "metric", "video", "is", "labels" ], [ "the", "of", "and", "to", "on", "for", "with", "in", "we", "is" ], [ "that", "for", "in", "data", "the", "to", "is", "and", "of", "this" ], [ "optimization", "gradient", "convergence", "stochastic", "convex", "for", "and", "descent", "method", "we" ], [ "kernel", "in", "the", "of", "and", "kernels", "subspace", "distance", "we", "with" ], [ "is", "we", "of", "in", "to", "and", "the", "on", "that", "learning" ], [ "action", "actions", "continuous", "reinforcement", "discrete", "spaces", "domains", "control", "policy", "complex" ], [ "we", "that", "on", "and", "in", "for", "of", "the", "to", "this" ], [ "and", "learning", "the", "of", "to", "we", "tasks", "task", "agent", "that" ], [ "variational", "and", "the", "bias", "latent", "that", "of", "al", "models", "et" ], [ "and", "this", "the", "we", "that", "in", "our", "of", "to", "for" ], [ "accuracies", "measurement", "and", "the", "of", "additive", "that", "perturbations", "we", "dnns" ], [ "we", "of", "to", "and", "in", "the", "generative", "adversarial", "gan", "generation" ], [ "and", "in", "of", "to", "privacy", "the", "data", "learning", "is", "quantum" ], [ "the", "image", "and", "to", "of", "for", "segmentation", "in", "with", "on" ], [ "online", "distributed", "to", "of", "the", "communication", "agents", "planning", "learning", "and" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "in", "social", "ai", "the", "of", "to", "user", "users", "and", "media" ], [ "the", "model", "is", "and", "in", "to", "proposed", "channel", "of", "loss" ], [ "scaling", "depth", "compromising", "strategies", "estimation", "types", "width", "examples", "domain", "various" ], [ "super", "images", "conditional", "realistic", "resolution", "image", "pixel", "conditioning", "details", "model" ] ]
16.76239
average_word_embeddings_glove.6B.300d
0.426667
-0.049465
0.188912
0.657253
42
ArXiv ML Papers
LDA
40
[ [ "and", "on", "geometric", "left", "the", "frac", "in", "right", "varepsilon", "this" ], [ "an", "the", "text", "in", "techniques", "of", "and", "documents", "implementations", "library" ], [ "in", "translation", "and", "we", "the", "to", "that", "of", "with", "machine" ], [ "to", "the", "in", "and", "for", "models", "of", "we", "free", "reports" ], [ "of", "we", "the", "and", "to", "in", "for", "that", "is", "with" ], [ "detection", "attacks", "black", "the", "box", "of", "adversarial", "to", "attack", "and" ], [ "of", "graph", "and", "we", "the", "to", "in", "that", "on", "networks" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "the", "of", "and", "in", "to", "that", "on", "we", "are", "this" ], [ "to", "and", "of", "robot", "the", "style", "in", "we", "that", "al" ], [ "the", "in", "for", "to", "time", "and", "of", "on", "models", "prediction" ], [ "to", "the", "for", "and", "of", "in", "that", "data", "is", "learning" ], [ "to", "analysis", "and", "unstructured", "operation", "big", "acceleration", "data", "classification", "fusion" ], [ "functions", "in", "convex", "and", "the", "of", "imaging", "condition", "methods", "we" ], [ "we", "the", "in", "is", "and", "learning", "to", "of", "on", "this" ], [ "actions", "spaces", "extends", "domains", "half", "composed", "robot", "platform", "action", "combining" ], [ "that", "of", "we", "to", "the", "in", "training", "by", "adversarial", "robustness" ], [ "the", "and", "of", "agents", "that", "agent", "we", "to", "on", "task" ], [ "the", "variance", "gradient", "and", "batch", "stochastic", "we", "descent", "that", "boosting" ], [ "in", "to", "that", "the", "user", "of", "we", "and", "for", "users" ], [ "sparse", "latent", "inference", "the", "end", "structures", "structure", "structural", "to", "dynamic" ], [ "to", "and", "we", "the", "of", "in", "human", "design", "research", "flow" ], [ "we", "in", "and", "for", "of", "the", "with", "to", "models", "on" ], [ "resolution", "of", "and", "in", "to", "for", "the", "sequence", "on", "event" ], [ "data", "object", "of", "objects", "detection", "in", "the", "processes", "new", "stream" ], [ "meta", "correlated", "games", "sum", "we", "for", "agents", "and", "solving", "solvers" ], [ "models", "generative", "conditional", "autoregressive", "samples", "likelihood", "of", "we", "procedure", "that" ], [ "is", "demand", "to", "and", "network", "the", "energy", "of", "for", "in" ], [ "predictive", "selection", "performance", "experimental", "for", "detection", "outlier", "feature", "bayesian", "the" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "we", "and", "is", "to", "on", "learning", "in", "of", "the", "data" ], [ "the", "noise", "visual", "of", "reasoning", "and", "in", "codes", "to", "that" ], [ "dropout", "rnn", "hidden", "units", "recurrent", "rnns", "language", "sequential", "generalization", "forces" ], [ "bias", "loss", "the", "for", "face", "and", "in", "cross", "of", "recognition" ], [ "concepts", "robust", "error", "depth", "neural", "we", "explanations", "the", "networks", "width" ], [ "in", "the", "to", "training", "is", "on", "of", "we", "and", "with" ], [ "the", "in", "and", "to", "of", "we", "for", "is", "that", "with" ], [ "of", "and", "the", "in", "is", "we", "to", "for", "that", "on" ], [ "the", "clustering", "and", "in", "we", "cluster", "to", "of", "for", "are" ], [ "of", "to", "gan", "the", "feedback", "that", "in", "agent", "and", "interactive" ] ]
17.04971
average_word_embeddings_glove.6B.300d
0.405
-0.061252
0.182069
0.630669
42
ArXiv ML Papers
LDA
50
[ [ "and", "robust", "in", "of", "we", "error", "the", "predictor", "on", "to" ], [ "signal", "the", "signals", "frequency", "spectral", "separation", "which", "for", "of", "and" ], [ "rank", "tensor", "translation", "and", "to", "the", "we", "local", "low", "in" ], [ "energy", "and", "to", "for", "free", "we", "algorithm", "the", "in", "of" ], [ "with", "of", "in", "the", "that", "to", "we", "and", "is", "for" ], [ "flow", "the", "traffic", "recognition", "system", "detection", "based", "flows", "vehicle", "is" ], [ "in", "graph", "the", "that", "to", "and", "of", "we", "for", "on" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "of", "and", "the", "in", "to", "we", "that", "language", "for", "is" ], [ "to", "the", "and", "of", "be", "can", "social", "in", "we", "that" ], [ "and", "the", "for", "of", "to", "in", "with", "model", "an", "on" ], [ "of", "the", "in", "to", "is", "data", "for", "and", "this", "we" ], [ "we", "of", "the", "convergence", "strongly", "convex", "our", "for", "complexity", "condition" ], [ "forward", "feed", "of", "learning", "in", "rules", "we", "active", "to", "the" ], [ "of", "the", "is", "we", "in", "and", "to", "that", "this", "on" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "to", "are", "the", "ground", "for", "of", "in", "that", "on", "we" ], [ "the", "to", "we", "of", "calibration", "meta", "and", "that", "probabilistic", "distributions" ], [ "forgetting", "concept", "learners", "learning", "and", "the", "in", "that", "for", "of" ], [ "we", "in", "of", "time", "for", "that", "to", "the", "and", "our" ], [ "multiple", "community", "perturbations", "dnns", "are", "to", "that", "the", "communities", "and" ], [ "in", "of", "the", "and", "we", "that", "are", "these", "to", "with" ], [ "and", "to", "communication", "data", "for", "distributed", "the", "of", "in", "federated" ], [ "and", "to", "in", "causal", "sequence", "gan", "gans", "for", "the", "of" ], [ "in", "and", "online", "data", "variable", "we", "to", "the", "of", "learning" ], [ "sum", "joint", "concept", "games", "correlated", "meta", "studied", "outside", "response", "general" ], [ "auc", "device", "devices", "operators", "healthcare", "resource", "low", "to", "and", "the" ], [ "of", "and", "quantum", "to", "in", "is", "the", "topic", "we", "topics" ], [ "variance", "oracle", "reduction", "variant", "accelerated", "acceleration", "popular", "convex", "known", "effective" ], [ "personalized", "perspective", "performed", "performing", "performs", "period", "periodic", "periods", "person", "personal" ], [ "the", "to", "of", "and", "in", "model", "we", "this", "learning", "is" ], [ "noise", "the", "of", "visual", "reasoning", "and", "to", "software", "in", "codes" ], [ "random", "the", "left", "varepsilon", "forest", "frac", "right", "gpu", "programming", "code" ], [ "cross", "of", "loss", "the", "is", "in", "bias", "for", "face", "and" ], [ "realistic", "conditional", "resolution", "images", "image", "high", "pixel", "super", "samples", "pixels" ], [ "to", "in", "the", "of", "and", "we", "on", "data", "is", "for" ], [ "to", "and", "is", "model", "we", "that", "for", "the", "in", "of" ], [ "data", "in", "and", "that", "the", "is", "of", "to", "we", "for" ], [ "and", "the", "from", "in", "ai", "of", "to", "safety", "nn", "were" ], [ "agents", "reward", "to", "control", "the", "reinforcement", "of", "agent", "in", "learning" ], [ "problems", "method", "gradient", "methods", "stochastic", "of", "descent", "and", "optimization", "we" ], [ "variational", "in", "of", "inference", "the", "and", "we", "to", "al", "is" ], [ "label", "the", "channel", "clustering", "is", "with", "multi", "of", "labels", "semantic" ], [ "the", "in", "performance", "to", "of", "and", "on", "is", "network", "with" ], [ "of", "in", "bayesian", "is", "we", "the", "for", "distribution", "posterior", "and" ], [ "language", "models", "the", "representations", "in", "of", "to", "and", "we", "on" ], [ "in", "the", "on", "to", "of", "we", "learning", "policy", "and", "reinforcement" ], [ "the", "latent", "generation", "diffusion", "to", "of", "text", "in", "for", "and" ], [ "adversarial", "the", "to", "attacks", "training", "that", "attack", "robustness", "in", "we" ], [ "we", "to", "in", "and", "the", "of", "that", "on", "for", "is" ] ]
18.716448
average_word_embeddings_glove.6B.300d
0.376
-0.060056
0.190723
0.641459
42
ArXiv ML Papers
Top2Vec
10
[ [ "using", "example", "methods", "use", "specific", "required", "particular", "instance", "systems", "method" ], [ "possible", "use", "example", "methods", "particular", "specific", "similar", "using", "instance", "need" ], [ "example", "particular", "instance", "use", "specific", "certain", "different", "using", "similar", "context" ], [ "different", "particular", "methods", "use", "example", "certain", "instance", "need", "specific", "using" ], [ "particular", "instance", "use", "example", "specific", "provide", "need", "using", "different", "addition" ], [ "particular", "function", "example", "specific", "instance", "methods", "using", "method", "parameters", "types" ], [ "example", "using", "particular", "instance", "specific", "use", "different", "methods", "data", "types" ], [ "instance", "example", "using", "particular", "data", "use", "specific", "provide", "different", "similar" ], [ "example", "particular", "methods", "instance", "method", "specific", "using", "different", "function", "certain" ], [ "methods", "example", "method", "function", "analysis", "using", "parameters", "algorithms", "particular", "processes" ] ]
8.997187
average_word_embeddings_glove.6B.300d
0.25
-0.098371
0.253819
0.7812
42
ArXiv ML Papers
Top2Vec
20
[ [ "example", "using", "use", "systems", "methods", "data", "required", "specific", "particular", "provide" ], [ "example", "instance", "specific", "using", "methods", "systems", "use", "particular", "types", "method" ], [ "possible", "use", "example", "methods", "particular", "specific", "similar", "using", "instance", "need" ], [ "example", "particular", "instance", "use", "specific", "certain", "different", "using", "similar", "context" ], [ "methods", "particular", "specific", "example", "instance", "using", "different", "types", "function", "certain" ], [ "different", "particular", "methods", "use", "example", "certain", "instance", "need", "specific", "using" ], [ "particular", "instance", "use", "example", "specific", "provide", "need", "using", "different", "addition" ], [ "particular", "function", "example", "specific", "instance", "methods", "using", "method", "parameters", "types" ], [ "example", "using", "particular", "instance", "specific", "use", "different", "methods", "data", "types" ], [ "instance", "particular", "example", "result", "data", "using", "use", "methods", "different", "need" ], [ "use", "using", "example", "particular", "provide", "specific", "instance", "addition", "similar", "different" ], [ "methods", "example", "using", "method", "particular", "specific", "instance", "analysis", "use", "different" ], [ "particular", "methods", "method", "using", "example", "specific", "analysis", "instance", "different", "types" ], [ "specific", "particular", "given", "certain", "example", "function", "method", "instance", "means", "result" ], [ "methods", "example", "method", "function", "analysis", "using", "parameters", "algorithms", "particular", "processes" ] ]
8.604245
average_word_embeddings_glove.6B.300d
0.186667
-0.100363
0.247966
0.774992
42
ArXiv ML Papers
Top2Vec
30
[ [ "example", "using", "use", "systems", "methods", "data", "required", "specific", "particular", "provide" ], [ "example", "instance", "specific", "using", "methods", "systems", "use", "particular", "types", "method" ], [ "possible", "use", "example", "methods", "particular", "specific", "similar", "using", "instance", "need" ], [ "example", "particular", "instance", "use", "specific", "certain", "different", "using", "similar", "context" ], [ "methods", "particular", "specific", "example", "instance", "using", "different", "types", "function", "certain" ], [ "different", "particular", "methods", "use", "example", "certain", "instance", "need", "specific", "using" ], [ "particular", "instance", "use", "example", "specific", "provide", "need", "using", "different", "addition" ], [ "particular", "function", "example", "specific", "instance", "methods", "using", "method", "parameters", "types" ], [ "example", "using", "particular", "instance", "specific", "use", "different", "methods", "data", "types" ], [ "instance", "particular", "example", "result", "data", "using", "use", "methods", "different", "need" ], [ "use", "using", "example", "particular", "provide", "specific", "instance", "addition", "similar", "different" ], [ "methods", "example", "using", "method", "particular", "specific", "instance", "analysis", "use", "different" ], [ "particular", "methods", "method", "using", "example", "specific", "analysis", "instance", "different", "types" ], [ "specific", "particular", "given", "certain", "example", "function", "method", "instance", "means", "result" ], [ "methods", "example", "method", "function", "analysis", "using", "parameters", "algorithms", "particular", "processes" ] ]
8.604781
average_word_embeddings_glove.6B.300d
0.186667
-0.100363
0.247966
0.780283
42
ArXiv ML Papers
Top2Vec
40
[ [ "example", "using", "use", "systems", "methods", "data", "required", "specific", "particular", "provide" ], [ "example", "instance", "specific", "using", "methods", "systems", "use", "particular", "types", "method" ], [ "possible", "use", "example", "methods", "particular", "specific", "similar", "using", "instance", "need" ], [ "example", "particular", "instance", "use", "specific", "certain", "different", "using", "similar", "context" ], [ "methods", "particular", "specific", "example", "instance", "using", "different", "types", "function", "certain" ], [ "different", "particular", "methods", "use", "example", "certain", "instance", "need", "specific", "using" ], [ "particular", "instance", "use", "example", "specific", "provide", "need", "using", "different", "addition" ], [ "particular", "function", "example", "specific", "instance", "methods", "using", "method", "parameters", "types" ], [ "example", "using", "particular", "instance", "specific", "use", "different", "methods", "data", "types" ], [ "instance", "particular", "example", "result", "data", "using", "use", "methods", "different", "need" ], [ "use", "using", "example", "particular", "provide", "specific", "instance", "addition", "similar", "different" ], [ "methods", "example", "using", "method", "particular", "specific", "instance", "analysis", "use", "different" ], [ "particular", "methods", "method", "using", "example", "specific", "analysis", "instance", "different", "types" ], [ "specific", "particular", "given", "certain", "example", "function", "method", "instance", "means", "result" ], [ "methods", "example", "method", "function", "analysis", "using", "parameters", "algorithms", "particular", "processes" ] ]
8.980426
average_word_embeddings_glove.6B.300d
0.186667
-0.100363
0.247966
0.77516
42
ArXiv ML Papers
Top2Vec
50
[ [ "example", "using", "use", "systems", "methods", "data", "required", "specific", "particular", "provide" ], [ "example", "instance", "specific", "using", "methods", "systems", "use", "particular", "types", "method" ], [ "possible", "use", "example", "methods", "particular", "specific", "similar", "using", "instance", "need" ], [ "example", "particular", "instance", "use", "specific", "certain", "different", "using", "similar", "context" ], [ "methods", "particular", "specific", "example", "instance", "using", "different", "types", "function", "certain" ], [ "different", "particular", "methods", "use", "example", "certain", "instance", "need", "specific", "using" ], [ "particular", "instance", "use", "example", "specific", "provide", "need", "using", "different", "addition" ], [ "particular", "function", "example", "specific", "instance", "methods", "using", "method", "parameters", "types" ], [ "example", "using", "particular", "instance", "specific", "use", "different", "methods", "data", "types" ], [ "instance", "particular", "example", "result", "data", "using", "use", "methods", "different", "need" ], [ "use", "using", "example", "particular", "provide", "specific", "instance", "addition", "similar", "different" ], [ "methods", "example", "using", "method", "particular", "specific", "instance", "analysis", "use", "different" ], [ "particular", "methods", "method", "using", "example", "specific", "analysis", "instance", "different", "types" ], [ "specific", "particular", "given", "certain", "example", "function", "method", "instance", "means", "result" ], [ "methods", "example", "method", "function", "analysis", "using", "parameters", "algorithms", "particular", "processes" ] ]
8.776014
average_word_embeddings_glove.6B.300d
0.186667
-0.100363
0.247966
0.772195
42
ArXiv ML Papers
10
[ [ "similarities", "relationship", "phenomena", "expression", "character", "distinct", "influence", "understanding", "literature", "expressive" ], [ "images", "sensors", "audio", "camera", "digital", "sensor", "video", "devices", "equipped", "acoustic" ], [ "topology", "vertices", "graph", "graphs", "orthogonal", "topological", "symmetric", "vertex", "tensor", "nodes" ], [ "statistical", "model", "forecast", "models", "forecasting", "projections", "forecasts", "growth", "estimates", "prediction" ], [ "molecular", "technique", "method", "algorithm", "physics", "techniques", "neural", "equations", "quantum", "geometry" ], [ "engineering", "research", "languages", "biology", "science", "library", "physics", "foundation", "literature", "published" ], [ "time", "points", "number", "10", "minutes", "half", "second", "point", "average", "rate" ], [ "model", "style", "version", "mode", "graphical", "simplicity", "models", "sound", "image", "compact" ], [ "71", "min", "rl", "91", "vs", "averaged", "83", "82", "88", "94" ], [ "energy", "infrastructure", "alleviate", "forces", "accelerate", "stability", "network", "pipelines", "relations", "operations" ] ]
1.009519
average_word_embeddings_glove.6B.300d
0.96
-0.262821
0.270151
0.884171
42
ArXiv ML Papers
20
[ [ "settings", "predefined", "pairwise", "combinations", "vary", "sizes", "randomly", "depending", "varying", "different" ], [ "forecasts", "uncertainties", "catastrophic", "forecast", "predicting", "forecasting", "weather", "traffic", "predictions", "periods" ], [ "attack", "agents", "attacks", "deployed", "prevent", "forces", "attacker", "armed", "enforce", "bandit" ], [ "calibration", "controller", "evaluation", "parameter", "data", "parameters", "classifier", "module", "gps", "configuration" ], [ "sum", "right", "equation", "integer", "function", "sentence", "polynomial", "word", "cause", "zero" ], [ "network", "neural", "networks", "neurons", "channel", "channels", "connections", "backpropagation", "wireless", "cells" ], [ "problems", "difficulties", "loss", "poor", "performance", "losses", "training", "suffer", "severe", "lack" ], [ "branch", "classification", "classes", "priori", "training", "groups", "centers", "areas", "communities", "rigorous" ], [ "relations", "implementation", "policy", "framework", "stability", "proposed", "compliance", "implementing", "objectives", "comprehensive" ], [ "goal", "target", "consensus", "algorithm", "conclusion", "correct", "prediction", "algorithms", "scenario", "precise" ], [ "diseases", "cancer", "clinical", "protein", "brain", "disease", "cells", "patients", "genetic", "diagnosis" ], [ "vertex", "graph", "node", "graphs", "vertices", "nodes", "convex", "nonconvex", "topological", "edges" ], [ "consists", "joint", "code", "named", "model", "unit", "special", "assigned", "consisting", "functions" ], [ "data", "statistical", "estimate", "compression", "textual", "layer", "paper", "text", "texts", "derived" ], [ "technology", "imaging", "efficiency", "energy", "maximize", "enhancing", "efficient", "quality", "technologies", "products" ], [ "gradient", "signals", "subspace", "signal", "relaxation", "https", "filtering", "frequencies", "denoising", "frequency" ], [ "negative", "biased", "conducted", "observations", "positive", "evidence", "results", "studies", "relationship", "bias" ], [ "web", "twitter", "online", "internet", "users", "server", "user", "website", "databases", "software" ], [ "stochastic", "iterative", "bayesian", "dirichlet", "optimization", "nonlinear", "multivariate", "algorithm", "variational", "minimization" ], [ "variables", "behaviors", "mechanisms", "processes", "factors", "specific", "minimize", "patterns", "reduce", "function" ] ]
0.988541
average_word_embeddings_glove.6B.300d
0.975
-0.269014
0.254041
0.877098
42
ArXiv ML Papers
30
[ [ "2019", "2017", "autoregressive", "28", "19", "2018", "preliminary", "14", "final", "16" ], [ "ensemble", "elements", "noisy", "initialization", "constraints", "dimension", "architectural", "element", "complexity", "compositional" ], [ "false", "questions", "documents", "explanations", "explanation", "answers", "answer", "valid", "details", "proof" ], [ "points", "score", "scoring", "remarkable", "highest", "impressive", "gained", "goals", "region", "best" ], [ "literature", "studies", "science", "research", "physics", "biology", "scientific", "topics", "survey", "studied" ], [ "online", "random", "videos", "video", "randomly", "samples", "sample", "music", "combinations", "interesting" ], [ "classic", "designs", "design", "style", "adaptation", "techniques", "novel", "topics", "feature", "series" ], [ "backpropagation", "network", "convolutional", "neural", "networks", "channels", "neurons", "connections", "bayesian", "channel" ], [ "measured", "smooth", "process", "consensus", "gradient", "positive", "responses", "results", "solution", "candidates" ], [ "consumption", "online", "price", "weighted", "share", "weaker", "market", "outperform", "rates", "trend" ], [ "bayesian", "estimator", "regression", "multivariate", "variational", "bayes", "iterative", "stochastic", "inference", "probabilistic" ], [ "conditioning", "standard", "safety", "noise", "discrimination", "overhead", "practice", "strict", "problems", "privacy" ], [ "predictions", "forecasts", "forecasting", "forecast", "weather", "traffic", "catastrophic", "flows", "maps", "prediction" ], [ "molecular", "detector", "particle", "quantum", "physics", "energy", "magnetic", "machines", "chemical", "sensors" ], [ "width", "parameter", "posterior", "length", "density", "approximately", "approximate", "depth", "variance", "maximum" ], [ "performances", "performance", "production", "produced", "factorization", "ensemble", "performs", "performed", "dirichlet", "audio" ], [ "evaluations", "positive", "conditional", "performances", "exhibits", "efficacy", "material", "gains", "observation", "uniformly" ], [ "temporal", "sources", "nets", "agent", "modes", "inefficient", "encoding", "averaging", "deep", "storage" ], [ "gains", "tremendous", "confidence", "bit", "deeper", "uncertainty", "deep", "enormous", "sentiment", "slow" ], [ "functionality", "user", "kernel", "software", "interface", "hardware", "graphical", "platforms", "server", "runtime" ], [ "built", "models", "size", "model", "version", "fit", "modeling", "engine", "car", "design" ], [ "word", "languages", "english", "speech", "language", "words", "translation", "text", "texts", "dictionary" ], [ "threat", "malicious", "targeting", "attacks", "malware", "attacker", "armed", "attack", "deployed", "forces" ], [ "occur", "events", "variables", "perceptual", "behaviors", "cognitive", "temporal", "phenomena", "discrimination", "stochastic" ], [ "population", "optimal", "randomly", "sampling", "genetic", "locations", "location", "inference", "size", "variability" ], [ "errors", "languages", "error", "classification", "intermediate", "class", "classes", "requirements", "variables", "predictors" ], [ "mathematical", "quantum", "computational", "physics", "computer", "cognitive", "computation", "algorithms", "fourier", "asymptotic" ], [ "approximations", "computationally", "diverse", "tasks", "efficiently", "fewer", "perform", "pairwise", "execute", "gpus" ], [ "substantially", "widespread", "increased", "increasing", "structural", "compression", "reduction", "costs", "considerable", "substantial" ], [ "transfer", "thousands", "block", "process", "prevent", "property", "construction", "beta", "free", "closed" ] ]
1.507303
average_word_embeddings_glove.6B.300d
0.926667
-0.318092
0.233842
0.892498
42
ArXiv ML Papers
40
[ [ "generator", "variables", "paradigm", "adversarial", "agent", "power", "latent", "node", "generation", "dirichlet" ], [ "vertices", "edges", "nodes", "node", "graphs", "graph", "vertex", "benchmark", "embedding", "weighted" ], [ "differentiable", "convex", "integer", "vector", "vectors", "subset", "polynomial", "euclidean", "linearly", "space" ], [ "cognitive", "functions", "behavior", "activity", "behaviors", "dynamics", "brain", "behaviour", "function", "dynamical" ], [ "deeper", "concrete", "differences", "points", "depth", "wide", "yield", "deep", "broad", "posterior" ], [ "distribution", "universal", "music", "criterion", "shelf", "sample", "generative", "criteria", "quality", "satisfying" ], [ "malicious", "classification", "detect", "detecting", "detection", "semantic", "malware", "weighted", "categories", "denoising" ], [ "predicting", "forecasts", "trends", "forecast", "scenarios", "predictions", "forecasting", "predict", "weather", "global" ], [ "sentence", "penalty", "attention", "dimensionality", "evidence", "sentences", "summary", "quantization", "exhaustive", "scenes" ], [ "accelerated", "rapid", "descent", "convergence", "gradient", "gradients", "rate", "normalization", "converges", "process" ], [ "separation", "strict", "procedure", "medical", "limitations", "notions", "imposes", "practice", "care", "adversarial" ], [ "solver", "problem", "solvers", "solve", "optimization", "solved", "problems", "solving", "intractable", "solves" ], [ "python", "derivatives", "compositional", "latent", "leveraged", "ensembles", "underlying", "initialization", "synthetic", "frameworks" ], [ "drastically", "adjust", "optimize", "varying", "mitigate", "reduce", "various", "degrees", "ratio", "analyzed" ], [ "discrimination", "biased", "gender", "fairness", "biases", "bias", "diversity", "discriminate", "ranking", "perception" ], [ "forecasts", "weaker", "net", "gains", "market", "benchmark", "forecast", "credit", "sentiment", "share" ], [ "spectral", "textual", "positive", "discrimination", "class", "classification", "suite", "contains", "iii", "ml" ], [ "pipeline", "reconstruction", "posterior", "2018", "feasibility", "joint", "resolution", "inter", "preliminary", "logistic" ], [ "randomly", "learning", "dimensionality", "clusters", "clustering", "sizes", "subspace", "biases", "preferences", "cluster" ], [ "factorization", "anomalies", "resonance", "spectral", "entries", "popularity", "similarities", "recent", "com", "performances" ], [ "voice", "sampled", "speech", "audio", "sound", "acoustic", "signals", "signal", "message", "speaker" ], [ "memory", "textual", "attention", "sequential", "capacity", "heavy", "computation", "scoring", "inputs", "output" ], [ "region", "autonomous", "established", "remains", "preserving", "superiority", "preserve", "stability", "central", "gap" ], [ "games", "game", "matches", "players", "goals", "scoring", "super", "match", "play", "series" ], [ "intermediate", "testing", "tests", "latency", "protocols", "tested", "classes", "benchmark", "requirements", "predictors" ], [ "particle", "physics", "energy", "detector", "generate", "accelerators", "generator", "light", "magnetic", "chemical" ], [ "classification", "modal", "generic", "attractive", "reasonable", "desirable", "frequencies", "variant", "conditions", "ability" ], [ "heuristic", "markov", "analytics", "variational", "estimator", "inference", "statistical", "bayesian", "bayes", "posterior" ], [ "screening", "layers", "safety", "acoustic", "privacy", "aggregating", "magnetic", "random", "detector", "rigorous" ], [ "ensemble", "brings", "student", "network", "collaborative", "teacher", "excellent", "relationship", "interaction", "degree" ], [ "perform", "task", "tasks", "answering", "robotic", "performed", "operations", "performs", "favorably", "robots" ], [ "unstructured", "extracted", "stored", "data", "datasets", "storing", "compressed", "encoded", "databases", "information" ], [ "architectural", "superiority", "structure", "depth", "mining", "invariance", "construction", "complexity", "coarse", "algorithmic" ], [ "resolution", "proposal", "proposing", "proposes", "novel", "proposed", "measure", "adaptation", "issue", "proposals" ], [ "accuracy", "correctly", "prediction", "calibration", "device", "errors", "module", "sensor", "error", "validation" ], [ "tensor", "tensors", "vectors", "matrices", "manifold", "euclidean", "vector", "differentiable", "orthogonal", "quadratic" ], [ "testing", "enhancing", "capability", "capabilities", "efficacy", "imaging", "transmission", "capacity", "tests", "boosting" ], [ "frequencies", "spectrum", "digital", "imaging", "representation", "orthogonal", "wireless", "gps", "coherent", "resolution" ], [ "proportional", "systems", "consists", "weighted", "consisting", "classification", "standard", "based", "classifier", "results" ], [ "ranging", "distribution", "margin", "largest", "stationary", "total", "generative", "million", "dual", "semi" ] ]
1.467583
average_word_embeddings_glove.6B.300d
0.8975
-0.327229
0.204065
0.889762
42
ArXiv ML Papers
50
[ [ "distribution", "margin", "dual", "boundary", "stationary", "proportional", "posterior", "normalizing", "magnetic", "soft" ], [ "downstream", "identify", "latent", "integrate", "communities", "developers", "outperform", "detect", "regions", "countries" ], [ "learnable", "topics", "benchmark", "ensembles", "bounds", "outlier", "valid", "intermediate", "predictors", "criteria" ], [ "python", "leverage", "achieve", "attain", "initialization", "outperform", "latent", "vanilla", "outperforming", "exploit" ], [ "mining", "architectural", "coarse", "numerical", "superiority", "considerable", "activities", "construction", "depth", "huge" ], [ "framework", "solution", "basis", "samples", "modalities", "scenarios", "layer", "yield", "feasibility", "elements" ], [ "market", "gains", "weaker", "benchmark", "price", "exchange", "derivatives", "federated", "share", "leveraged" ], [ "languages", "linguistic", "word", "translation", "dictionary", "population", "english", "words", "language", "meaning" ], [ "recognition", "gpus", "express", "gps", "normalized", "relations", "expressed", "respect", "temporal", "distance" ], [ "process", "processes", "gaussian", "inspection", "stochastic", "automated", "monitoring", "markov", "automatic", "continuous" ], [ "universal", "architectural", "criteria", "color", "patterns", "association", "collect", "items", "measurement", "discover" ], [ "facial", "mri", "discrimination", "posterior", "classes", "transferred", "class", "involving", "preference", "procedure" ], [ "attributes", "techniques", "strengths", "characteristic", "distinguishing", "characteristics", "quality", "products", "simplicity", "uses" ], [ "addressing", "acoustic", "speech", "speaker", "signals", "signal", "voice", "audio", "noise", "noisy" ], [ "unstructured", "data", "stored", "databases", "compressed", "evidence", "storage", "database", "information", "lightweight" ], [ "classifier", "conditional", "modal", "accurately", "similarity", "reasonable", "pairwise", "detect", "person", "facial" ], [ "patch", "survey", "vanilla", "deep", "logistic", "regression", "tree", "convex", "recovery", "root" ], [ "rules", "synthetic", "modifications", "bounds", "modified", "modification", "generic", "limits", "changes", "category" ], [ "generating", "energy", "pruning", "power", "randomly", "binary", "consumption", "generator", "transformers", "solely" ], [ "hardware", "scalability", "atari", "platforms", "implementations", "scalable", "server", "architectures", "gpus", "computing" ], [ "enhance", "utilization", "efficient", "efficiency", "rl", "enhancing", "rich", "enhancement", "attractive", "augment" ], [ "shape", "direction", "paradigm", "structure", "agnostic", "directions", "coherent", "broadly", "unified", "hierarchical" ], [ "code", "imposes", "rules", "strict", "safety", "codes", "absolute", "privacy", "labeling", "rl" ], [ "gender", "denoising", "respect", "perturbations", "diversity", "individual", "challenges", "discriminate", "fairness", "equal" ], [ "taxonomy", "classification", "protocol", "changing", "et", "defines", "entropy", "temperature", "evolving", "evolution" ], [ "overhead", "classical", "view", "music", "maximization", "dictionary", "camera", "settings", "art", "modal" ], [ "hypothesis", "perception", "biases", "negative", "bias", "cognitive", "poisoning", "distortion", "perceptual", "reasoning" ], [ "reliable", "costly", "convolutional", "mcmc", "labels", "pairwise", "distances", "accurate", "expensive", "subspaces" ], [ "verification", "training", "evaluation", "investigation", "retrieval", "inspection", "insight", "intelligence", "analysis", "thorough" ], [ "online", "internet", "mobile", "google", "wireless", "phenomena", "interactive", "dirichlet", "videos", "streaming" ], [ "coherent", "errors", "magnitude", "malicious", "visual", "results", "aggregating", "similarity", "correction", "sequences" ], [ "overview", "correction", "autoregressive", "results", "consistency", "sketch", "approximation", "epsilon", "statistical", "abstraction" ], [ "applicability", "navigation", "distances", "ml", "kl", "logistic", "distribution", "resolution", "sizes", "available" ], [ "gaussian", "beta", "variance", "random", "sampling", "bernoulli", "error", "distributions", "sample", "estimator" ], [ "match", "game", "games", "players", "play", "matches", "scoring", "goals", "super", "score" ], [ "graph", "graphs", "nodes", "embedding", "vertex", "vertices", "benchmark", "edges", "node", "embeddings" ], [ "interventions", "statistically", "hypothesis", "strategy", "outcomes", "programming", "successful", "feasible", "vector", "effects" ], [ "classic", "convergence", "logistic", "superiority", "regions", "region", "origin", "central", "captured", "inequality" ], [ "favorably", "superior", "margin", "ranking", "highest", "weighted", "biased", "compared", "posterior", "computationally" ], [ "networks", "neural", "programming", "convolutional", "channels", "network", "channel", "backpropagation", "cells", "cnn" ], [ "regret", "issue", "agent", "intractable", "discussed", "documents", "revisit", "details", "confirm", "question" ], [ "detection", "malicious", "detect", "detecting", "detector", "attack", "threat", "malware", "targeting", "target" ], [ "mild", "severe", "weather", "magnitude", "grows", "event", "category", "occurs", "hybrid", "brings" ], [ "tensors", "tensor", "vector", "algebra", "matrices", "vectors", "hessian", "gradient", "symmetric", "raw" ], [ "obstacles", "solving", "task", "tasks", "goals", "challenges", "answering", "points", "difficulty", "capturing" ], [ "prove", "generator", "superiority", "confidence", "proof", "reliable", "empirically", "belief", "proving", "usefulness" ], [ "quantization", "perceptual", "trees", "pruning", "inputs", "rl", "selection", "invariance", "shed", "label" ], [ "achieve", "frequency", "rank", "achieved", "paper", "pattern", "papers", "uniform", "degrees", "rate" ], [ "score", "scoring", "points", "goals", "textual", "scores", "output", "outputs", "generator", "variable" ], [ "rapid", "ascent", "accelerated", "descent", "gradient", "gradients", "rates", "rate", "convergence", "stochastic" ] ]
2.024288
average_word_embeddings_glove.6B.300d
0.884
-0.340219
0.194242
0.893565
42
ArXiv ML Papers
CombinedTM
10
[ [ "adversarial", "against", "that", "model", "models", "attack", "examples", "training", "attacks", "robust" ], [ "distributions", "estimator", "obtain", "variational", "posterior", "gaussian", "numerical", "establish", "observations", "nearest" ], [ "research", "and", "machine", "from", "human", "to", "this", "these", "in", "are" ], [ "previous", "net", "cnn", "hardware", "segmentation", "challenge", "recurrent", "architecture", "achieved", "baseline" ], [ "policy", "algorithm", "optimization", "agent", "reward", "problem", "rl", "stochastic", "gradient", "reinforcement" ], [ "and", "is", "model", "the", "proposed", "based", "data", "on", "to", "learning" ], [ "algorithm", "matrix", "for", "in", "problem", "is", "that", "the", "of", "by" ], [ "to", "the", "network", "networks", "neural", "data", "of", "we", "and", "as" ], [ "on", "embedding", "graph", "language", "learn", "representations", "node", "graphs", "tasks", "from" ], [ "symbolic", "concept", "94", "important", "future", "challenges", "implementation", "traditional", "biological", "intelligence" ] ]
552.939632
average_word_embeddings_glove.6B.300d
0.84
-0.043813
0.139993
0.692827
42
ArXiv ML Papers
CombinedTM
20
[ [ "word", "language", "transformer", "text", "languages", "visual", "representations", "pre", "cross", "speech" ], [ "supervised", "that", "learning", "datasets", "self", "user", "on", "contrastive", "data", "unlabeled" ], [ "actions", "reinforcement", "control", "state", "rl", "classical", "policy", "action", "robot", "imitation" ], [ "lower", "bounds", "estimator", "delta", "sample", "algorithm", "bound", "bandits", "bandit", "problem" ], [ "the", "method", "is", "data", "proposed", "clustering", "methods", "kernel", "variables", "classification" ], [ "as", "of", "neural", "relu", "parameters", "with", "physics", "network", "networks", "we" ], [ "bayesian", "likelihood", "posterior", "variational", "monte", "gaussian", "chain", "inference", "carlo", "mixture" ], [ "model", "architecture", "training", "is", "to", "on", "the", "segmentation", "teacher", "and" ], [ "deep", "with", "traffic", "and", "based", "learning", "performance", "accuracy", "classification", "detection" ], [ "gradient", "stochastic", "descent", "non", "convergence", "convex", "optimization", "for", "problems", "methods" ], [ "in", "is", "of", "the", "that", "algorithm", "for", "matrix", "we", "queries" ], [ "adversarial", "attacks", "training", "against", "attack", "model", "robustness", "models", "box", "defense" ], [ "been", "challenges", "techniques", "current", "recommendation", "comprehensive", "made", "clinical", "years", "related" ], [ "memory", "neural", "networks", "precision", "depth", "bit", "scale", "quantization", "performance", "network" ], [ "to", "the", "of", "in", "and", "by", "day", "iot", "health", "sensor" ], [ "is", "to", "this", "agent", "that", "learning", "agents", "in", "reinforcement", "environment" ], [ "and", "data", "to", "be", "can", "we", "in", "from", "that", "models" ], [ "lstm", "imbalanced", "imbalance", "per", "overall", "segmentation", "among", "curve", "showed", "challenging" ], [ "movement", "94", "sufficiently", "alternative", "invariance", "kinds", "oracle", "strict", "detected", "rarely" ], [ "node", "graph", "nodes", "graphs", "structure", "feature", "embedding", "representation", "gnns", "channel" ] ]
587.474442
average_word_embeddings_glove.6B.300d
0.795
-0.041496
0.129791
0.724267
42
ArXiv ML Papers
CombinedTM
30
[ [ "actions", "rl", "action", "policy", "control", "reinforcement", "agent", "imitation", "environment", "policies" ], [ "time", "our", "series", "from", "that", "we", "hierarchical", "on", "datasets", "not" ], [ "dnn", "connected", "gender", "segmentation", "net", "map", "layer", "operation", "idea", "maps" ], [ "have", "challenges", "clinical", "deep", "pooling", "research", "these", "has", "and", "been" ], [ "for", "detection", "data", "is", "traffic", "system", "prediction", "speed", "based", "market" ], [ "bound", "case", "estimator", "log", "delta", "unknown", "sample", "frac", "lower", "bandit" ], [ "proposed", "devices", "transmission", "server", "to", "communication", "the", "federated", "is", "channel" ], [ "with", "architecture", "neural", "and", "on", "efficient", "performance", "nas", "cnns", "accuracy" ], [ "neural", "that", "we", "is", "for", "network", "in", "of", "relu", "matrix" ], [ "estimators", "optimization", "problems", "nearest", "gaussian", "distributed", "provide", "minimax", "tensor", "neighbor" ], [ "gan", "generative", "neurons", "networks", "images", "to", "of", "image", "the", "generator" ], [ "topological", "autoencoder", "topic", "vae", "3d", "geometric", "image", "autoencoders", "generating", "molecular" ], [ "distillation", "student", "the", "model", "group", "teacher", "on", "signals", "to", "iot" ], [ "stochastic", "gradient", "for", "convex", "complexity", "methods", "optimization", "convergence", "descent", "epsilon" ], [ "is", "that", "regret", "sqrt", "prior", "the", "we", "agent", "communication", "problem" ], [ "neural", "networks", "adversarial", "activation", "that", "training", "perturbations", "examples", "robust", "robustness" ], [ "model", "learning", "we", "attacks", "adversarial", "as", "attack", "models", "privacy", "to" ], [ "test", "bias", "for", "and", "face", "day", "human", "dataset", "research", "groups" ], [ "of", "patient", "side", "patients", "the", "effects", "and", "an", "cancer", "ct" ], [ "data", "regression", "clustering", "kernel", "algorithms", "structured", "concept", "stream", "points", "algorithm" ], [ "architectures", "recurrent", "memory", "rnn", "hardware", "art", "state", "parallel", "character", "significant" ], [ "this", "in", "can", "to", "that", "robot", "from", "diverse", "search", "learning" ], [ "extensively", "population", "rarely", "ask", "center", "tune", "answer", "observing", "kinds", "description" ], [ "information", "language", "words", "nlp", "visual", "word", "text", "sentence", "context", "bleu" ], [ "graph", "graphs", "node", "nodes", "embedding", "feature", "gnns", "link", "classification", "capture" ], [ "tasks", "pre", "training", "vision", "transformer", "trained", "domain", "supervised", "speech", "on" ], [ "the", "sensor", "in", "treatment", "queries", "of", "is", "by", "that", "for" ], [ "data", "labeled", "domain", "learning", "target", "feature", "unlabeled", "the", "source", "and" ], [ "days", "technology", "collected", "presented", "project", "physics", "already", "traditional", "explainable", "focuses" ], [ "uncertainty", "likelihood", "variational", "posterior", "distribution", "bayesian", "estimation", "inference", "monte", "approximate" ] ]
617.524268
average_word_embeddings_glove.6B.300d
0.813333
-0.047543
0.125235
0.746035
42
ArXiv ML Papers
CombinedTM
40
[ [ "service", "modes", "each", "are", "which", "one", "reference", "from", "multiple", "different" ], [ "rank", "algorithms", "data", "structured", "metric", "algorithm", "matrix", "stream", "learning", "that" ], [ "to", "server", "is", "computation", "communication", "proposed", "federated", "devices", "central", "optimization" ], [ "gnns", "graph", "structure", "link", "attribute", "nodes", "graphs", "node", "embeddings", "structural" ], [ "the", "to", "is", "meta", "of", "an", "this", "learning", "in", "learner" ], [ "dynamics", "media", "paradigm", "machine", "fact", "control", "quantum", "constraints", "be", "how" ], [ "research", "in", "social", "design", "deep", "and", "memory", "health", "challenges", "have" ], [ "images", "of", "to", "segmentation", "gan", "our", "we", "as", "image", "neurons" ], [ "we", "and", "to", "the", "is", "that", "of", "quantum", "19", "communities" ], [ "real", "metric", "actions", "robot", "graph", "unstructured", "planning", "imitation", "action", "long" ], [ "real", "that", "systems", "learning", "to", "recommender", "item", "robot", "interactive", "recommendation" ], [ "training", "examples", "robustness", "perturbations", "robust", "adversarial", "attacks", "against", "box", "defense" ], [ "of", "test", "the", "hypothesis", "distribution", "divergence", "testing", "is", "calibration", "channels" ], [ "can", "ml", "the", "and", "in", "of", "day", "for", "94", "patients" ], [ "pre", "language", "tasks", "from", "languages", "bert", "downstream", "task", "scratch", "transformer" ], [ "gaussian", "monte", "variational", "posterior", "approach", "approximate", "carlo", "control", "objective", "mcmc" ], [ "in", "of", "as", "graph", "methods", "laplacian", "link", "been", "dimensional", "relationships" ], [ "such", "or", "assessment", "material", "as", "tests", "bias", "important", "nlp", "importance" ], [ "detected", "2018", "would", "base", "identified", "abstract", "xgboost", "al", "contain", "those" ], [ "with", "resolution", "at", "performance", "on", "cnns", "bit", "neural", "scales", "channel" ], [ "introduce", "vae", "resolution", "autoencoder", "super", "music", "gender", "experience", "speaker", "acoustic" ], [ "probability", "minimizing", "obtain", "pac", "distributed", "family", "means", "variants", "estimators", "differential" ], [ "rl", "action", "state", "agent", "agents", "reinforcement", "decentralized", "learning", "trajectory", "games" ], [ "convolutional", "net", "network", "convolution", "proposes", "neural", "hardware", "segmentation", "networks", "convolutions" ], [ "linear", "frac", "big", "delta", "log", "bandit", "bound", "arm", "bandits", "unknown" ], [ "matrix", "relu", "greedy", "that", "random", "subspaces", "error", "for", "width", "bounds" ], [ "neural", "training", "network", "gnns", "generalization", "noisy", "pruning", "networks", "loss", "its" ], [ "entropy", "slow", "guarantees", "compositional", "dropout", "flow", "uncertainty", "kernels", "parameter", "estimation" ], [ "to", "object", "from", "and", "was", "images", "using", "models", "pose", "of" ], [ "labeled", "learning", "data", "domain", "datasets", "supervised", "deep", "unlabeled", "self", "training" ], [ "attacks", "model", "box", "attack", "models", "against", "privacy", "adversarial", "malware", "black" ], [ "boosting", "reports", "lstm", "2d", "patch", "application", "score", "competition", "created", "simulation" ], [ "mri", "comprehensive", "imaging", "clinical", "computer", "deep", "years", "usage", "physics", "current" ], [ "speech", "coding", "attention", "the", "feature", "source", "model", "audio", "information", "target" ], [ "convergence", "gradient", "stochastic", "convex", "methods", "descent", "optimization", "problems", "point", "proximal" ], [ "that", "our", "we", "regret", "for", "bounds", "algorithm", "bound", "bandit", "losses" ], [ "models", "series", "distributions", "hierarchical", "causal", "fidelity", "model", "forecasting", "probabilistic", "forecast" ], [ "representations", "language", "text", "words", "word", "image", "semantic", "translation", "visual", "sentence" ], [ "method", "time", "feature", "clustering", "series", "regression", "data", "is", "patient", "sensor" ], [ "vehicle", "traffic", "based", "driving", "anomaly", "sensor", "detection", "and", "cancer", "on" ] ]
603.515563
average_word_embeddings_glove.6B.300d
0.7825
-0.066818
0.127927
0.766605
42
ArXiv ML Papers
CombinedTM
50
[ [ "solving", "wireless", "include", "learnt", "procedures", "deal", "outside", "what", "kinds", "learns" ], [ "attribute", "feature", "structure", "dynamic", "by", "sparse", "cnn", "outlier", "embedding", "proposal" ], [ "data", "time", "imputation", "patient", "missing", "values", "method", "series", "variables", "strategy" ], [ "domain", "the", "brain", "classes", "target", "resolution", "feature", "reports", "cell", "segmentation" ], [ "supervised", "training", "classification", "cifar", "unlabeled", "unsupervised", "datasets", "labeled", "self", "semi" ], [ "biases", "fairness", "quantum", "tasks", "machine", "systems", "learning", "can", "human", "robot" ], [ "embeddings", "representations", "language", "visual", "word", "ability", "reasoning", "nlp", "words", "text" ], [ "to", "networks", "for", "neurons", "neural", "from", "deep", "modes", "as", "approach" ], [ "is", "for", "data", "matrix", "projections", "structured", "matrices", "regression", "in", "computing" ], [ "interaction", "in", "humans", "to", "of", "individual", "behavior", "dynamics", "body", "entities" ], [ "varepsilon", "sample", "sensitivity", "log", "estimator", "shape", "interval", "frac", "component", "least" ], [ "variational", "carlo", "bayesian", "variance", "topological", "monte", "mini", "inference", "gradient", "uses" ], [ "to", "processes", "the", "an", "by", "of", "eye", "and", "in", "regions" ], [ "the", "channel", "gan", "hypothesis", "generator", "coding", "generative", "source", "transmission", "latent" ], [ "on", "covid", "for", "performance", "and", "with", "svm", "based", "accuracy", "eeg" ], [ "extracted", "lstm", "detailed", "filter", "prediction", "forecasting", "svm", "rnn", "tensor", "frequency" ], [ "decentralized", "model", "federated", "server", "centralized", "learning", "devices", "framework", "distributed", "privacy" ], [ "dl", "we", "to", "synthetic", "real", "data", "of", "augmentation", "images", "simulated" ], [ "rl", "agents", "agent", "the", "reinforcement", "is", "communication", "with", "an", "learning" ], [ "for", "bound", "algorithm", "expert", "error", "our", "interventions", "correct", "bounds", "squared" ], [ "descent", "gradient", "optimization", "pooling", "stochastic", "problems", "proximal", "convex", "minimax", "ascent" ], [ "linear", "algorithm", "rank", "noise", "sequential", "kernel", "acquisition", "efficiently", "regression", "constrained" ], [ "causal", "minimum", "label", "variables", "free", "the", "problem", "of", "by", "recovery" ], [ "the", "30", "94", "day", "of", "calibration", "test", "for", "method", "is" ], [ "techniques", "kernels", "or", "are", "compositional", "such", "related", "large", "more", "open" ], [ "algorithm", "the", "method", "pairwise", "of", "proposed", "data", "metric", "treatment", "to" ], [ "graphs", "graph", "representation", "capture", "contrastive", "representations", "from", "existing", "our", "conditioning" ], [ "review", "explain", "players", "users", "collection", "sensing", "modelling", "largely", "recognize", "boosting" ], [ "shift", "bias", "normalization", "degree", "gender", "vae", "joint", "landscape", "pair", "matching" ], [ "have", "been", "clinical", "imaging", "comprehensive", "image", "gans", "deep", "explanation", "explanations" ], [ "filters", "networks", "side", "graph", "effects", "gnns", "network", "convolutional", "node", "cnns" ], [ "attention", "memory", "compared", "architectures", "resolution", "recurrent", "character", "decoding", "competitive", "driving" ], [ "comparable", "patch", "reveal", "completely", "oracle", "errors", "just", "select", "fashion", "operators" ], [ "geometric", "modified", "example", "capacity", "storage", "geometry", "values", "compress", "concept", "3d" ], [ "neural", "activation", "network", "networks", "relu", "physics", "informed", "with", "of", "our" ], [ "in", "influence", "quantum", "models", "that", "can", "to", "for", "we", "be" ], [ "which", "for", "algorithm", "policies", "state", "convergence", "markov", "policy", "greedy", "epsilon" ], [ "em", "we", "that", "algorithms", "of", "queries", "as", "topic", "is", "in" ], [ "content", "fact", "lead", "software", "information", "document", "working", "sentences", "style", "textual" ], [ "bandits", "combinatorial", "arm", "armed", "exploitation", "exploration", "regret", "prove", "bandit", "setting" ], [ "inference", "distributions", "hierarchical", "series", "distribution", "forecast", "probabilistic", "relations", "posterior", "likelihood" ], [ "trajectory", "actions", "imitation", "rl", "policy", "planning", "action", "objects", "reinforcement", "control" ], [ "fidelity", "but", "defense", "training", "attacks", "adversarial", "federated", "models", "on", "trade" ], [ "box", "black", "against", "adversarial", "inputs", "attacks", "examples", "unstructured", "malicious", "behaviors" ], [ "detect", "vehicle", "location", "lines", "sensor", "and", "driving", "behavior", "ai", "detection" ], [ "auxiliary", "adversarial", "gradient", "student", "group", "distillation", "training", "teacher", "to", "targets" ], [ "and", "researchers", "research", "design", "scientific", "challenges", "machine", "data", "recommendation", "in" ], [ "transformer", "model", "performance", "downstream", "speech", "end", "scratch", "tasks", "bert", "language" ], [ "and", "malware", "iot", "model", "attack", "to", "the", "detection", "models", "rate" ], [ "clustering", "acoustic", "separation", "audio", "paper", "speech", "correlated", "scientific", "core", "heterogeneous" ] ]
577.830082
average_word_embeddings_glove.6B.300d
0.792
-0.099059
0.122829
0.781891
42
ArXiv ML Papers
ZeroShotTM
10
[ [ "feature", "network", "node", "graph", "networks", "graphs", "nodes", "embedding", "gnns", "learn" ], [ "for", "classification", "segmentation", "deep", "data", "images", "image", "convolutional", "using", "models" ], [ "agents", "reinforcement", "agent", "policy", "we", "that", "algorithm", "rl", "decision", "action" ], [ "of", "the", "is", "data", "distribution", "for", "that", "noise", "in", "matrix" ], [ "efficiency", "learning", "cost", "performance", "accuracy", "models", "model", "to", "memory", "training" ], [ "in", "the", "detection", "are", "and", "attacks", "to", "of", "model", "models" ], [ "tasks", "task", "language", "visual", "word", "representations", "human", "semantic", "text", "context" ], [ "inference", "output", "parameter", "measurements", "tensor", "weather", "uncertainty", "parameters", "dnn", "component" ], [ "assessment", "forecasting", "years", "techniques", "faces", "detected", "growing", "material", "2015", "root" ], [ "optimization", "gradient", "linear", "stochastic", "convex", "algorithm", "order", "convergence", "method", "problems" ] ]
545.146259
average_word_embeddings_glove.6B.300d
0.89
-0.030824
0.157314
0.733868
42
ArXiv ML Papers
ZeroShotTM
20
[ [ "their", "can", "to", "are", "models", "that", "we", "our", "these", "face" ], [ "from", "of", "based", "are", "study", "and", "data", "as", "in", "the" ], [ "learning", "tasks", "training", "trained", "model", "task", "models", "data", "performance", "transfer" ], [ "control", "policies", "reinforcement", "rl", "policy", "exploration", "agent", "environment", "actions", "action" ], [ "malicious", "lstm", "days", "pooling", "usage", "short", "movement", "volume", "out", "focuses" ], [ "attacks", "model", "models", "perturbations", "robust", "adversarial", "box", "training", "attack", "against" ], [ "in", "be", "kernel", "data", "of", "classification", "methods", "the", "algorithms", "method" ], [ "neural", "memory", "network", "to", "energy", "service", "deep", "networks", "with", "power" ], [ "of", "patients", "the", "detection", "an", "detect", "and", "cancer", "from", "based" ], [ "efficiency", "image", "segmentation", "on", "convolutional", "model", "performance", "with", "cnn", "accuracy" ], [ "word", "image", "speech", "transformer", "text", "audio", "sequence", "language", "recognition", "visual" ], [ "in", "the", "for", "of", "is", "this", "distribution", "test", "noise", "to" ], [ "where", "agent", "regret", "communication", "bandit", "online", "algorithm", "agents", "we", "problem" ], [ "learning", "tasks", "robot", "visual", "self", "goal", "representations", "learn", "objects", "human" ], [ "the", "matrix", "problem", "is", "algorithm", "rank", "for", "of", "that", "number" ], [ "structure", "features", "node", "domain", "graphs", "representation", "graph", "nodes", "interactions", "feature" ], [ "gradient", "optimization", "linear", "problems", "stochastic", "order", "convex", "convergence", "solving", "methods" ], [ "social", "researchers", "research", "challenges", "media", "information", "techniques", "software", "clinical", "engineering" ], [ "distribution", "shift", "probability", "family", "98", "approximate", "factor", "vertex", "parameter", "chain" ], [ "classical", "graphs", "graph", "dimensional", "tensor", "sparse", "statistical", "distributions", "classifiers", "space" ] ]
546.179139
average_word_embeddings_glove.6B.300d
0.8
-0.019383
0.153126
0.732215
42
ArXiv ML Papers
ZeroShotTM
30
[ [ "metric", "data", "causal", "of", "as", "embedding", "methods", "learning", "on", "in" ], [ "our", "models", "model", "detection", "detect", "to", "privacy", "based", "attacks", "face" ], [ "respectively", "from", "detection", "object", "and", "was", "of", "images", "segmentation", "the" ], [ "adversarial", "dnns", "model", "accuracy", "models", "robust", "training", "fidelity", "scaling", "overfitting" ], [ "representations", "word", "language", "visual", "text", "semantic", "style", "robot", "words", "reasoning" ], [ "gnn", "we", "teacher", "training", "that", "gnns", "networks", "knowledge", "student", "adversarial" ], [ "the", "of", "in", "and", "detection", "cancer", "to", "for", "driving", "as" ], [ "methods", "is", "from", "data", "method", "the", "based", "time", "for", "model" ], [ "supervised", "speech", "cnn", "audio", "signals", "quality", "visual", "feature", "signal", "channel" ], [ "reinforcement", "action", "optimal", "value", "policies", "goal", "policy", "trajectory", "algorithms", "both" ], [ "treatment", "is", "in", "distribution", "of", "for", "time", "day", "test", "the" ], [ "regression", "kernel", "distributions", "gaussian", "privacy", "tensor", "private", "synthetic", "empirical", "approximations" ], [ "data", "method", "proposed", "methods", "domain", "classification", "feature", "is", "learning", "datasets" ], [ "and", "this", "ml", "should", "ai", "be", "recommendation", "these", "systems", "community" ], [ "relu", "loss", "pruning", "network", "networks", "neural", "filters", "activation", "architectures", "functions" ], [ "to", "model", "adversarial", "models", "attacks", "attack", "black", "are", "we", "box" ], [ "variational", "requires", "markov", "carlo", "validation", "estimates", "inference", "free", "continuous", "graphical" ], [ "agent", "actions", "reinforcement", "learning", "environment", "robot", "rl", "reward", "exploration", "tasks" ], [ "agent", "sqrt", "we", "agents", "is", "communication", "that", "where", "regret", "bound" ], [ "performance", "high", "energy", "with", "efficiency", "devices", "accuracy", "time", "on", "memory" ], [ "is", "of", "generative", "that", "gan", "to", "we", "scene", "model", "the" ], [ "node", "graph", "graphs", "nodes", "representation", "embedding", "contrastive", "features", "capture", "embeddings" ], [ "clinical", "machine", "engineering", "deep", "techniques", "research", "disease", "software", "data", "computer" ], [ "matrix", "that", "is", "of", "number", "in", "the", "we", "rank", "input" ], [ "net", "device", "lstm", "channels", "numbers", "filter", "modified", "wireless", "active", "performed" ], [ "algorithms", "proposed", "the", "learning", "is", "algorithm", "in", "problem", "of", "private" ], [ "term", "concepts", "objects", "classifiers", "mechanism", "normalization", "sound", "event", "account", "events" ], [ "zero", "translation", "pre", "language", "languages", "encoder", "text", "task", "decoder", "transformer" ], [ "relations", "server", "head", "millions", "competition", "super", "participants", "frameworks", "answer", "major" ], [ "order", "epsilon", "stochastic", "problems", "convergence", "first", "convex", "optimization", "gradient", "non" ] ]
545.88194
average_word_embeddings_glove.6B.300d
0.743333
-0.049198
0.136654
0.740591
42
ArXiv ML Papers
ZeroShotTM
40
[ [ "label", "distance", "methods", "metric", "classification", "data", "proposed", "method", "feature", "art" ], [ "graphs", "tensor", "spectrum", "anomaly", "decomposition", "measurement", "group", "lstm", "anomalies", "full" ], [ "network", "nodes", "node", "structure", "graph", "attribute", "embedding", "networks", "representation", "interactions" ], [ "exploration", "control", "dynamics", "policies", "policy", "reinforcement", "rl", "space", "learn", "learning" ], [ "deep", "training", "neural", "networks", "model", "accuracy", "traffic", "models", "network", "prediction" ], [ "networks", "filters", "convolutional", "pruning", "accelerators", "neural", "hardware", "network", "bit", "layers" ], [ "stochastic", "convex", "gradient", "constrained", "optimization", "policy", "convergence", "algorithms", "descent", "problems" ], [ "based", "data", "as", "and", "in", "accuracy", "model", "prediction", "from", "for" ], [ "training", "neural", "with", "networks", "network", "deep", "performance", "architectures", "accuracy", "memory" ], [ "users", "events", "text", "computer", "sound", "profiles", "bias", "usage", "social", "profile" ], [ "rl", "online", "regret", "agent", "communication", "agents", "is", "learning", "an", "distributed" ], [ "representation", "tasks", "supervised", "domain", "contrastive", "graph", "learning", "training", "framework", "representations" ], [ "agent", "we", "policy", "decision", "games", "rl", "action", "agents", "fair", "multi" ], [ "representation", "of", "the", "image", "which", "by", "to", "an", "generative", "background" ], [ "box", "robustness", "attacks", "adversarial", "training", "examples", "perturbations", "fidelity", "against", "black" ], [ "words", "representations", "visual", "semantic", "languages", "translation", "language", "word", "attention", "text" ], [ "and", "image", "classification", "by", "images", "segmentation", "object", "for", "detection", "of" ], [ "private", "euclidean", "distributed", "majority", "minimize", "varepsilon", "joint", "privacy", "locally", "neighbor" ], [ "attacks", "model", "attack", "we", "are", "have", "iot", "models", "based", "in" ], [ "of", "high", "classification", "methods", "in", "stream", "data", "as", "be", "are" ], [ "and", "the", "of", "for", "is", "training", "method", "on", "in", "an" ], [ "textit", "score", "negative", "boosting", "urban", "demand", "temporal", "weather", "depth", "predictors" ], [ "software", "clinical", "techniques", "challenges", "ml", "industry", "research", "engineering", "years", "community" ], [ "probabilistic", "models", "hierarchical", "model", "uncertainty", "inference", "bayesian", "forecasts", "forecasting", "estimation" ], [ "concepts", "scientific", "useful", "approximately", "correct", "represent", "part", "called", "pooling", "very" ], [ "estimator", "probability", "regression", "linear", "error", "frac", "bias", "sensitivity", "bounds", "interval" ], [ "prediction", "classification", "selection", "proposed", "method", "methods", "from", "time", "feature", "new" ], [ "clustering", "graph", "matrix", "problem", "algorithms", "graphs", "nodes", "cluster", "clusters", "theoretical" ], [ "human", "are", "robot", "to", "tasks", "that", "diverse", "objects", "world", "or" ], [ "algorithm", "bandit", "we", "regret", "an", "that", "our", "is", "class", "prior" ], [ "super", "resolution", "sequence", "sentences", "net", "video", "relations", "explanation", "vanilla", "baseline" ], [ "end", "speech", "recognition", "performance", "on", "downstream", "image", "loss", "transformer", "resolution" ], [ "stochastic", "optimization", "problems", "solving", "variational", "gradient", "posterior", "proximal", "descent", "function" ], [ "to", "research", "human", "on", "questions", "influence", "are", "these", "and", "fairness" ], [ "algorithm", "algorithms", "of", "sampling", "private", "the", "in", "that", "label", "is" ], [ "and", "detection", "vehicle", "to", "health", "detect", "driving", "in", "of", "model" ], [ "knowledge", "user", "items", "domain", "adaptation", "domains", "query", "target", "search", "objects" ], [ "can", "data", "to", "of", "from", "are", "images", "and", "deep", "be" ], [ "embedding", "deep", "to", "metric", "methods", "learning", "framework", "source", "approach", "knowledge" ], [ "the", "of", "that", "sensor", "in", "matrix", "is", "noise", "this", "low" ] ]
548.787165
average_word_embeddings_glove.6B.300d
0.6575
-0.040872
0.141755
0.74298
42
ArXiv ML Papers
ZeroShotTM
50
[ [ "attention", "visual", "distortion", "proposed", "segmentation", "separation", "speech", "signals", "feature", "audio" ], [ "networks", "architectures", "pruning", "loss", "neural", "efficient", "architecture", "art", "search", "parameters" ], [ "clusters", "capacity", "net", "vector", "tensor", "simple", "anomalies", "operation", "support", "lasso" ], [ "convolutional", "bit", "networks", "neural", "memory", "performance", "hardware", "with", "deep", "art" ], [ "the", "data", "method", "and", "sensor", "using", "for", "time", "of", "anomaly" ], [ "networks", "network", "neural", "convolutional", "temperature", "hardware", "fitting", "convolution", "frequency", "dnn" ], [ "model", "dnn", "samples", "training", "models", "adversarial", "dnns", "attack", "that", "parameters" ], [ "is", "the", "proposed", "data", "for", "of", "method", "matrix", "methods", "metric" ], [ "domain", "knowledge", "user", "from", "recommendation", "in", "users", "adaptation", "task", "representations" ], [ "algorithms", "problem", "of", "query", "queries", "data", "problems", "inference", "complexity", "from" ], [ "we", "online", "agents", "an", "agent", "communication", "regret", "neighbors", "strategy", "sqrt" ], [ "stochastic", "convex", "linear", "gradient", "optimization", "convergence", "dimension", "order", "descent", "strongly" ], [ "theoretical", "matrix", "of", "in", "the", "problem", "is", "objects", "clustering", "rank" ], [ "data", "with", "training", "networks", "compact", "model", "parameters", "ensemble", "neural", "accuracy" ], [ "queries", "is", "are", "the", "distribution", "causal", "to", "we", "in", "of" ], [ "patients", "from", "sensor", "with", "and", "vehicle", "cancer", "ct", "the", "of" ], [ "traffic", "systems", "to", "data", "user", "in", "based", "prediction", "of", "and" ], [ "few", "consistency", "video", "image", "gans", "label", "frames", "frame", "previous", "generate" ], [ "visual", "environments", "learning", "tasks", "current", "deep", "systems", "perception", "robot", "able" ], [ "variational", "generative", "bayesian", "optimization", "inference", "posterior", "computational", "methods", "estimation", "flows" ], [ "conditions", "covid", "19", "the", "testing", "of", "for", "day", "treatment", "missing" ], [ "learning", "graph", "embedding", "contrastive", "methods", "graphs", "art", "manifold", "node", "framework" ], [ "to", "we", "models", "attack", "attacks", "model", "samples", "dataset", "malware", "detection" ], [ "network", "performance", "cnn", "with", "training", "speech", "model", "it", "networks", "parameters" ], [ "euclidean", "market", "diffusion", "spectrum", "assumptions", "statistical", "private", "financial", "extent", "mcmc" ], [ "policy", "optimal", "learning", "action", "policies", "reinforcement", "value", "algorithm", "convergence", "problem" ], [ "methods", "gradient", "dynamics", "constraints", "constrained", "method", "observations", "stochastic", "optimization", "order" ], [ "language", "bleu", "text", "style", "speech", "languages", "words", "translation", "word", "visual" ], [ "robot", "human", "environment", "to", "environments", "systems", "how", "learning", "reinforcement", "or" ], [ "estimating", "right", "frac", "left", "varepsilon", "interval", "locally", "estimates", "requires", "graphical" ], [ "learning", "symbolic", "space", "robot", "reward", "reinforcement", "policy", "objects", "tasks", "behaviors" ], [ "ml", "machine", "research", "researchers", "human", "and", "questions", "challenges", "of", "these" ], [ "task", "tasks", "performance", "supervised", "training", "programs", "trained", "words", "end", "on" ], [ "source", "the", "which", "interaction", "feature", "features", "representation", "attention", "interactions", "target" ], [ "cost", "engineering", "imaging", "power", "applications", "machine", "monitoring", "detection", "and", "accuracy" ], [ "models", "forecasting", "forecasts", "approach", "data", "datasets", "such", "as", "design", "forecast" ], [ "information", "media", "social", "software", "industry", "spread", "platform", "countries", "patterns", "users" ], [ "demands", "major", "assessment", "represent", "good", "created", "eight", "promising", "massive", "idea" ], [ "attacks", "world", "user", "models", "model", "learning", "are", "active", "to", "based" ], [ "exploration", "rl", "agent", "agents", "reward", "multi", "communication", "environment", "safety", "reinforcement" ], [ "which", "prove", "linear", "theoretical", "bounds", "optimal", "we", "policy", "setting", "further" ], [ "is", "pooling", "network", "the", "in", "matrix", "of", "dimensional", "space", "problem" ], [ "model", "based", "prediction", "gan", "and", "performance", "to", "dataset", "images", "proposed" ], [ "target", "representations", "images", "pre", "supervised", "task", "domain", "tasks", "image", "language" ], [ "accuracy", "eeg", "based", "the", "from", "proposed", "an", "traffic", "and", "detection" ], [ "we", "that", "model", "forecasting", "models", "forecasts", "data", "fidelity", "forecast", "as" ], [ "gnns", "node", "nodes", "graph", "spectral", "filters", "structure", "network", "local", "position" ], [ "where", "for", "that", "algorithm", "is", "distribution", "bound", "sample", "class", "prior" ], [ "classification", "between", "of", "classifier", "representation", "structure", "feature", "in", "novel", "detection" ], [ "attacks", "perturbations", "defense", "robustness", "against", "adversarial", "box", "examples", "robust", "attack" ] ]
625.48978
average_word_embeddings_glove.6B.300d
0.608
-0.037376
0.13713
0.739937
42
BBC News
BERTopic
10
[ [ "and", "he", "to", "for", "in", "of", "the", "but", "we", "his" ], [ "and", "of", "her", "in", "to", "the", "she", "world", "was", "indoor" ], [ "and", "open", "the", "to", "his", "was", "in", "of", "but", "for" ], [ "for", "that", "of", "in", "and", "to", "said", "on", "the", "is" ], [ "to", "of", "for", "in", "the", "and", "film", "was", "it", "best" ], [ "it", "for", "are", "to", "in", "and", "is", "of", "the", "that" ] ]
5.115115
average_word_embeddings_glove.6B.300d
0.4
-0.023793
0.287191
0.564488
42
BBC News
BERTopic
20
[ [ "and", "he", "to", "for", "in", "of", "the", "but", "we", "his" ], [ "and", "of", "her", "in", "to", "the", "she", "world", "was", "indoor" ], [ "and", "open", "the", "to", "his", "was", "in", "of", "but", "for" ], [ "for", "that", "of", "in", "and", "to", "said", "on", "the", "is" ], [ "to", "of", "for", "in", "the", "and", "film", "was", "it", "best" ], [ "it", "for", "are", "to", "in", "and", "is", "of", "the", "that" ] ]
4.639692
average_word_embeddings_glove.6B.300d
0.4
-0.023793
0.287191
0.571718
42
BBC News
BERTopic
30
[ [ "and", "he", "to", "for", "in", "of", "the", "but", "we", "his" ], [ "and", "of", "her", "in", "to", "the", "she", "world", "was", "indoor" ], [ "and", "open", "the", "to", "his", "was", "in", "of", "but", "for" ], [ "for", "that", "of", "in", "and", "to", "said", "on", "the", "is" ], [ "to", "of", "for", "in", "the", "and", "film", "was", "it", "best" ], [ "it", "for", "are", "to", "in", "and", "is", "of", "the", "that" ] ]
4.414884
average_word_embeddings_glove.6B.300d
0.4
-0.023793
0.287191
0.5738
42
BBC News
BERTopic
40
[ [ "and", "he", "to", "for", "in", "of", "the", "but", "we", "his" ], [ "and", "of", "her", "in", "to", "the", "she", "world", "was", "indoor" ], [ "and", "open", "the", "to", "his", "was", "in", "of", "but", "for" ], [ "for", "that", "of", "in", "and", "to", "said", "on", "the", "is" ], [ "to", "of", "for", "in", "the", "and", "film", "was", "it", "best" ], [ "it", "for", "are", "to", "in", "and", "is", "of", "the", "that" ] ]
4.642083
average_word_embeddings_glove.6B.300d
0.4
-0.023793
0.287191
0.5685
42
BBC News
BERTopic
50
[ [ "and", "he", "to", "for", "in", "of", "the", "but", "we", "his" ], [ "and", "of", "her", "in", "to", "the", "she", "world", "was", "indoor" ], [ "and", "open", "the", "to", "his", "was", "in", "of", "but", "for" ], [ "for", "that", "of", "in", "and", "to", "said", "on", "the", "is" ], [ "to", "of", "for", "in", "the", "and", "film", "was", "it", "best" ], [ "it", "for", "are", "to", "in", "and", "is", "of", "the", "that" ] ]
4.597936
average_word_embeddings_glove.6B.300d
0.4
-0.023793
0.287191
0.569225
42
BBC News
NMF
10
[ [ "at", "by", "the", "first", "which", "it", "on", "to", "time", "from" ], [ "not", "we", "to", "that", "and", "is", "with", "have", "of", "it" ], [ "be", "are", "they", "by", "the", "that", "to", "said", "on", "have" ], [ "and", "his", "to", "mr", "was", "he", "said", "for", "would", "party" ], [ "in", "was", "to", "and", "with", "at", "his", "but", "for", "the" ], [ "its", "that", "was", "said", "were", "of", "the", "by", "in", "has" ], [ "with", "and", "for", "of", "more", "are", "is", "as", "they", "on" ], [ "that", "is", "it", "to", "music", "what", "in", "you", "not", "if" ], [ "minimum", "will", "for", "at", "in", "be", "is", "increase", "and", "that" ], [ "for", "25", "song", "robbie", "of", "last", "years", "best", "it", "and" ] ]
1.756336
average_word_embeddings_glove.6B.300d
0.49
-0.001058
0.269654
0.572547
42
BBC News
NMF
20
[ [ "which", "the", "has", "as", "to", "of", "by", "at", "this", "first" ], [ "and", "that", "we", "to", "of", "is", "not", "with", "have", "in" ], [ "the", "of", "to", "by", "up", "out", "and", "with", "take", "over" ], [ "him", "silk", "his", "he", "and", "the", "has", "is", "was", "party" ], [ "her", "was", "at", "uk", "last", "the", "year", "in", "world", "their" ], [ "than", "was", "by", "were", "an", "of", "one", "new", "or", "as" ], [ "in", "into", "and", "world", "as", "work", "with", "also", "other", "both" ], [ "is", "in", "to", "it", "you", "that", "but", "as", "has", "not" ], [ "film", "year", "also", "for", "at", "who", "is", "best", "up", "won" ], [ "robbie", "and", "years", "for", "best", "song", "25", "in", "last", "music" ], [ "are", "they", "have", "their", "on", "people", "you", "is", "the", "can" ], [ "was", "his", "but", "on", "the", "with", "after", "had", "it", "from" ], [ "be", "will", "on", "would", "new", "have", "in", "is", "could", "at" ], [ "and", "she", "black", "what", "to", "music", "that", "her", "the", "in" ], [ "would", "it", "said", "be", "was", "and", "he", "for", "had", "were" ], [ "minimum", "for", "and", "of", "to", "in", "will", "that", "increase", "are" ], [ "to", "for", "have", "that", "in", "file", "many", "firms", "this", "software" ], [ "he", "blair", "on", "mr", "labour", "election", "that", "party", "brown", "was" ], [ "are", "mobile", "more", "with", "on", "of", "as", "people", "tv", "and" ], [ "is", "us", "in", "on", "has", "its", "and", "said", "by", "with" ] ]
2.883286
average_word_embeddings_glove.6B.300d
0.45
0.001947
0.236665
0.584661
42
BBC News
NMF
30
[ [ "the", "of", "to", "time", "first", "only", "most", "by", "made", "into" ], [ "that", "and", "with", "in", "to", "is", "of", "we", "not", "be" ], [ "to", "work", "this", "up", "make", "out", "take", "of", "also", "000" ], [ "the", "he", "his", "has", "at", "him", "with", "who", "was", "been" ], [ "world", "the", "in", "year", "their", "european", "first", "last", "her", "uk" ], [ "new", "all", "most", "part", "from", "some", "of", "than", "one", "an" ], [ "and", "but", "it", "in", "you", "to", "if", "the", "like", "can" ], [ "and", "best", "it", "song", "that", "in", "25", "years", "but", "of" ], [ "has", "are", "is", "be", "there", "not", "but", "this", "in", "you" ], [ "best", "the", "film", "at", "her", "who", "she", "won", "awards", "award" ], [ "are", "their", "they", "or", "were", "people", "have", "them", "by", "with" ], [ "in", "but", "that", "not", "have", "we", "liverpool", "would", "are", "it" ], [ "be", "could", "and", "but", "to", "not", "should", "would", "new", "law" ], [ "and", "music", "to", "what", "she", "that", "black", "as", "people", "it" ], [ "work", "the", "also", "and", "other", "world", "into", "two", "both", "between" ], [ "to", "and", "in", "for", "that", "is", "minimum", "of", "will", "be" ], [ "for", "file", "technology", "in", "that", "not", "software", "and", "to", "this" ], [ "election", "mr", "labour", "blair", "the", "howard", "brown", "he", "minister", "party" ], [ "silk", "this", "for", "and", "in", "to", "party", "he", "has", "have" ], [ "in", "us", "is", "company", "has", "it", "by", "its", "with", "yukos" ], [ "added", "from", "up", "high", "an", "000", "the", "also", "for", "while" ], [ "after", "was", "who", "the", "when", "by", "but", "had", "she", "were" ], [ "his", "with", "after", "the", "from", "england", "but", "at", "game", "to" ], [ "more", "technology", "tv", "to", "mobile", "are", "people", "with", "services", "digital" ], [ "the", "which", "gadget", "it", "apple", "has", "be", "gadgets", "mobile", "at" ], [ "will", "new", "is", "have", "at", "be", "by", "which", "this", "next" ], [ "show", "on", "in", "day", "some", "the", "friday", "also", "from", "which" ], [ "year", "from", "growth", "at", "economy", "economic", "in", "us", "by", "sales" ], [ "it", "mr", "were", "said", "he", "by", "the", "had", "uk", "added" ], [ "such", "well", "as", "to", "an", "with", "more", "new", "one", "however" ] ]
4.106758
average_word_embeddings_glove.6B.300d
0.446667
0.012502
0.23947
0.626326
42
BBC News
NMF
40
[ [ "by", "time", "made", "of", "only", "most", "first", "to", "the", "into" ], [ "are", "not", "be", "is", "this", "in", "to", "but", "of", "there" ], [ "also", "up", "to", "take", "over", "this", "out", "make", "any", "000" ], [ "were", "when", "in", "was", "had", "the", "been", "by", "after", "which" ], [ "the", "their", "in", "world", "uk", "european", "new", "first", "final", "years" ], [ "new", "of", "one", "all", "than", "part", "and", "some", "most", "many" ], [ "world", "into", "the", "work", "and", "years", "from", "also", "other", "both" ], [ "and", "to", "best", "that", "song", "of", "in", "years", "it", "25" ], [ "new", "by", "this", "year", "which", "will", "be", "service", "is", "have" ], [ "award", "won", "best", "who", "director", "the", "film", "awards", "with", "actress" ], [ "of", "will", "and", "in", "increase", "for", "to", "be", "that", "minimum" ], [ "have", "we", "not", "but", "liverpool", "would", "if", "had", "think", "that" ], [ "such", "time", "to", "as", "an", "new", "their", "one", "well", "however" ], [ "music", "in", "black", "the", "and", "what", "that", "stone", "she", "people" ], [ "the", "on", "and", "from", "also", "an", "day", "after", "some", "friday" ], [ "government", "to", "tax", "local", "public", "in", "budget", "would", "council", "000" ], [ "and", "that", "to", "this", "about", "file", "make", "not", "on", "for" ], [ "mr", "he", "told", "minister", "prime", "blair", "brown", "the", "had", "by" ], [ "to", "silk", "party", "in", "he", "this", "and", "for", "of", "mr" ], [ "but", "if", "at", "the", "like", "very", "all", "it", "they", "and" ], [ "000", "up", "added", "for", "also", "an", "new", "year", "news", "while" ], [ "firm", "with", "its", "in", "by", "company", "which", "yukos", "it", "oil" ], [ "we", "and", "to", "not", "have", "with", "of", "that", "be", "government" ], [ "people", "the", "are", "by", "and", "or", "were", "their", "have", "they" ], [ "her", "olympic", "year", "with", "but", "first", "she", "who", "after", "had" ], [ "mini", "it", "software", "apple", "to", "pc", "with", "mac", "computer", "and" ], [ "his", "who", "the", "him", "he", "with", "but", "not", "told", "would" ], [ "in", "year", "growth", "by", "economy", "from", "sales", "prices", "market", "than" ], [ "he", "the", "said", "it", "were", "being", "had", "uk", "added", "rights" ], [ "would", "could", "be", "not", "to", "should", "have", "if", "but", "new" ], [ "are", "technology", "is", "of", "dvd", "high", "be", "on", "games", "in" ], [ "are", "to", "mobile", "technology", "data", "3g", "but", "networks", "on", "of" ], [ "have", "number", "show", "the", "at", "best", "and", "his", "end", "theatre" ], [ "howard", "the", "labour", "party", "election", "tory", "would", "tories", "tax", "in" ], [ "are", "your", "with", "there", "can", "and", "that", "game", "if", "you" ], [ "been", "has", "have", "this", "is", "last", "said", "since", "the", "now" ], [ "which", "mobile", "of", "it", "and", "the", "gadget", "be", "gadgets", "in" ], [ "china", "with", "in", "dollar", "budget", "trade", "us", "bush", "deficit", "about" ], [ "but", "with", "his", "england", "after", "from", "game", "half", "ireland", "the" ], [ "people", "tv", "with", "broadband", "more", "digital", "net", "services", "service", "video" ] ]
5.877973
average_word_embeddings_glove.6B.300d
0.4575
0.020847
0.227713
0.65189
42
BBC News
NMF
50
[ [ "of", "and", "the", "most", "time", "first", "in", "only", "also", "into" ], [ "this", "to", "is", "in", "and", "but", "be", "of", "not", "there" ], [ "mr", "added", "of", "said", "were", "and", "had", "uk", "to", "is" ], [ "he", "told", "him", "would", "an", "but", "not", "very", "added", "to" ], [ "first", "final", "last", "years", "world", "in", "uk", "european", "new", "set" ], [ "and", "than", "one", "of", "most", "the", "to", "their", "all", "also" ], [ "into", "two", "other", "also", "and", "work", "between", "both", "years", "over" ], [ "it", "song", "of", "and", "best", "25", "to", "in", "years", "that" ], [ "make", "digital", "to", "which", "new", "be", "next", "will", "can", "service" ], [ "the", "best", "film", "awards", "who", "award", "won", "director", "actress", "actor" ], [ "of", "to", "for", "will", "minimum", "increase", "in", "and", "that", "be" ], [ "we", "but", "liverpool", "think", "would", "had", "club", "steven", "not", "if" ], [ "but", "it", "the", "to", "very", "at", "news", "out", "because", "over" ], [ "and", "what", "music", "to", "she", "stone", "black", "from", "or", "the" ], [ "that", "out", "this", "not", "about", "the", "to", "there", "by", "file" ], [ "economic", "growth", "year", "economy", "from", "bank", "rates", "prices", "sales", "market" ], [ "also", "from", "an", "on", "the", "day", "friday", "some", "wednesday", "media" ], [ "gadget", "the", "be", "it", "mobile", "gadgets", "which", "first", "list", "or" ], [ "to", "party", "silk", "and", "he", "in", "this", "for", "mr", "on" ], [ "their", "were", "people", "they", "and", "who", "them", "when", "on", "those" ], [ "year", "while", "week", "up", "new", "also", "for", "an", "000", "added" ], [ "shares", "which", "its", "firm", "also", "would", "london", "company", "market", "deutsche" ], [ "to", "of", "we", "and", "that", "with", "not", "be", "have", "in" ], [ "last", "have", "been", "from", "very", "may", "the", "not", "this", "four" ], [ "had", "blair", "mr", "prime", "brown", "his", "the", "minister", "told", "chancellor" ], [ "net", "security", "to", "users", "software", "or", "people", "microsoft", "attacks", "site" ], [ "was", "had", "were", "after", "been", "when", "in", "but", "which", "one" ], [ "to", "out", "this", "take", "up", "make", "any", "set", "which", "however" ], [ "the", "from", "were", "by", "which", "been", "000", "an", "up", "number" ], [ "well", "as", "such", "an", "time", "part", "many", "however", "one", "industry" ], [ "phones", "people", "music", "more", "mobile", "with", "to", "phone", "mobiles", "the" ], [ "she", "who", "her", "year", "the", "first", "but", "after", "olympic", "world" ], [ "number", "show", "at", "the", "theatre", "royal", "top", "end", "best", "expected" ], [ "party", "the", "labour", "election", "tory", "howard", "would", "tax", "tories", "in" ], [ "the", "your", "if", "can", "there", "what", "games", "and", "game", "you" ], [ "now", "has", "with", "been", "since", "the", "said", "week", "against", "internet" ], [ "it", "and", "in", "of", "be", "with", "have", "on", "but", "children" ], [ "to", "the", "and", "mobile", "of", "3g", "technology", "networks", "data", "for" ], [ "england", "half", "six", "after", "but", "ireland", "the", "game", "wales", "their" ], [ "broadband", "video", "people", "uk", "content", "net", "digital", "tv", "services", "over" ], [ "of", "oil", "in", "russian", "yukos", "its", "the", "court", "gazprom", "that" ], [ "be", "is", "games", "the", "dvd", "high", "and", "technology", "ray", "in" ], [ "mac", "mini", "and", "the", "it", "apple", "pc", "for", "computer", "is" ], [ "who", "his", "him", "the", "my", "after", "year", "me", "old", "club" ], [ "can", "phone", "companies", "these", "be", "calls", "people", "about", "not", "is" ], [ "not", "law", "should", "government", "be", "would", "could", "lord", "but", "if" ], [ "dollar", "us", "china", "bush", "trade", "budget", "eu", "deficit", "about", "firms" ], [ "an", "out", "the", "from", "with", "over", "one", "hit", "both", "through" ], [ "radio", "in", "is", "hop", "spanish", "world", "hip", "says", "but", "rap" ], [ "where", "there", "are", "be", "not", "their", "which", "do", "more", "they" ] ]
6.986562
average_word_embeddings_glove.6B.300d
0.482
0.026203
0.216141
0.682455
42
BBC News
LDA
10
[ [ "and", "his", "to", "the", "was", "mr", "he", "in", "of", "had" ], [ "ms", "her", "the", "she", "to", "in", "was", "said", "air", "airlines" ], [ "for", "to", "in", "of", "that", "the", "said", "and", "is", "it" ], [ "was", "to", "the", "on", "of", "in", "for", "and", "is", "it" ], [ "to", "liverpool", "united", "the", "club", "chelsea", "smith", "arsenal", "he", "manchester" ], [ "the", "in", "of", "to", "said", "on", "that", "be", "and", "was" ], [ "to", "the", "and", "of", "that", "it", "are", "is", "in", "be" ], [ "it", "that", "of", "be", "and", "the", "in", "is", "to", "for" ], [ "to", "the", "in", "of", "and", "on", "for", "said", "by", "uk" ], [ "for", "and", "the", "to", "but", "on", "of", "in", "is", "it" ] ]
7.704844
average_word_embeddings_glove.6B.300d
0.33
-0.026604
0.289131
0.575766
42
BBC News
LDA
20
[ [ "he", "in", "to", "the", "was", "his", "and", "it", "of", "but" ], [ "of", "she", "was", "said", "to", "her", "the", "ms", "in", "prince" ], [ "is", "it", "in", "for", "the", "that", "said", "of", "to", "and" ], [ "to", "the", "and", "of", "in", "for", "was", "it", "on", "is" ], [ "and", "club", "united", "we", "to", "at", "the", "league", "he", "has" ], [ "to", "in", "be", "of", "was", "the", "said", "and", "it", "for" ], [ "the", "and", "that", "to", "of", "said", "it", "in", "is", "users" ], [ "that", "the", "to", "and", "in", "of", "is", "he", "it", "on" ], [ "said", "and", "of", "to", "in", "the", "for", "by", "on", "is" ], [ "the", "to", "in", "is", "and", "for", "of", "on", "at", "have" ], [ "the", "men", "on", "cross", "country", "arrested", "in", "women", "blue", "from" ], [ "the", "to", "of", "and", "office", "in", "linux", "open", "its", "box" ], [ "at", "for", "the", "best", "awards", "theatre", "actress", "director", "actor", "musical" ], [ "the", "of", "and", "in", "will", "to", "be", "on", "is", "for" ], [ "but", "to", "and", "game", "from", "was", "the", "half", "on", "with" ], [ "and", "is", "in", "of", "to", "the", "that", "it", "are", "for" ], [ "to", "the", "will", "of", "and", "scottish", "in", "be", "is", "would" ], [ "dvd", "the", "dvds", "to", "of", "definition", "high", "be", "and", "studios" ], [ "that", "of", "be", "mr", "to", "said", "in", "and", "the", "was" ], [ "the", "of", "in", "to", "and", "dr", "mr", "jewish", "smith", "he" ] ]
17.727674
average_word_embeddings_glove.6B.300d
0.32
-0.017112
0.259832
0.607921
42
BBC News
LDA
30
[ [ "he", "the", "to", "was", "his", "had", "and", "in", "of", "for" ], [ "the", "was", "she", "in", "ms", "her", "said", "to", "of", "after" ], [ "of", "the", "to", "in", "and", "said", "that", "for", "its", "is" ], [ "for", "in", "to", "of", "the", "and", "on", "was", "film", "with" ], [ "to", "league", "chelsea", "united", "the", "club", "arsenal", "he", "manchester", "on" ], [ "law", "of", "lord", "in", "the", "to", "said", "and", "rights", "was" ], [ "to", "and", "said", "the", "attacks", "sites", "of", "site", "that", "in" ], [ "the", "and", "to", "of", "he", "said", "in", "on", "that", "mr" ], [ "budget", "japan", "in", "the", "of", "bush", "to", "and", "was", "prince" ], [ "on", "and", "for", "of", "is", "the", "in", "to", "but", "at" ], [ "of", "on", "from", "arrested", "men", "the", "women", "country", "cross", "police" ], [ "and", "the", "to", "ibm", "software", "linux", "programs", "use", "of", "call" ], [ "the", "for", "awards", "best", "at", "award", "won", "in", "theatre", "actress" ], [ "at", "number", "the", "to", "and", "top", "chart", "of", "in", "one" ], [ "to", "the", "and", "was", "half", "for", "game", "but", "from", "after" ], [ "for", "the", "in", "to", "people", "local", "of", "and", "government", "is" ], [ "scottish", "scotland", "russian", "executive", "to", "will", "gazprom", "the", "and", "in" ], [ "the", "dvds", "dvd", "studios", "film", "technology", "to", "formats", "of", "hollywood" ], [ "of", "users", "the", "to", "that", "security", "and", "software", "mail", "or" ], [ "gas", "contract", "firm", "oil", "company", "production", "indian", "contracts", "the", "energy" ], [ "the", "radio", "and", "china", "in", "of", "to", "on", "will", "is" ], [ "within", "companies", "industries", "television", "such", "indicated", "research", "led", "film", "career" ], [ "to", "race", "world", "in", "olympic", "of", "the", "at", "and", "indoor" ], [ "mobile", "to", "the", "phone", "of", "and", "tv", "people", "service", "are" ], [ "the", "and", "to", "irish", "000", "for", "from", "u2", "of", "drugs" ], [ "of", "to", "the", "and", "he", "has", "been", "for", "in", "was" ], [ "it", "in", "is", "for", "and", "to", "that", "of", "the", "as" ], [ "to", "the", "of", "be", "for", "in", "said", "and", "that", "is" ], [ "wasps", "bath", "ask", "thompson", "search", "leicester", "computing", "hardware", "it", "web" ], [ "the", "to", "and", "is", "of", "it", "that", "we", "you", "have" ] ]
36.384504
average_word_embeddings_glove.6B.300d
0.446667
-0.011615
0.215939
0.669564
42
BBC News
LDA
40
[ [ "party", "leader", "he", "the", "and", "mr", "to", "his", "silk", "as" ], [ "kim", "her", "return", "the", "on", "february", "in", "back", "to", "make" ], [ "in", "the", "to", "of", "for", "and", "said", "that", "its", "on" ], [ "and", "to", "film", "for", "of", "on", "was", "in", "at", "the" ], [ "the", "are", "with", "brother", "and", "big", "on", "to", "life", "show" ], [ "to", "the", "peer", "hunting", "music", "and", "that", "of", "files", "hunt" ], [ "the", "is", "to", "users", "and", "software", "in", "computer", "of", "programs" ], [ "he", "of", "the", "that", "and", "in", "to", "mr", "on", "is" ], [ "the", "broadband", "japan", "to", "japanese", "by", "of", "in", "and", "year" ], [ "to", "the", "in", "and", "on", "of", "for", "with", "at", "was" ], [ "of", "the", "on", "police", "men", "from", "arrested", "british", "to", "in" ], [ "him", "edward", "for", "at", "to", "prince", "the", "queen", "harry", "of" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "and", "to", "in", "the", "super", "of", "group", "said", "its", "at" ], [ "irish", "the", "prize", "is", "for", "and", "000", "book", "of", "novel" ], [ "and", "of", "to", "people", "in", "the", "that", "more", "said", "music" ], [ "russia", "the", "its", "state", "yukos", "oil", "firm", "company", "gazprom", "russian" ], [ "studios", "dvd", "gas", "dvds", "energy", "the", "to", "india", "in", "technology" ], [ "of", "the", "to", "sport", "drugs", "and", "for", "that", "doping", "collins" ], [ "security", "what", "virus", "sending", "anti", "mail", "warnings", "2004", "itself", "websites" ], [ "in", "of", "to", "the", "on", "radio", "digital", "air", "and", "will" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "scottish", "the", "in", "will", "at", "to", "scotland", "glasgow", "and", "list" ], [ "to", "mobile", "the", "and", "phone", "services", "tv", "service", "of", "will" ], [ "french", "album", "singer", "band", "at", "to", "the", "drug", "music", "and" ], [ "in", "the", "england", "to", "robinson", "for", "after", "has", "six", "of" ], [ "and", "the", "in", "of", "for", "it", "is", "to", "that", "said" ], [ "to", "and", "in", "is", "of", "that", "the", "be", "it", "for" ], [ "code", "or", "microsoft", "version", "online", "windows", "system", "security", "released", "pcs" ], [ "and", "to", "it", "is", "that", "the", "of", "you", "not", "in" ], [ "the", "her", "in", "she", "to", "was", "has", "year", "said", "but" ], [ "to", "search", "site", "the", "users", "sites", "web", "said", "net", "google" ], [ "sporting", "that", "the", "to", "my", "manager", "director", "and", "we", "frank" ], [ "of", "budget", "the", "to", "and", "bush", "cards", "be", "spending", "said" ], [ "of", "said", "is", "iraq", "to", "and", "women", "in", "the", "dr" ], [ "the", "of", "in", "he", "for", "to", "and", "his", "it", "is" ], [ "in", "it", "bill", "for", "the", "children", "and", "computing", "to", "of" ], [ "in", "game", "it", "was", "from", "the", "and", "of", "to", "we" ], [ "the", "to", "of", "in", "and", "said", "he", "was", "on", "that" ], [ "the", "of", "and", "in", "as", "world", "to", "said", "with", "has" ] ]
57.039842
average_word_embeddings_glove.6B.300d
0.415
-0.03507
0.201104
0.673093
42
BBC News
LDA
50
[ [ "he", "of", "to", "in", "the", "and", "mr", "his", "for", "said" ], [ "took", "number", "the", "box", "last", "weekend", "movie", "office", "in", "7m" ], [ "of", "said", "the", "and", "to", "in", "for", "that", "its", "on" ], [ "the", "for", "on", "of", "in", "to", "and", "film", "was", "best" ], [ "manchester", "ferguson", "to", "west", "united", "the", "visit", "everton", "city", "boss" ], [ "guilty", "peer", "network", "to", "of", "the", "and", "files", "sharing", "that" ], [ "to", "india", "the", "and", "of", "company", "indian", "000", "in", "it" ], [ "and", "it", "that", "to", "of", "is", "you", "the", "are", "have" ], [ "to", "south", "countries", "the", "korea", "japan", "in", "yen", "and", "of" ], [ "to", "in", "the", "and", "of", "on", "for", "with", "was", "but" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "prince", "of", "in", "harry", "the", "and", "vehicles", "to", "said", "it" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "be", "and", "parents", "group", "in", "super", "to", "children", "the", "of" ], [ "irish", "for", "ireland", "the", "penalty", "gara", "and", "try", "driscoll", "brian" ], [ "the", "for", "in", "to", "of", "and", "people", "more", "is", "said" ], [ "and", "the", "he", "head", "prop", "said", "phil", "injury", "in", "operation" ], [ "harder", "system", "copy", "piracy", "copies", "download", "dvd", "said", "formats", "new" ], [ "and", "to", "the", "ban", "of", "hunting", "said", "that", "schools", "hunt" ], [ "of", "johnny", "wasps", "leicester", "what", "the", "van", "strange", "fire", "murphy" ], [ "to", "china", "the", "of", "and", "in", "on", "is", "chinese", "be" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "the", "scottish", "to", "will", "scotland", "on", "in", "be", "of", "and" ], [ "tv", "and", "the", "services", "phone", "service", "of", "to", "mobile", "phones" ], [ "singer", "band", "tour", "album", "french", "to", "the", "at", "and", "u2" ], [ "in", "3g", "the", "and", "for", "to", "of", "drugs", "has", "will" ], [ "the", "and", "is", "of", "to", "it", "in", "for", "that", "said" ], [ "that", "for", "of", "is", "in", "to", "be", "it", "and", "the" ], [ "centre", "robinson", "coach", "squad", "wales", "england", "andy", "six", "in", "nations" ], [ "and", "of", "music", "the", "it", "to", "is", "that", "in", "song" ], [ "in", "she", "was", "said", "the", "to", "her", "year", "it", "but" ], [ "search", "site", "the", "users", "to", "net", "sites", "web", "of", "internet" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "of", "to", "the", "in", "rates", "and", "brown", "spending", "will", "economy" ], [ "and", "of", "to", "in", "dvd", "the", "high", "sony", "be", "is" ], [ "the", "his", "for", "he", "to", "in", "of", "it", "and", "is" ], [ "computing", "of", "the", "in", "hardware", "to", "will", "and", "it", "customers" ], [ "the", "was", "of", "and", "in", "it", "to", "game", "we", "but" ], [ "and", "of", "he", "the", "to", "in", "was", "mr", "his", "said" ], [ "security", "as", "of", "in", "and", "that", "to", "the", "said", "are" ], [ "of", "world", "olympic", "in", "the", "to", "and", "indoor", "at", "britain" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "party", "and", "in", "of", "to", "labour", "the", "election", "said", "he" ], [ "shot", "hunting", "remote", "session", "shooting", "texas", "control", "wild", "camera", "lets" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "said", "they", "to", "police", "the", "and", "were", "in", "have", "their" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ], [ "the", "be", "on", "of", "and", "mr", "he", "said", "to", "in" ], [ "the", "of", "to", "and", "for", "in", "on", "said", "be", "by" ], [ "points", "pointed", "political", "policy", "policies", "police", "politicians", "pointing", "plus", "pocket" ] ]
68.63326
average_word_embeddings_glove.6B.300d
0.362
-0.068876
0.200801
0.682867
42
BBC News
Top2Vec
10
[ [ "time", "coming", "play", "came", "come", "team", "going", "players", "chance", "win" ], [ "year", "winning", "came", "second", "time", "world", "win", "coming", "final", "took" ], [ "win", "tournament", "play", "round", "second", "coming", "final", "match", "time", "fourth" ], [ "come", "government", "time", "year", "week", "likely", "month", "expected", "saying", "make" ], [ "time", "best", "come", "came", "year", "years", "way", "movie", "coming", "later" ], [ "way", "come", "example", "time", "make", "need", "use", "internet", "instance", "making" ] ]
4.874947
average_word_embeddings_glove.6B.300d
0.633333
-0.058725
0.246285
0.785235
42
BBC News
Top2Vec
20
[ [ "time", "coming", "play", "came", "come", "team", "going", "players", "chance", "win" ], [ "year", "winning", "came", "second", "time", "world", "win", "coming", "final", "took" ], [ "win", "tournament", "play", "round", "second", "coming", "final", "match", "time", "fourth" ], [ "come", "government", "time", "year", "week", "likely", "month", "expected", "saying", "make" ], [ "time", "best", "come", "came", "year", "years", "way", "movie", "coming", "later" ], [ "way", "come", "example", "time", "make", "need", "use", "internet", "instance", "making" ] ]
4.603987
average_word_embeddings_glove.6B.300d
0.633333
-0.058725
0.246285
0.776698
42
BBC News
Top2Vec
30
[ [ "time", "coming", "play", "came", "come", "team", "going", "players", "chance", "win" ], [ "year", "winning", "came", "second", "time", "world", "win", "coming", "final", "took" ], [ "win", "tournament", "play", "round", "second", "coming", "final", "match", "time", "fourth" ], [ "come", "government", "time", "year", "week", "likely", "month", "expected", "saying", "make" ], [ "time", "best", "come", "came", "year", "years", "way", "movie", "coming", "later" ], [ "way", "come", "example", "time", "make", "need", "use", "internet", "instance", "making" ] ]
4.519022
average_word_embeddings_glove.6B.300d
0.633333
-0.058725
0.246285
0.784775
42
BBC News
Top2Vec
40
[ [ "time", "coming", "play", "came", "come", "team", "going", "players", "chance", "win" ], [ "year", "winning", "came", "second", "time", "world", "win", "coming", "final", "took" ], [ "win", "tournament", "play", "round", "second", "coming", "final", "match", "time", "fourth" ], [ "come", "government", "time", "year", "week", "likely", "month", "expected", "saying", "make" ], [ "time", "best", "come", "came", "year", "years", "way", "movie", "coming", "later" ], [ "way", "come", "example", "time", "make", "need", "use", "internet", "instance", "making" ] ]
5.060041
average_word_embeddings_glove.6B.300d
0.633333
-0.058725
0.246285
0.780766
42
BBC News
Top2Vec
50
[ [ "time", "coming", "play", "came", "come", "team", "going", "players", "chance", "win" ], [ "year", "winning", "came", "second", "time", "world", "win", "coming", "final", "took" ], [ "win", "tournament", "play", "round", "second", "coming", "final", "match", "time", "fourth" ], [ "come", "government", "time", "year", "week", "likely", "month", "expected", "saying", "make" ], [ "time", "best", "come", "came", "year", "years", "way", "movie", "coming", "later" ], [ "way", "come", "example", "time", "make", "need", "use", "internet", "instance", "making" ] ]
4.640697
average_word_embeddings_glove.6B.300d
0.633333
-0.058725
0.246285
0.780457
42
BBC News
10
[ [ "athletics", "sued", "formally", "consortium", "broadcasting", "doping", "uefa", "olympic", "denies", "denied" ], [ "movie", "world", "country", "american", "russian", "television", "people", "media", "chinese", "want" ], [ "doubles", "spaniard", "roddick", "slam", "wimbledon", "federer", "seed", "henman", "singles", "upset" ], [ "risks", "stability", "fundamental", "sustainable", "implications", "processes", "innovation", "efficiency", "efficient", "enhance" ], [ "midfielder", "mourinho", "arsenal", "striker", "chelsea", "coach", "liverpool", "everton", "football", "league" ], [ "film", "scorsese", "actress", "starring", "actor", "bafta", "movie", "films", "comedy", "oscar" ], [ "adults", "unemployment", "children", "population", "poverty", "disease", "child", "infected", "living", "age" ], [ "wireless", "pc", "desktop", "xbox", "playstation", "pcs", "handsets", "handheld", "digital", "ipod" ], [ "viruses", "drug", "plant", "doping", "athletes", "facilities", "water", "virus", "drugs", "infected" ], [ "championship", "championships", "athletics", "indoor", "rugby", "olympic", "medal", "olympics", "cup", "prix" ] ]
1.044015
average_word_embeddings_glove.6B.300d
0.95
-0.222157
0.26598
0.925145
42
BBC News
20
[ [ "pension", "tax", "pensions", "taxes", "taxpayers", "savings", "budget", "legislation", "benefits", "income" ], [ "roddick", "spaniard", "federer", "henman", "seed", "ranked", "doubles", "wimbledon", "bt", "tennis" ], [ "barcelona", "women", "madrid", "milan", "italian", "spanish", "brazilian", "people", "woman", "city" ], [ "band", "song", "songs", "singer", "albums", "album", "chart", "pop", "rock", "rap" ], [ "nations", "countries", "european", "eu", "summit", "france", "ministers", "imf", "monetary", "euro" ], [ "olivier", "french", "dvd", "nicolas", "yen", "prop", "playing", "plays", "argentina", "roddick" ], [ "university", "education", "economist", "health", "studies", "professor", "correspondent", "services", "foundation", "research" ], [ "operate", "seats", "tickets", "pay", "airlines", "fly", "stake", "owners", "passengers", "shareholders" ], [ "guilty", "judge", "doping", "prosecutors", "convicted", "lawsuit", "charges", "pleaded", "filed", "criminal" ], [ "pence", "shareholder", "stock", "deutsche", "shares", "vodafone", "shareholders", "takeover", "investors", "merger" ], [ "strategic", "russia", "oil", "yukos", "producer", "energy", "gas", "khodorkovsky", "natural", "gazprom" ], [ "striker", "midfielder", "liverpool", "chelsea", "mourinho", "arsenal", "goalkeeper", "everton", "defender", "barcelona" ], [ "sequel", "complex", "shadow", "chapter", "tale", "novel", "spider", "historic", "historical", "book" ], [ "letwin", "10bn", "1bn", "3bn", "000m", "9m", "gara", "2bn", "dems", "2m" ], [ "blair", "minister", "democrat", "prime", "leader", "election", "secretary", "mp", "deputy", "cabinet" ], [ "film", "starring", "bafta", "award", "actress", "actor", "awards", "oscar", "films", "directed" ], [ "sport", "households", "premium", "seats", "luxury", "tv", "broadcasters", "television", "broadcaster", "cent" ], [ "wealth", "genre", "culture", "values", "racist", "influence", "opinions", "belief", "moral", "passion" ], [ "everybody", "guys", "really", "bit", "somebody", "pretty", "wrong", "absolutely", "feel", "thing" ], [ "penalty", "penalties", "terror", "broadcast", "viewers", "violence", "fraud", "opponents", "illegal", "copyright" ] ]
1.05877
average_word_embeddings_glove.6B.300d
0.98
-0.208191
0.270039
0.929995
42
BBC News
30
[ [ "traffic", "mail", "sites", "landscape", "royal", "studies", "cultural", "correspondent", "service", "airline" ], [ "pence", "shareholders", "shares", "deutsche", "frankfurt", "stock", "takeover", "merger", "exchange", "index" ], [ "son", "friend", "maker", "convicted", "father", "ibm", "daughter", "wife", "born", "died" ], [ "realise", "3bn", "gamers", "9m", "attitude", "sensible", "ambition", "enjoy", "genre", "enjoying" ], [ "schools", "college", "mac", "students", "attend", "teachers", "screening", "education", "association", "commissioner" ], [ "engines", "brands", "plant", "cars", "manufacturing", "engine", "factory", "vehicles", "sales", "car" ], [ "nominations", "awards", "rankings", "categories", "winners", "chart", "award", "outstanding", "000", "prizes" ], [ "diaries", "rafael", "jose", "madrid", "milan", "barcelona", "brazilian", "maria", "spanish", "manifesto" ], [ "poverty", "disease", "aids", "developing", "africa", "poorest", "drugs", "virus", "infected", "drug" ], [ "collection", "loan", "loans", "banks", "items", "departments", "department", "securities", "books", "housing" ], [ "taxpayers", "savings", "tax", "pensions", "taxes", "pension", "retirement", "payments", "budget", "bills" ], [ "spam", "google", "web", "mail", "malicious", "viruses", "virus", "spammers", "websites", "software" ], [ "jean", "gara", "nicolas", "french", "olivier", "france", "italian", "spain", "german", "italy" ], [ "metres", "squad", "athletes", "bomb", "relay", "football", "scrum", "honours", "olympics", "rugby" ], [ "findings", "gmt", "department", "contained", "assess", "committee", "environmental", "carefully", "complex", "departments" ], [ "mortgage", "property", "homes", "buildings", "bank", "secure", "land", "chase", "housing", "units" ], [ "keyboard", "engineering", "systems", "laboratory", "signals", "device", "capability", "processes", "computing", "technology" ], [ "society", "research", "art", "artists", "wealth", "auction", "institute", "children", "foundation", "collection" ], [ "song", "album", "songs", "albums", "band", "singer", "chart", "rap", "pop", "charts" ], [ "eu", "trade", "copyright", "legislation", "ban", "restrictions", "commerce", "laws", "regulations", "promote" ], [ "zealand", "trading", "index", "000m", "assembly", "mixed", "capt", "pence", "bell", "commons" ], [ "century", "underground", "revolution", "lessons", "abandoned", "church", "square", "theme", "gazprom", "radical" ], [ "rugby", "tour", "tournament", "tennis", "championships", "wimbledon", "sport", "championship", "club", "football" ], [ "slowing", "economists", "gdp", "slowdown", "growth", "inflation", "outlook", "rate", "recession", "decline" ], [ "editor", "writer", "sir", "appointed", "published", "author", "lord", "novel", "secretary", "minister" ], [ "minutes", "france", "seconds", "really", "minute", "score", "ball", "right", "french", "got" ], [ "spokeswoman", "blunkett", "spokesman", "said", "told", "jeremy", "jamie", "clothes", "kate", "letwin" ], [ "brussels", "imports", "engines", "parliament", "fuel", "eu", "britain", "items", "text", "straw" ], [ "playing", "plays", "fat", "players", "played", "play", "indian", "yen", "referee", "board" ], [ "forum", "hosted", "jim", "breakfast", "bob", "sports", "marketing", "advertising", "host", "agriculture" ] ]
1.185691
average_word_embeddings_glove.6B.300d
0.946667
-0.274609
0.230971
0.923831
42
BBC News
40
[ [ "doping", "drugs", "drug", "tests", "suspension", "sprinter", "tested", "banned", "positive", "athletes" ], [ "lewsey", "andrew", "davies", "bafta", "stephen", "bell", "edinburgh", "australia", "silk", "wales" ], [ "signing", "contract", "contracts", "lewsey", "scrum", "relay", "honours", "woodward", "football", "replacements" ], [ "score", "goal", "pass", "penalty", "kick", "seconds", "minutes", "minute", "scored", "shot" ], [ "billions", "dollars", "worth", "million", "billion", "bought", "buy", "millions", "invest", "distribute" ], [ "criminals", "suspected", "police", "arrested", "killing", "killed", "assault", "convicted", "detained", "suspects" ], [ "retail", "operations", "consultancy", "planning", "unit", "management", "chain", "independent", "gartner", "assessment" ], [ "university", "director", "spokesman", "david", "van", "spokeswoman", "said", "robert", "born", "institute" ], [ "church", "1960s", "1970s", "records", "contains", "warner", "abandoned", "century", "label", "revolution" ], [ "festive", "consultancy", "gartner", "holiday", "dvds", "piracy", "oil", "christmas", "games", "retailers" ], [ "storage", "records", "lord", "stolen", "ticket", "tickets", "collection", "chambers", "stored", "keeper" ], [ "engineering", "indian", "industries", "sectors", "sector", "telecommunications", "india", "telecoms", "stocks", "gained" ], [ "festival", "theatre", "opera", "italy", "concert", "france", "frankfurt", "paris", "germany", "rome" ], [ "scrum", "corry", "damien", "olivier", "flanker", "replacements", "capt", "nicolas", "france", "jean" ], [ "movies", "film", "films", "starring", "movie", "sequel", "hollywood", "starred", "blockbuster", "directed" ], [ "technical", "direction", "data", "depth", "keyboard", "speeds", "engine", "pilot", "recorder", "miles" ], [ "bank", "sessions", "sec", "straw", "session", "agriculture", "forum", "meeting", "liam", "rubbish" ], [ "ankle", "knee", "hamstring", "surgery", "injuries", "injury", "hip", "foot", "injured", "suffered" ], [ "voters", "unions", "convention", "california", "democratic", "union", "voting", "votes", "candidates", "legislation" ], [ "dem", "khodorkovsky", "nokia", "exports", "producing", "contract", "production", "output", "workforce", "eu" ], [ "frankfurt", "deutsche", "pence", "shareholders", "takeover", "exchange", "merger", "euros", "london", "swap" ], [ "area", "water", "gas", "underground", "shopping", "shops", "popular", "land", "areas", "fuel" ], [ "scotland", "scrum", "wales", "rugby", "zealand", "ireland", "australia", "england", "irish", "squad" ], [ "consoles", "nintendo", "console", "playstation", "xbox", "psp", "gamers", "gaming", "handheld", "pc" ], [ "streets", "night", "concert", "rally", "morning", "afternoon", "evening", "festival", "scheduled", "saturday" ], [ "antonio", "manuel", "president", "wife", "san", "born", "son", "lived", "friend", "daughter" ], [ "liberal", "voters", "election", "candidate", "conservatives", "democratic", "party", "polls", "votes", "elections" ], [ "total", "votes", "parliamentary", "trophy", "euros", "000", "trillion", "list", "lists", "collected" ], [ "lords", "judge", "constitutional", "supreme", "court", "courts", "appeals", "laws", "granted", "law" ], [ "health", "screening", "kong", "college", "hong", "sex", "blunkett", "mac", "sessions", "schools" ], [ "equipment", "battery", "manufacturing", "eu", "manufacturers", "chip", "producers", "netherlands", "machine", "tommy" ], [ "400m", "800m", "200m", "500m", "100m", "1500m", "hurdles", "60m", "medallist", "sprint" ], [ "director", "watching", "outdoor", "arts", "institute", "cameras", "sports", "attended", "university", "forum" ], [ "subscribers", "handsets", "wireless", "mobile", "3g", "broadband", "vodafone", "phones", "phone", "handset" ], [ "aid", "poverty", "nations", "aids", "africa", "poorest", "imf", "tsunami", "summit", "countries" ], [ "commerce", "unveiled", "remarks", "unveil", "summit", "conference", "meeting", "forum", "unveils", "secretary" ], [ "deficit", "budget", "funding", "tax", "taxes", "budgets", "deficits", "spending", "cuts", "subsidies" ], [ "software", "malicious", "virus", "viruses", "linux", "windows", "servers", "microsoft", "desktop", "mac" ], [ "newcastle", "leeds", "norwich", "everton", "bristol", "manchester", "sheffield", "cardiff", "leicester", "liverpool" ], [ "drug", "research", "cell", "trials", "drugs", "analysis", "laboratory", "terrorism", "technologies", "studies" ] ]
1.201045
average_word_embeddings_glove.6B.300d
0.92
-0.234733
0.255469
0.93409
42
BBC News
50
[ [ "theatre", "opera", "festival", "concert", "exhibition", "performances", "auction", "conducted", "art", "venue" ], [ "oscars", "award", "bafta", "awards", "nominations", "oscar", "prize", "nomination", "nominees", "nominated" ], [ "session", "street", "rally", "church", "trust", "rubbish", "bank", "forum", "councils", "community" ], [ "centre", "departments", "programmes", "programme", "centres", "bafta", "chart", "labour", "production", "agriculture" ], [ "oil", "fuel", "gas", "prices", "price", "water", "natural", "supply", "energy", "reserves" ], [ "praise", "bosses", "beat", "score", "deserved", "scorsese", "record", "proud", "fans", "margin" ], [ "board", "arts", "programs", "science", "environmental", "committee", "carefully", "findings", "program", "index" ], [ "engine", "vehicles", "car", "engines", "auto", "cars", "models", "motorcycle", "driving", "model" ], [ "bbc", "broadcasting", "tv", "radio", "broadcaster", "channel", "channels", "broadcast", "television", "presenter" ], [ "jobs", "correspondent", "hunt", "workforce", "chase", "toshiba", "trophy", "freedom", "apple", "pace" ], [ "laboratory", "technology", "engineering", "electronics", "research", "technologies", "toshiba", "equipment", "devices", "energy" ], [ "holiday", "retailers", "sales", "stores", "retail", "store", "shopping", "christmas", "clothing", "shops" ], [ "india", "session", "capt", "sessions", "asian", "telecoms", "indian", "skipper", "muslim", "ministers" ], [ "pass", "goal", "minute", "scored", "penalty", "kick", "seconds", "minutes", "goalkeeper", "ball" ], [ "seed", "bt", "roddick", "henman", "federer", "spaniard", "wimbledon", "ranked", "nicolas", "sets" ], [ "shot", "jean", "brazilian", "right", "ball", "french", "guy", "veteran", "manuel", "injured" ], [ "inflation", "economists", "rate", "slowdown", "slowing", "rates", "economist", "forecast", "unemployment", "recession" ], [ "console", "consoles", "psp", "xbox", "playstation", "nintendo", "handheld", "game", "gamers", "gaming" ], [ "hunting", "gaming", "underground", "police", "illegal", "suspected", "arrested", "bands", "hunt", "betting" ], [ "chicago", "mexico", "american", "los", "latin", "america", "states", "california", "brazil", "angeles" ], [ "cards", "bank", "security", "currency", "units", "battery", "card", "roles", "prison", "regime" ], [ "madrid", "mourinho", "jose", "barcelona", "milan", "spanish", "rafael", "manuel", "arsenal", "chelsea" ], [ "france", "pictures", "dvds", "studios", "dvd", "french", "format", "images", "disc", "formats" ], [ "party", "democratic", "election", "seats", "elections", "votes", "constituency", "electoral", "liberal", "democrat" ], [ "recognised", "manufacturing", "settled", "confirm", "relations", "registered", "asylum", "trade", "exports", "interviewed" ], [ "barcelona", "lopez", "milan", "rafael", "spokeswoman", "madrid", "antonio", "maria", "10bn", "el" ], [ "asset", "analysis", "analyst", "strategist", "stability", "securities", "flow", "bank", "trophy", "alcohol" ], [ "aged", "adults", "age", "47", "households", "65", "39", "44", "52", "34" ], [ "tsunami", "poverty", "relief", "aid", "disaster", "aids", "poorest", "africa", "estimated", "victims" ], [ "festival", "violence", "activists", "muslim", "racist", "poll", "jewish", "motivated", "mainstream", "documentary" ], [ "blunkett", "oaten", "pensioners", "henman", "gareth", "australian", "ferguson", "corry", "clive", "nigel" ], [ "exports", "manufacturers", "consumer", "imports", "export", "minister", "goods", "household", "loans", "manufacturing" ], [ "ireland", "dublin", "scottish", "edinburgh", "irish", "glasgow", "developers", "theatre", "windows", "scotland" ], [ "sports", "watching", "attended", "outdoor", "watched", "attend", "park", "watch", "exhibition", "stadium" ], [ "fat", "yen", "prop", "french", "players", "plays", "friendly", "play", "alcohol", "player" ], [ "school", "male", "german", "students", "russian", "boys", "alcohol", "language", "children", "female" ], [ "agency", "approved", "national", "legislation", "territory", "proposal", "approval", "survey", "ban", "regulations" ], [ "contract", "signed", "contracts", "agreement", "signing", "deal", "commitment", "ambitious", "2003", "professional" ], [ "award", "prizes", "awards", "awarded", "prize", "ces", "outstanding", "medal", "winners", "achievement" ], [ "queen", "shot", "british", "gold", "american", "fa", "shareholders", "united", "ball", "red" ], [ "court", "legal", "laws", "courts", "supreme", "rights", "appeals", "constitutional", "copyright", "law" ], [ "european", "countries", "eu", "nations", "trade", "summit", "ministers", "brussels", "imf", "forum" ], [ "hopefully", "nominations", "going", "wait", "nomination", "happen", "sure", "lot", "everybody", "oscars" ], [ "tennis", "bodies", "outdoor", "lewsey", "association", "historical", "body", "motion", "inquiry", "experiences" ], [ "mac", "commissioner", "index", "screening", "breakfast", "intel", "hong", "kong", "van", "keane" ], [ "told", "said", "chairman", "spokesman", "director", "institute", "robert", "van", "steve", "spokeswoman" ], [ "blair", "prime", "minister", "scandal", "allegations", "blunkett", "tony", "downing", "bush", "talks" ], [ "military", "command", "security", "officers", "police", "senior", "vladimir", "officer", "service", "intelligence" ], [ "china", "japan", "yuan", "beijing", "yen", "kong", "hong", "chinese", "japanese", "korea" ], [ "ofcom", "executive", "workforce", "annual", "gara", "chairman", "broadband", "waste", "statistics", "review" ] ]
1.397449
average_word_embeddings_glove.6B.300d
0.898
-0.248271
0.244541
0.917434
42
BBC News
CombinedTM
10
[ [ "of", "the", "to", "and", "is", "that", "it", "in", "for", "be" ], [ "economy", "year", "china", "us", "yukos", "its", "bank", "oil", "growth", "prices" ], [ "agency", "low", "once", "executive", "itself", "sell", "car", "virus", "mail", "compensation" ], [ "comedy", "band", "awards", "film", "album", "director", "nominated", "prize", "actress", "award" ], [ "was", "his", "half", "after", "ireland", "second", "final", "in", "wales", "victory" ], [ "steve", "jump", "soul", "taking", "named", "argument", "men", "holder", "else", "indoor" ], [ "chancellor", "mr", "said", "would", "he", "brown", "party", "leader", "election", "prime" ], [ "executive", "spam", "board", "shares", "poor", "stock", "major", "profits", "potential", "mail" ], [ "to", "technology", "and", "mobile", "of", "are", "digital", "is", "more", "people" ], [ "injury", "arsenal", "madrid", "situation", "barcelona", "league", "game", "united", "chelsea", "face" ] ]
480.499243
average_word_embeddings_glove.6B.300d
0.93
-0.06176
0.163826
0.817069
42
BBC News
CombinedTM
20
[ [ "bid", "exchange", "gazprom", "oil", "deal", "deutsche", "russian", "london", "company", "talks" ], [ "north", "office", "release", "place", "starring", "box", "films", "7m", "1m", "weekend" ], [ "in", "her", "was", "title", "world", "indoor", "record", "for", "olympic", "he" ], [ "and", "it", "is", "definition", "that", "dvd", "the", "mini", "you", "mac" ], [ "mr", "silk", "eu", "was", "his", "the", "lord", "advice", "he", "said" ], [ "police", "court", "would", "said", "plans", "hunting", "local", "workers", "id", "murder" ], [ "million", "mobile", "mobiles", "3g", "uk", "broadband", "will", "tv", "operators", "phone" ], [ "johnson", "appointed", "wonderful", "matter", "seats", "age", "longer", "charged", "poverty", "heard" ], [ "programs", "software", "spam", "users", "security", "virus", "windows", "microsoft", "viruses", "websites" ], [ "indian", "shares", "profits", "products", "low", "euros", "poor", "latin", "banks", "profit" ], [ "half", "minutes", "wales", "robinson", "nations", "ireland", "after", "try", "england", "ball" ], [ "interest", "prices", "dollar", "rates", "growth", "rate", "fall", "2004", "rise", "december" ], [ "of", "the", "to", "and", "that", "song", "robbie", "25", "in", "it" ], [ "gives", "required", "energy", "winter", "reason", "employers", "tsunami", "remember", "proposed", "regulation" ], [ "team", "injury", "cup", "playing", "play", "round", "against", "match", "start", "league" ], [ "mr", "campaign", "labour", "brown", "howard", "he", "prime", "chancellor", "election", "blair" ], [ "assault", "committed", "talking", "women", "west", "tried", "manager", "comes", "manage", "white" ], [ "to", "hip", "of", "it", "that", "is", "and", "the", "hop", "you" ], [ "film", "rock", "award", "comedy", "night", "director", "awards", "star", "actor", "prize" ], [ "tax", "of", "budget", "for", "yukos", "said", "to", "by", "aids", "russian" ] ]
363.609921
average_word_embeddings_glove.6B.300d
0.88
-0.040945
0.160117
0.837652
42
BBC News
CombinedTM
30
[ [ "the", "and", "of", "is", "hop", "that", "hip", "radio", "spanish", "it" ], [ "controlled", "seed", "attention", "expert", "feels", "influence", "ready", "opinion", "forces", "seats" ], [ "seconds", "final", "second", "first", "title", "set", "was", "fourth", "after", "australian" ], [ "aids", "russian", "bush", "india", "yukos", "budget", "tax", "spending", "by", "oil" ], [ "rise", "rate", "economy", "economists", "growth", "prices", "rates", "interest", "quarter", "rises" ], [ "microsoft", "search", "programs", "software", "security", "virus", "windows", "viruses", "spam", "source" ], [ "the", "to", "liverpool", "his", "he", "in", "that", "of", "and", "stadium" ], [ "after", "minutes", "hodgson", "six", "two", "side", "england", "half", "try", "france" ], [ "missing", "greek", "athletics", "tests", "test", "doping", "charges", "drugs", "she", "olympics" ], [ "its", "us", "china", "oil", "yukos", "company", "trade", "bankruptcy", "dollar", "russian" ], [ "awards", "comedy", "ceremony", "band", "album", "award", "rock", "actor", "categories", "sky" ], [ "holmes", "gold", "world", "championships", "collins", "indoor", "race", "cross", "champion", "olympic" ], [ "lord", "police", "said", "would", "home", "plans", "lords", "secretary", "clarke", "law" ], [ "team", "sign", "newcastle", "club", "arsenal", "manager", "situation", "play", "we", "robinson" ], [ "broadband", "calls", "fast", "psp", "bt", "million", "uk", "speed", "sony", "service" ], [ "centres", "attack", "attacks", "are", "sites", "traffic", "to", "said", "be", "were" ], [ "guys", "lions", "zealand", "woodward", "six", "cup", "wales", "nations", "rugby", "tennis" ], [ "definition", "games", "will", "format", "dvd", "dvds", "high", "ray", "generation", "and" ], [ "can", "of", "party", "the", "silk", "to", "and", "premium", "they", "that" ], [ "his", "was", "for", "who", "she", "charles", "her", "lee", "film", "in" ], [ "mac", "file", "that", "mini", "it", "machine", "said", "and", "to", "sharing" ], [ "starring", "box", "office", "1m", "festival", "day", "films", "sequel", "chart", "release" ], [ "rose", "profits", "value", "january", "2004", "strong", "figures", "saw", "demand", "growth" ], [ "shareholders", "deal", "talks", "deutsche", "bid", "workers", "union", "unions", "takeover", "exchange" ], [ "his", "prime", "iraq", "he", "was", "advice", "mr", "blair", "war", "minister" ], [ "premiership", "scotland", "simon", "newcastle", "face", "saturday", "capt", "callaghan", "united", "league" ], [ "banks", "company", "raise", "airlines", "fuel", "iraq", "program", "shares", "financial", "revenue" ], [ "areas", "gas", "energy", "giant", "elections", "needs", "pensions", "payments", "winter", "gives" ], [ "tv", "music", "phones", "more", "mobiles", "gartner", "people", "mobile", "services", "digital" ], [ "party", "mr", "brown", "labour", "election", "he", "howard", "conservative", "blair", "tory" ] ]
396.802948
average_word_embeddings_glove.6B.300d
0.876667
-0.002967
0.157151
0.843641
42
BBC News
CombinedTM
40
[ [ "police", "asylum", "they", "hunting", "be", "children", "cards", "guilty", "care", "child" ], [ "federer", "after", "goal", "break", "second", "serve", "ball", "minutes", "half", "shot" ], [ "recall", "additional", "mails", "drug", "safety", "potential", "vehicles", "critical", "social", "programs" ], [ "january", "figures", "december", "sales", "rose", "retail", "2004", "stores", "strong", "growth" ], [ "is", "and", "hop", "hip", "rap", "to", "spanish", "it", "that", "radio" ], [ "club", "manager", "sport", "we", "team", "arsenal", "ve", "admitted", "have", "league" ], [ "ipod", "mini", "mac", "apple", "search", "jobs", "design", "desktop", "storage", "computer" ], [ "his", "mr", "book", "he", "prime", "stand", "blair", "allies", "brown", "had" ], [ "he", "that", "it", "the", "and", "liverpool", "is", "we", "of", "to" ], [ "the", "and", "minimum", "to", "of", "that", "for", "be", "in", "is" ], [ "oil", "its", "yukos", "auction", "gazprom", "bankruptcy", "russia", "russian", "khodorkovsky", "putin" ], [ "the", "suspects", "to", "rights", "human", "trial", "of", "said", "lords", "threat" ], [ "injury", "madrid", "look", "arsenal", "mourinho", "boss", "wilkinson", "manchester", "broken", "season" ], [ "mobile", "operators", "more", "report", "mobiles", "3g", "handsets", "digital", "speeds", "phones" ], [ "traffic", "sites", "attacks", "said", "attack", "machines", "that", "websites", "site", "data" ], [ "star", "her", "school", "woman", "show", "singer", "band", "released", "book", "concert" ], [ "manufacturing", "food", "indian", "india", "factory", "organisation", "grow", "plant", "building", "agriculture" ], [ "marketing", "commissioner", "they", "party", "voting", "to", "and", "the", "numbers", "telephone" ], [ "bid", "board", "offer", "deal", "may", "talks", "takeover", "exchange", "group", "compensation" ], [ "gardener", "in", "race", "her", "title", "60m", "olympic", "jump", "was", "final" ], [ "edinburgh", "scotland", "squad", "italy", "capt", "glasgow", "murray", "rugby", "wasps", "wales" ], [ "female", "male", "awards", "la", "french", "prize", "feature", "hosted", "golden", "u2" ], [ "shares", "profits", "profit", "stock", "euros", "sec", "company", "executive", "exchange", "insurance" ], [ "and", "dvds", "to", "content", "high", "will", "dvd", "on", "definition", "programmes" ], [ "choice", "union", "prescott", "sector", "pension", "correspondent", "age", "unions", "strikes", "workers" ], [ "statement", "advice", "apology", "lord", "judge", "said", "inquiry", "would", "mr", "attorney" ], [ "charged", "drugs", "denied", "conservative", "elections", "doping", "stand", "issues", "mp", "commons" ], [ "didn", "olympic", "indoor", "000m", "seed", "final", "champion", "world", "open", "gold" ], [ "broadband", "bt", "uk", "internet", "service", "via", "security", "found", "spam", "users" ], [ "elections", "eu", "airlines", "older", "agency", "development", "poverty", "pensions", "fuel", "payments" ], [ "interest", "us", "rate", "economists", "slowdown", "prices", "rates", "quarter", "rises", "growth" ], [ "author", "appeared", "1999", "killed", "episode", "norway", "begin", "eye", "queen", "sex" ], [ "federal", "bush", "bank", "budget", "dollar", "construction", "economic", "south", "korea", "economy" ], [ "commit", "targets", "selected", "gmt", "blow", "cross", "contact", "suffer", "arrested", "extended" ], [ "actress", "nominated", "aviator", "award", "film", "awards", "best", "night", "for", "category" ], [ "spending", "35bn", "cuts", "chancellor", "would", "tax", "brown", "stability", "budget", "taxes" ], [ "linux", "ibm", "virus", "mail", "handheld", "sony", "psp", "playstation", "nintendo", "stuff" ], [ "their", "ireland", "six", "penalty", "wales", "france", "half", "gara", "england", "nations" ], [ "the", "xbox", "halo", "consoles", "game", "nintendo", "titles", "games", "gaming", "of" ], [ "album", "office", "1m", "box", "number", "took", "top", "chart", "5m", "4m" ] ]
383.932157
average_word_embeddings_glove.6B.300d
0.8825
-0.043352
0.165744
0.860761
42
BBC News
CombinedTM
50
[ [ "on", "definition", "dvd", "ray", "games", "dvds", "ces", "high", "images", "toshiba" ], [ "nintendo", "games", "sony", "handheld", "console", "psp", "gaming", "playstation", "screens", "titles" ], [ "cross", "17", "championships", "race", "gb", "gold", "000m", "women", "beginning", "bronze" ], [ "story", "book", "oscar", "harry", "actor", "festival", "musical", "role", "potter", "queen" ], [ "rights", "human", "hunt", "hunting", "ban", "asylum", "offence", "not", "groups", "court" ], [ "energy", "gives", "adults", "1999", "giant", "pension", "communications", "significantly", "fine", "friend" ], [ "qualifying", "jump", "of", "to", "title", "the", "mark", "in", "year", "gardener" ], [ "interest", "rates", "fed", "prices", "manufacturing", "rises", "economist", "reserve", "economists", "bank" ], [ "tax", "cuts", "budget", "howard", "taxes", "election", "spending", "stability", "35bn", "mr" ], [ "test", "hospital", "banned", "conservative", "manager", "respect", "decision", "elections", "mp", "committee" ], [ "payments", "winter", "killed", "receive", "special", "swap", "prison", "fox", "criticised", "spend" ], [ "virus", "source", "software", "programs", "linux", "mails", "mail", "spam", "ibm", "windows" ], [ "he", "truth", "his", "comments", "was", "silk", "robert", "european", "party", "independence" ], [ "studio", "recorded", "host", "star", "producer", "concert", "band", "show", "singer", "stars" ], [ "sky", "awards", "tipped", "baby", "album", "aviator", "award", "favourite", "categories", "prize" ], [ "term", "stone", "black", "is", "soul", "music", "that", "of", "cities", "it" ], [ "search", "it", "you", "your", "read", "project", "mini", "school", "power", "google" ], [ "open", "federer", "champion", "my", "australian", "final", "world", "olympic", "holmes", "round" ], [ "minutes", "from", "shot", "celtic", "ball", "after", "minute", "post", "goal", "lead" ], [ "rules", "centres", "councils", "sites", "traffic", "airlines", "communities", "attacks", "countries", "data" ], [ "calls", "voice", "users", "service", "bt", "broadband", "search", "internet", "sign", "net" ], [ "supply", "social", "chinese", "china", "reports", "companies", "broadband", "oil", "responsibility", "corporate" ], [ "law", "said", "prison", "suspects", "lords", "lord", "ruling", "clarke", "human", "case" ], [ "modern", "the", "gadgets", "gadget", "of", "premium", "magazine", "list", "100", "be" ], [ "would", "police", "id", "plans", "cards", "said", "howard", "shadow", "cabinet", "davis" ], [ "half", "wasps", "we", "robinson", "jonny", "game", "wilkinson", "lewsey", "got", "try" ], [ "government", "workers", "choice", "pension", "age", "sector", "prescott", "union", "unions", "strikes" ], [ "west", "leaders", "premiership", "drawn", "united", "merger", "everton", "behaviour", "newcastle", "visit" ], [ "growth", "dollar", "figures", "trade", "2004", "economy", "unemployment", "exports", "china", "prices" ], [ "will", "be", "of", "account", "budget", "argentina", "savings", "fund", "is", "economic" ], [ "commission", "sec", "exchange", "company", "financial", "takeover", "board", "firm", "deal", "shareholders" ], [ "broadband", "uk", "tv", "text", "digital", "billion", "total", "records", "mobile", "26" ], [ "club", "chelsea", "team", "arsenal", "he", "me", "smith", "manager", "scottish", "told" ], [ "france", "england", "thomas", "cardiff", "wales", "half", "robinson", "ireland", "nations", "six" ], [ "stop", "they", "the", "to", "labour", "argument", "their", "party", "voters", "of" ], [ "the", "is", "we", "to", "that", "and", "of", "be", "increase", "minimum" ], [ "unlikely", "scotland", "edinburgh", "wales", "rugby", "italy", "injury", "squad", "against", "cup" ], [ "woodward", "liverpool", "davis", "lions", "new", "tim", "cup", "tennis", "in", "henman" ], [ "who", "for", "was", "best", "lee", "film", "man", "also", "night", "nominated" ], [ "yukos", "its", "russian", "bankruptcy", "gazprom", "court", "russia", "khodorkovsky", "auction", "oil" ], [ "com", "spain", "language", "radio", "spanish", "rap", "says", "hip", "hop", "and" ], [ "office", "number", "box", "took", "chart", "starring", "weekend", "5m", "7m", "comedy" ], [ "said", "networks", "version", "sharing", "files", "file", "capacity", "peer", "that", "systems" ], [ "20", "trade", "exports", "price", "shares", "strong", "grew", "raise", "trading", "recovery" ], [ "arrested", "send", "elections", "begin", "immigration", "denies", "commit", "commons", "issues", "banks" ], [ "kennedy", "labour", "blair", "politics", "lib", "election", "said", "mr", "britain", "fox" ], [ "bid", "its", "deutsche", "talks", "offer", "london", "takeover", "stock", "exchange", "deal" ], [ "cabinet", "minister", "he", "prime", "allies", "book", "mr", "brown", "blair", "poster" ], [ "achieved", "feels", "banned", "struggled", "happened", "blame", "seemed", "drugs", "midfielder", "test" ], [ "saw", "rose", "profits", "profit", "sales", "car", "western", "fell", "vehicles", "strong" ] ]
419.089207
average_word_embeddings_glove.6B.300d
0.872
-0.037199
0.151497
0.865992
42
BBC News
ZeroShotTM
10
[ [ "police", "human", "lord", "said", "had", "court", "was", "mr", "would", "rights" ], [ "after", "france", "his", "wales", "ireland", "two", "six", "nations", "half", "captain" ], [ "box", "series", "movie", "award", "awards", "star", "director", "actor", "actress", "category" ], [ "mr", "prime", "blair", "brown", "chancellor", "election", "howard", "labour", "tax", "tory" ], [ "sure", "open", "liverpool", "united", "west", "chelsea", "manager", "club", "soon", "old" ], [ "it", "is", "and", "the", "of", "to", "that", "in", "for", "you" ], [ "mobile", "people", "services", "networks", "broadband", "users", "more", "technology", "are", "service" ], [ "programs", "drugs", "buy", "anti", "company", "mail", "mails", "virus", "send", "windows" ], [ "bank", "growth", "market", "year", "economic", "sales", "december", "economy", "rise", "demand" ], [ "he", "of", "minimum", "in", "the", "that", "is", "and", "to", "mr" ] ]
411.967711
average_word_embeddings_glove.6B.300d
0.91
0.011502
0.193145
0.788792
42
BBC News
ZeroShotTM
20
[ [ "lord", "lords", "said", "law", "blunkett", "he", "secretary", "mr", "would", "hunting" ], [ "net", "spam", "users", "service", "security", "broadband", "search", "site", "sites", "bt" ], [ "olympic", "christmas", "championships", "gold", "holder", "indoor", "medal", "race", "jump", "silver" ], [ "office", "single", "chart", "release", "box", "charts", "sequel", "series", "track", "ten" ], [ "2004", "euros", "profit", "profits", "shares", "strong", "annual", "rose", "investment", "figures" ], [ "decision", "elections", "party", "campaign", "transport", "unions", "general", "drugs", "doping", "spokesman" ], [ "award", "aviator", "won", "actor", "best", "awards", "category", "favourite", "named", "baby" ], [ "woodward", "six", "lions", "ireland", "wales", "nations", "england", "france", "coach", "captain" ], [ "will", "more", "games", "sony", "nintendo", "gaming", "generation", "mobile", "mobiles", "tv" ], [ "match", "federer", "open", "victory", "seed", "win", "beat", "australian", "final", "set" ], [ "the", "of", "song", "is", "in", "to", "that", "and", "it", "for" ], [ "elvis", "radio", "include", "stations", "singer", "single", "ring", "sold", "artists", "blue" ], [ "after", "title", "mark", "minutes", "seconds", "penalty", "final", "ireland", "half", "second" ], [ "pensions", "send", "virus", "mail", "social", "software", "programs", "itself", "either", "pension" ], [ "rates", "economic", "us", "economy", "bush", "oil", "deficit", "dollar", "growth", "president" ], [ "would", "are", "be", "tax", "to", "pay", "said", "government", "councils", "local" ], [ "to", "is", "the", "of", "and", "it", "you", "that", "your", "search" ], [ "howard", "mr", "brown", "party", "prime", "election", "he", "labour", "blair", "voters" ], [ "united", "manager", "club", "football", "newcastle", "arsenal", "boss", "liverpool", "injury", "chelsea" ], [ "company", "biggest", "shareholders", "figures", "deutsche", "its", "december", "sales", "market", "exchange" ] ]
313.231972
average_word_embeddings_glove.6B.300d
0.91
0.005815
0.179557
0.864027
42
BBC News
ZeroShotTM
30
[ [ "mr", "silk", "he", "him", "party", "his", "election", "was", "labour", "voters" ], [ "judge", "law", "was", "lord", "cards", "id", "said", "trial", "advice", "would" ], [ "indoor", "race", "world", "olympic", "championships", "jump", "cross", "gold", "60m", "000m" ], [ "comedy", "sideways", "favourite", "actor", "including", "star", "aviator", "hill", "bet", "chart" ], [ "seed", "west", "united", "draw", "everton", "round", "face", "beat", "saturday", "open" ], [ "exports", "strong", "figures", "growth", "2004", "rose", "overall", "year", "economic", "previous" ], [ "profits", "banks", "poor", "low", "sell", "currency", "indian", "debt", "shares", "investors" ], [ "spam", "net", "online", "websites", "site", "sites", "service", "peer", "internet", "found" ], [ "are", "to", "tax", "tory", "be", "would", "they", "taxes", "of", "is" ], [ "best", "ceremony", "film", "award", "director", "awards", "won", "aviator", "category", "oscars" ], [ "gazprom", "russian", "bankruptcy", "oil", "yukos", "putin", "us", "russia", "its", "auction" ], [ "prince", "ban", "death", "arrested", "drugs", "television", "charged", "killed", "fine", "dutch" ], [ "company", "deal", "bid", "group", "offer", "deutsche", "board", "shareholders", "talks", "exchange" ], [ "madrid", "play", "we", "real", "champions", "arsenal", "england", "club", "barcelona", "robinson" ], [ "commons", "elections", "unions", "general", "test", "appointed", "1997", "debate", "merger", "expert" ], [ "would", "local", "workers", "plans", "public", "budget", "cuts", "pension", "government", "choice" ], [ "generation", "will", "high", "definition", "tv", "which", "mobile", "digital", "be", "capacity" ], [ "hunting", "law", "said", "rules", "courts", "cases", "new", "bill", "children", "rights" ], [ "nations", "lions", "england", "six", "zealand", "in", "woodward", "wales", "ireland", "coach" ], [ "club", "situation", "football", "team", "manager", "sport", "rugby", "my", "players", "assistant" ], [ "and", "apple", "gadgets", "of", "the", "it", "is", "magazine", "gadget", "mini" ], [ "console", "psp", "microsoft", "nintendo", "handheld", "sony", "launch", "windows", "available", "uk" ], [ "the", "to", "of", "and", "is", "that", "minimum", "in", "it", "be" ], [ "minister", "brown", "mr", "blair", "he", "prime", "his", "book", "stand", "had" ], [ "half", "from", "lead", "minutes", "two", "second", "after", "break", "ball", "penalty" ], [ "security", "mail", "software", "mails", "programs", "program", "anti", "itself", "california", "virus" ], [ "is", "to", "network", "that", "and", "systems", "you", "it", "search", "of" ], [ "band", "box", "chart", "christmas", "number", "single", "released", "release", "office", "album" ], [ "his", "it", "best", "and", "was", "song", "the", "of", "that", "he" ], [ "dollar", "rates", "bank", "us", "manufacturing", "hold", "interest", "rate", "economy", "output" ] ]
291.856539
average_word_embeddings_glove.6B.300d
0.87
0.010478
0.176528
0.845005
42
BBC News
ZeroShotTM
40
[ [ "in", "their", "england", "zealand", "nations", "six", "wales", "callaghan", "lions", "cardiff" ], [ "arsenal", "chelsea", "liverpool", "league", "ferguson", "manchester", "real", "madrid", "united", "newcastle" ], [ "sony", "will", "mobiles", "uk", "digital", "tv", "more", "mobile", "million", "phones" ], [ "england", "six", "nations", "bath", "club", "players", "wales", "robinson", "lions", "squad" ], [ "police", "children", "said", "asylum", "would", "they", "be", "cases", "immigration", "child" ], [ "final", "set", "serve", "australian", "roddick", "open", "henman", "beat", "victory", "match" ], [ "strong", "profits", "car", "sales", "grow", "demand", "europe", "rose", "rise", "airline" ], [ "russia", "bankruptcy", "yukos", "gazprom", "russian", "oil", "putin", "gas", "auction", "khodorkovsky" ], [ "of", "is", "are", "to", "search", "that", "said", "and", "attacks", "can" ], [ "us", "dollar", "budget", "bush", "economic", "economy", "deficit", "euro", "countries", "eu" ], [ "in", "25", "song", "robbie", "was", "best", "the", "songs", "of", "but" ], [ "dvd", "studios", "dvds", "games", "high", "format", "definition", "is", "more", "and" ], [ "drugs", "doping", "olympics", "tests", "decision", "missing", "greek", "athens", "charges", "charged" ], [ "and", "the", "is", "to", "for", "will", "in", "minimum", "be", "that" ], [ "race", "holmes", "indoor", "olympic", "gold", "francis", "world", "championships", "birmingham", "cross" ], [ "prize", "film", "bbc", "director", "story", "show", "sky", "cast", "oscar", "awards" ], [ "3g", "speeds", "mobile", "and", "with", "network", "networks", "to", "instead", "operators" ], [ "chambers", "borders", "edinburgh", "unions", "strategy", "seats", "friends", "deliver", "debate", "pensions" ], [ "government", "said", "military", "was", "advice", "lord", "judge", "attorney", "lords", "inquiry" ], [ "they", "lords", "said", "not", "rights", "law", "hunting", "ruling", "human", "court" ], [ "chart", "single", "band", "album", "number", "box", "christmas", "took", "released", "top" ], [ "we", "wales", "two", "england", "france", "try", "wing", "injury", "game", "half" ], [ "security", "calls", "programs", "software", "virus", "windows", "broadband", "bt", "microsoft", "users" ], [ "talks", "offer", "london", "exchange", "bid", "deutsche", "deal", "shareholders", "its", "stock" ], [ "labour", "mr", "election", "bbc", "tony", "minister", "blair", "prime", "he", "brown" ], [ "mail", "pensions", "companies", "mails", "research", "pension", "age", "social", "spam", "science" ], [ "stations", "killed", "death", "show", "died", "shows", "broadcast", "star", "victims", "queen" ], [ "budget", "waste", "taxes", "tax", "labour", "cuts", "spending", "election", "mr", "chancellor" ], [ "traffic", "spam", "file", "sharing", "site", "data", "sites", "attacks", "websites", "spammers" ], [ "film", "aviator", "nominated", "best", "award", "actor", "awards", "actress", "nominations", "who" ], [ "homes", "government", "local", "council", "would", "public", "councils", "prescott", "000", "sector" ], [ "of", "and", "the", "to", "silk", "he", "we", "is", "liverpool", "new" ], [ "is", "and", "gadget", "of", "it", "the", "gadgets", "as", "magazine", "list" ], [ "month", "us", "rate", "december", "bank", "rates", "economy", "retailers", "retail", "interest" ], [ "election", "as", "silk", "was", "he", "mr", "labour", "his", "party", "of" ], [ "company", "iraq", "recently", "ministry", "fuel", "airlines", "executive", "insurance", "drug", "financial" ], [ "to", "and", "of", "the", "is", "are", "that", "it", "be", "in" ], [ "shot", "after", "goal", "ball", "from", "minutes", "half", "lead", "scored", "post" ], [ "he", "mr", "brown", "minister", "apologise", "prime", "book", "told", "jewish", "blair" ], [ "january", "quarter", "2004", "figures", "strong", "sales", "rose", "annual", "growth", "profits" ] ]
373.056609
average_word_embeddings_glove.6B.300d
0.785
0.018343
0.173013
0.826066
42
BBC News
ZeroShotTM
50
[ [ "sell", "vehicles", "company", "deal", "shares", "profits", "indian", "buy", "euros", "share" ], [ "said", "re", "would", "have", "of", "not", "countries", "be", "powers", "human" ], [ "actress", "comedy", "category", "actor", "best", "awards", "film", "award", "won", "director" ], [ "court", "gazprom", "yukos", "bankruptcy", "russia", "russian", "company", "auction", "its", "law" ], [ "to", "of", "the", "new", "government", "that", "police", "he", "on", "by" ], [ "title", "olympic", "final", "britain", "gardener", "60m", "seconds", "relay", "women", "indoor" ], [ "for", "her", "she", "was", "in", "who", "lee", "best", "sharp", "at" ], [ "we", "in", "and", "the", "of", "to", "minimum", "will", "increase", "is" ], [ "spending", "bush", "cuts", "taxes", "budget", "tax", "would", "proposals", "deficit", "congress" ], [ "playstation", "handheld", "sony", "psp", "nintendo", "console", "xbox", "halo", "launch", "san" ], [ "its", "oil", "yukos", "russian", "deutsche", "bid", "bankruptcy", "london", "khodorkovsky", "deal" ], [ "show", "confirmed", "tour", "broadcast", "scottish", "singer", "green", "include", "black", "fight" ], [ "elvis", "box", "album", "places", "single", "chart", "number", "band", "including", "top" ], [ "election", "blair", "labour", "mr", "campaigning", "was", "howard", "he", "party", "said" ], [ "age", "label", "children", "mtv", "living", "income", "pension", "students", "opinions", "35" ], [ "drugs", "tests", "athens", "suspended", "doping", "charges", "greek", "test", "decision", "guilty" ], [ "smith", "job", "players", "referee", "football", "club", "rugby", "lions", "manager", "england" ], [ "six", "nations", "zealand", "lions", "france", "england", "woodward", "wales", "saturday", "white" ], [ "eu", "workers", "foreign", "government", "savings", "local", "tax", "council", "straw", "economic" ], [ "rises", "inflation", "economists", "bank", "policy", "interest", "rates", "economy", "fed", "us" ], [ "site", "net", "attacks", "sites", "traffic", "said", "attack", "are", "criminals", "target" ], [ "figures", "strong", "overall", "2004", "economic", "rose", "growth", "dollar", "mortgage", "lending" ], [ "and", "it", "mouse", "the", "of", "to", "screen", "children", "that", "mac" ], [ "unions", "members", "merger", "society", "schools", "super", "age", "social", "transport", "union" ], [ "jewish", "mr", "he", "muslim", "prime", "minister", "blair", "mp", "howard", "told" ], [ "said", "they", "not", "are", "that", "is", "of", "online", "to", "sites" ], [ "set", "seed", "match", "open", "beat", "serve", "australian", "matches", "federer", "round" ], [ "in", "was", "he", "have", "and", "but", "his", "the", "as", "to" ], [ "trade", "2004", "sales", "year", "growth", "strong", "rose", "economic", "figures", "value" ], [ "that", "it", "3g", "to", "thinks", "is", "and", "will", "systems", "trusted" ], [ "dvd", "high", "and", "definition", "dvds", "games", "wars", "studios", "time", "are" ], [ "language", "spanish", "and", "hip", "radio", "the", "rap", "hop", "to", "is" ], [ "rose", "exports", "figures", "2004", "january", "rate", "growth", "overall", "rise", "manufacturing" ], [ "mr", "brown", "he", "blair", "tax", "labour", "spending", "taxes", "election", "manifesto" ], [ "mr", "party", "election", "brown", "elections", "campaign", "labour", "minister", "leader", "howard" ], [ "screens", "show", "ces", "will", "new", "gamers", "industry", "which", "devices", "gaming" ], [ "china", "oil", "russian", "its", "yukos", "london", "deutsche", "us", "gazprom", "russia" ], [ "sites", "said", "were", "they", "people", "online", "file", "sharing", "using", "research" ], [ "would", "on", "be", "law", "said", "local", "police", "plans", "ban", "new" ], [ "band", "chart", "number", "single", "box", "top", "release", "office", "charity", "director" ], [ "lord", "should", "inquiry", "murder", "law", "judges", "justice", "human", "said", "judge" ], [ "software", "versions", "users", "viruses", "programs", "security", "linux", "google", "windows", "microsoft" ], [ "broadband", "mobile", "uk", "million", "bt", "tv", "phone", "operators", "mobiles", "services" ], [ "liverpool", "arsenal", "chelsea", "real", "madrid", "club", "league", "barcelona", "manager", "champions" ], [ "play", "boss", "arsenal", "champions", "mourinho", "liverpool", "league", "jose", "real", "chelsea" ], [ "000m", "indoor", "gold", "race", "world", "triple", "norwich", "sheffield", "here", "prix" ], [ "25", "the", "that", "song", "music", "is", "it", "robbie", "of", "years" ], [ "minutes", "ball", "half", "after", "ireland", "from", "lead", "gara", "first", "penalty" ], [ "represent", "votes", "unions", "strategy", "meetings", "campaign", "agenda", "elections", "call", "meant" ], [ "anti", "virus", "mails", "mail", "itself", "infected", "social", "program", "message", "messages" ] ]
310.730993
average_word_embeddings_glove.6B.300d
0.724
0.023967
0.173695
0.833458
42
ArXiv ML Papers
GMM
10
[ [ "representation", "space", "quantum", "embedding", "graph", "function", "neural", "networks", "node", "graphs" ], [ "were", "dataset", "detection", "images", "cancer", "prediction", "compared", "medical", "patients", "segmentation" ], [ "bounds", "bound", "regret", "sample", "convergence", "variance", "error", "probability", "convex", "optimal" ], [ "adversarial", "agent", "attacks", "human", "research", "policy", "their", "agents", "reinforcement", "knowledge" ], [ "network", "accuracy", "devices", "traffic", "deep", "networks", "neural", "design", "machine", "techniques" ], [ "methods", "prediction", "approach", "method", "classification", "algorithms", "tasks", "uncertainty", "approaches", "proposed" ], [ "optimization", "stochastic", "bayesian", "variational", "gradient", "posterior", "algorithm", "approximation", "inference", "convergence" ], [ "adversarial", "speech", "end", "training", "datasets", "propose", "gan", "neural", "generative", "convolutional" ], [ "text", "visual", "image", "language", "representations", "features", "word", "images", "semantic", "natural" ], [ "tensor", "graphs", "graph", "matrix", "rank", "nodes", "decomposition", "gnns", "spectral", "laplacian" ] ]
1.53068
average_word_embeddings_glove.6B.300d
0.91
0.011302
0.162483
0.795347
42
ArXiv ML Papers
GMM
20
[ [ "loss", "activation", "uncertainty", "functions", "relu", "network", "networks", "neurons", "neural", "coding" ], [ "cell", "brain", "cancer", "disease", "patients", "were", "ct", "healthy", "patient", "images" ], [ "function", "probability", "bound", "variance", "convergence", "bounds", "sample", "varepsilon", "regression", "distribution" ], [ "social", "ml", "research", "privacy", "questions", "software", "information", "recommendation", "challenges", "users" ], [ "user", "service", "machine", "design", "devices", "mobile", "communication", "techniques", "distributed", "systems" ], [ "driving", "performance", "accuracy", "ensemble", "deep", "training", "search", "test", "art", "compared" ], [ "problems", "linear", "algorithm", "quantum", "optimization", "algorithms", "pooling", "clustering", "function", "problem" ], [ "generative", "classifier", "latent", "adversarial", "datasets", "interpretable", "perturbations", "examples", "robustness", "trained" ], [ "video", "object", "image", "images", "audio", "scene", "features", "objects", "feature", "visual" ], [ "stochastic", "gradient", "variational", "posterior", "optimization", "inference", "bayesian", "order", "approximation", "gaussian" ], [ "metric", "quantum", "representation", "representations", "relational", "classical", "causal", "embedding", "feature", "transformation" ], [ "method", "datasets", "methods", "selection", "samples", "class", "classification", "sample", "metric", "prediction" ], [ "graph", "manifold", "tensor", "rank", "decomposition", "topological", "matrix", "low", "laplacian", "subspaces" ], [ "gnns", "nodes", "graph", "graphs", "node", "link", "embeddings", "embedding", "representation", "vertex" ], [ "power", "prediction", "demand", "forecasts", "forecasting", "traffic", "weather", "forecast", "time", "energy" ], [ "word", "languages", "representations", "language", "visual", "text", "semantic", "words", "natural", "task" ], [ "action", "policy", "rl", "reward", "policies", "fairness", "reinforcement", "exploration", "fair", "optimal" ], [ "tasks", "attacks", "agents", "agent", "human", "reinforcement", "adversarial", "policy", "robot", "environment" ], [ "segmentation", "speech", "accuracy", "convolutional", "image", "cnn", "end", "layers", "convolution", "feature" ], [ "regret", "bounds", "bound", "agent", "sqrt", "points", "agents", "day", "online", "algorithm" ] ]
2.288565
average_word_embeddings_glove.6B.300d
0.875
-0.035698
0.161252
0.842745
42
ArXiv ML Papers
GMM
30
[ [ "loss", "gradient", "neural", "activation", "functions", "networks", "relu", "bounds", "network", "function" ], [ "diagnosis", "ct", "clinical", "patient", "health", "medical", "patients", "diseases", "cancer", "disease" ], [ "gradient", "convergence", "convex", "regression", "variance", "descent", "stochastic", "bounds", "linear", "error" ], [ "social", "research", "methods", "techniques", "applications", "challenges", "health", "patient", "clinical", "analysis" ], [ "deep", "nodes", "structure", "network", "networks", "layer", "neural", "neurons", "architectures", "flow" ], [ "speech", "signals", "channel", "enhancement", "signal", "source", "transmission", "end", "hardware", "coding" ], [ "representation", "representations", "embedding", "metric", "concepts", "causal", "between", "objects", "sequences", "learn" ], [ "software", "quality", "engineering", "process", "deep", "machine", "been", "actions", "user", "feature" ], [ "tensor", "rank", "kernel", "algorithms", "algorithm", "matrix", "decomposition", "convex", "quantum", "optimization" ], [ "against", "detection", "adversarial", "attack", "defense", "attacker", "attacks", "box", "examples", "robustness" ], [ "optimization", "tensor", "order", "gradient", "stochastic", "kernels", "compositional", "rank", "estimator", "convex" ], [ "object", "gan", "dataset", "visual", "segmentation", "samples", "images", "image", "detection", "imaging" ], [ "datasets", "segmentation", "text", "classifier", "image", "adversarial", "transformer", "speech", "audio", "encoder" ], [ "inference", "bayesian", "variational", "stochastic", "posterior", "estimator", "approximate", "distribution", "latent", "distributions" ], [ "distribution", "given", "bounds", "bound", "sample", "regret", "lower", "probability", "algorithm", "number" ], [ "feature", "sensor", "was", "signals", "temperature", "protein", "3d", "convolutional", "eeg", "energy" ], [ "dynamics", "nonlinear", "optimization", "systems", "solver", "linear", "end", "efficient", "quantum", "problems" ], [ "graphs", "nodes", "graph", "node", "gnns", "clustering", "spectral", "embeddings", "laplacian", "edges" ], [ "reinforcement", "agent", "policies", "policy", "tasks", "reward", "human", "environment", "robot", "agents" ], [ "agents", "regret", "game", "rl", "players", "games", "agent", "play", "human", "group" ], [ "text", "generation", "music", "image", "images", "style", "video", "audio", "gans", "realistic" ], [ "user", "users", "fairness", "ml", "recommendation", "media", "systems", "social", "information", "research" ], [ "forecasting", "predictions", "uncertainty", "predictive", "prediction", "models", "forecasts", "series", "forecast", "generative" ], [ "12", "explainable", "2019", "interpretable", "vision", "person", "periods", "personal", "machine", "period" ], [ "accuracy", "unlabeled", "weather", "ensemble", "forecasting", "prediction", "test", "dataset", "demand", "forecast" ], [ "design", "search", "federated", "cloud", "distributed", "hardware", "devices", "framework", "distillation", "architecture" ], [ "method", "algorithms", "linear", "algorithm", "problems", "quantum", "methods", "clustering", "proposed", "dimensional" ], [ "languages", "word", "embeddings", "natural", "text", "words", "representations", "sentences", "translation", "language" ], [ "system", "detection", "vehicles", "driving", "vehicle", "traffic", "demand", "time", "detect", "speed" ], [ "scaling", "training", "efficient", "loss", "day", "cost", "rl", "state", "pruning", "overfitting" ] ]
2.712271
average_word_embeddings_glove.6B.300d
0.78
-0.035137
0.170366
0.843608
42
ArXiv ML Papers
GMM
40
[ [ "sample", "marginal", "bayesian", "out", "size", "evidence", "posterior", "individual", "variational", "family" ], [ "health", "medical", "predict", "patients", "patient", "ct", "diagnosis", "disease", "diseases", "cancer" ], [ "convergence", "descent", "gradient", "convex", "diffusion", "stochastic", "variance", "linear", "subspace", "rank" ], [ "class", "strategies", "prior", "case", "when", "bounds", "control", "estimate", "treatment", "fairness" ], [ "layer", "networks", "architectures", "deep", "structure", "neural", "network", "neurons", "flow", "loss" ], [ "hardware", "accelerators", "power", "processing", "memory", "source", "bandwidth", "convolution", "end", "layer" ], [ "reasoning", "representations", "visual", "causal", "representation", "concepts", "relational", "neural", "symbolic", "continuous" ], [ "engineering", "quality", "machine", "deep", "software", "tests", "feature", "recognition", "process", "search" ], [ "convex", "log", "matrix", "algorithms", "algorithm", "quantum", "optimization", "exchange", "decomposition", "linear" ], [ "attack", "attacks", "adversarial", "against", "defense", "detection", "box", "attacker", "security", "iot" ], [ "gradient", "optimization", "order", "stochastic", "convex", "descent", "proximal", "solving", "constrained", "variational" ], [ "images", "detection", "segmentation", "image", "dataset", "training", "samples", "art", "augmentation", "techniques" ], [ "decoder", "encoder", "speech", "end", "audio", "segmentation", "image", "classifier", "speaker", "eeg" ], [ "stochastic", "regression", "variational", "inference", "posterior", "bayesian", "approximate", "distribution", "uncertainty", "distributions" ], [ "sample", "bounds", "bound", "regret", "distribution", "lower", "delta", "minimax", "probability", "optimal" ], [ "was", "signals", "were", "protein", "energy", "whole", "spectrum", "brain", "convolutional", "power" ], [ "network", "neural", "dynamics", "nonlinear", "networks", "protein", "systems", "activation", "field", "convolutional" ], [ "graphs", "laplacian", "graph", "nodes", "vertices", "filters", "spectral", "gnns", "vertex", "geometric" ], [ "reward", "actions", "agents", "agent", "environment", "reinforcement", "robot", "policy", "rl", "tasks" ], [ "players", "agents", "game", "games", "agent", "play", "atari", "environment", "rl", "environments" ], [ "gans", "frames", "style", "audio", "music", "generation", "image", "video", "segment", "generating" ], [ "privacy", "recommendation", "media", "users", "research", "social", "ml", "compliance", "user", "information" ], [ "hierarchical", "forecasting", "market", "federated", "forecast", "probabilistic", "uncertainty", "forecasts", "prediction", "relations" ], [ "12", "explainable", "2019", "interpretable", "vision", "person", "periods", "personal", "machine", "period" ], [ "stream", "unlabeled", "classification", "ensemble", "samples", "big", "supervised", "labeled", "high", "sets" ], [ "framework", "search", "nas", "devices", "design", "federated", "server", "cloud", "resource", "user" ], [ "linear", "clustering", "classification", "problems", "algorithms", "label", "methods", "method", "algorithm", "pooling" ], [ "translation", "sentences", "natural", "languages", "text", "language", "words", "word", "embeddings", "context" ], [ "wireless", "channel", "driving", "modes", "demand", "system", "vehicle", "speed", "traffic", "vehicles" ], [ "imagenet", "cost", "day", "scaling", "pruning", "training", "score", "rate", "loss", "state" ], [ "series", "models", "modeling", "predictive", "ensemble", "fidelity", "generative", "different", "prediction", "cnn" ], [ "nodes", "representation", "graph", "link", "graphs", "node", "vertex", "embeddings", "gnns", "embedding" ], [ "measure", "distance", "feature", "metric", "euclidean", "embedding", "space", "similarity", "objects", "dimension" ], [ "lead", "financial", "market", "approximations", "media", "membership", "mixed", "price", "operators", "credit" ], [ "forecasts", "forecast", "demand", "year", "weather", "forecasting", "time", "prediction", "patterns", "scale" ], [ "scene", "representations", "image", "text", "objects", "images", "features", "visual", "object", "human" ], [ "biases", "adversarial", "fair", "fairness", "dataset", "gender", "bias", "overfitting", "confidence", "groups" ], [ "quantum", "policies", "optimal", "stochastic", "policy", "problem", "problems", "inference", "solving", "optimization" ], [ "machine", "human", "research", "scientific", "techniques", "challenges", "quantum", "social", "review", "design" ], [ "tensor", "gaussian", "kernels", "kernel", "divergence", "separable", "rank", "convergence", "fast", "inducing" ] ]
3.330639
average_word_embeddings_glove.6B.300d
0.775
-0.067732
0.164781
0.868519
42
ArXiv ML Papers
GMM
50
[ [ "sample", "marginal", "bayesian", "out", "size", "evidence", "posterior", "individual", "variational", "family" ], [ "diseases", "was", "patients", "ct", "predict", "medical", "disease", "cancer", "patient", "diagnosis" ], [ "minimax", "gradient", "descent", "convergence", "convex", "strongly", "function", "stochastic", "bounds", "matrix" ], [ "deep", "detection", "active", "available", "samples", "datasets", "class", "patient", "methods", "supervised" ], [ "temporal", "deep", "architecture", "neurons", "network", "networks", "architectures", "neural", "layer", "structure" ], [ "coding", "digital", "speech", "mobile", "end", "source", "hardware", "channel", "transmission", "processing" ], [ "reasoning", "representations", "relational", "quantum", "causal", "concepts", "representation", "symbolic", "processes", "theory" ], [ "hyperparameters", "process", "pipeline", "goals", "losses", "quality", "strategy", "questions", "expert", "driving" ], [ "matrix", "algorithm", "convex", "decomposition", "algorithms", "exchange", "rank", "kernel", "matrices", "approximation" ], [ "attacks", "attack", "adversarial", "threat", "detection", "box", "iot", "attacker", "against", "defense" ], [ "gradient", "optimization", "order", "stochastic", "convex", "descent", "proximal", "solving", "constrained", "variational" ], [ "segmentation", "images", "detection", "reconstruction", "augmentation", "image", "medical", "dl", "noise", "object" ], [ "image", "encoder", "decoder", "classifier", "perturbations", "convolution", "channel", "speech", "eeg", "end" ], [ "distributions", "variational", "uncertainty", "inference", "approximate", "bayesian", "regression", "posterior", "distribution", "variables" ], [ "delta", "lower", "distribution", "frac", "bound", "varepsilon", "probability", "bounds", "sample", "number" ], [ "were", "protein", "convolutional", "fusion", "brain", "detect", "whole", "segmentation", "detection", "was" ], [ "gan", "shape", "dynamics", "local", "quantum", "nonlinear", "linear", "protein", "theory", "carlo" ], [ "spectral", "laplacian", "filters", "graphs", "graph", "vertices", "nodes", "geometric", "vertex", "gnns" ], [ "reinforcement", "reward", "policy", "control", "policies", "safety", "optimal", "constraints", "measurement", "action" ], [ "look", "game", "simulation", "environment", "play", "players", "agent", "human", "atari", "games" ], [ "video", "generating", "image", "style", "music", "generator", "generative", "generation", "gans", "audio" ], [ "user", "recommendation", "media", "group", "information", "view", "users", "domain", "ml", "privacy" ], [ "probabilistic", "series", "distribution", "federated", "forecast", "calibrated", "forecasts", "relations", "hierarchical", "forecasting" ], [ "12", "explainable", "2019", "interpretable", "vision", "person", "periods", "personal", "machine", "period" ], [ "stream", "big", "classification", "online", "high", "database", "000", "memory", "algorithms", "size" ], [ "generation", "search", "design", "architecture", "nas", "distillation", "generator", "trained", "language", "bert" ], [ "clustering", "algorithms", "classification", "pooling", "methods", "linear", "label", "problems", "method", "algorithm" ], [ "language", "word", "text", "natural", "translation", "languages", "source", "cross", "code", "nlp" ], [ "prediction", "modes", "vehicle", "traffic", "service", "social", "sharing", "demand", "internet", "driving" ], [ "pruning", "scaling", "day", "imagenet", "rate", "weights", "imputation", "costs", "precision", "10" ], [ "cnn", "generative", "ensemble", "predictive", "models", "modeling", "fidelity", "prediction", "parameters", "high" ], [ "representation", "nodes", "node", "gnns", "graph", "graphs", "vertex", "link", "edges", "embeddings" ], [ "class", "metric", "distance", "embedding", "measure", "space", "objects", "dimensional", "classical", "classes" ], [ "mixed", "credit", "market", "financial", "membership", "lead", "operators", "approximations", "media", "social" ], [ "weather", "forecasting", "traffic", "forecasts", "forecast", "series", "time", "temporal", "speed", "prediction" ], [ "video", "feature", "scene", "3d", "features", "visual", "attention", "gan", "images", "image" ], [ "samples", "uncertainty", "estimator", "bias", "estimation", "prediction", "gender", "adversarial", "predictions", "causal" ], [ "optimization", "stochastic", "optimal", "policy", "problem", "games", "algorithms", "algorithm", "inference", "guarantees" ], [ "software", "ml", "research", "machine", "challenges", "scientific", "techniques", "engineering", "review", "quantum" ], [ "convergence", "fast", "rank", "gaussian", "noise", "tensor", "inducing", "divergence", "optimization", "kernel" ], [ "meta", "rl", "regret", "agents", "setting", "agent", "problem", "bandit", "optimal", "where" ], [ "shift", "demand", "performance", "energy", "forecast", "forecasting", "computing", "transformers", "federated", "cost" ], [ "fairness", "robust", "rl", "reward", "adversarial", "fair", "robustness", "biases", "policy", "explanations" ], [ "distributed", "communication", "server", "devices", "power", "hardware", "computation", "memory", "execution", "cost" ], [ "gradient", "layers", "activation", "convolutional", "network", "networks", "neural", "relu", "layer", "signals" ], [ "tracking", "detection", "driving", "scenarios", "autonomous", "detect", "audio", "vehicle", "object", "profiles" ], [ "words", "representations", "semantic", "visual", "objects", "speech", "word", "scene", "style", "language" ], [ "documents", "day", "multi", "medical", "successful", "was", "sets", "text", "evaluated", "used" ], [ "human", "privacy", "questions", "attacks", "fairness", "bias", "influence", "how", "use", "groups" ], [ "actions", "agent", "goal", "policy", "reinforcement", "task", "tasks", "robot", "human", "agents" ] ]
3.846268
average_word_embeddings_glove.6B.300d
0.728
-0.081105
0.14901
0.871859
42
ArXiv ML Papers
KeyNMF
10
[ [ "demonstrate", "work", "framework", "tasks", "learning", "learn", "information", "problems", "existing", "performance" ], [ "applications", "various", "standard", "existing", "simple", "methods", "problems", "important", "structure", "approaches" ], [ "techniques", "time", "using", "network", "networks", "technique", "results", "developed", "input", "present" ], [ "models", "better", "based", "parameters", "modeling", "performance", "model", "design", "demonstrate", "language" ], [ "provide", "analysis", "process", "large", "available", "data", "applications", "techniques", "specific", "information" ], [ "problems", "algorithm", "problem", "algorithms", "optimal", "function", "linear", "provide", "given", "functions" ], [ "able", "study", "multiple", "examples", "various", "different", "types", "specific", "similar", "components" ], [ "proposed", "efficient", "simple", "demonstrate", "based", "experiments", "effective", "method", "process", "analysis" ], [ "used", "use", "time", "work", "information", "study", "analysis", "important", "based", "provide" ], [ "systems", "approach", "given", "approaches", "problem", "provide", "specific", "requires", "use", "value" ] ]
3.895604
average_word_embeddings_glove.6B.300d
0.7
-0.013505
0.175113
0.673608
42
ArXiv ML Papers
KeyNMF
20
[ [ "tasks", "learn", "learning", "demonstrate", "framework", "problems", "knowledge", "allows", "environment", "process" ], [ "existing", "methods", "standard", "structure", "important", "various", "applications", "techniques", "problems", "experiments" ], [ "types", "present", "technique", "shown", "techniques", "developed", "using", "input", "detection", "able" ], [ "models", "demonstrate", "design", "modeling", "parameters", "model", "language", "distribution", "existing", "simple" ], [ "types", "large", "available", "quality", "process", "data", "possible", "distribution", "specific", "furthermore" ], [ "given", "problem", "problems", "solve", "solution", "consider", "knowledge", "model", "terms", "result" ], [ "different", "multiple", "similar", "examples", "various", "study", "components", "specific", "able", "types" ], [ "demonstrate", "simple", "proposed", "method", "effective", "experiments", "framework", "process", "efficient", "better" ], [ "based", "better", "results", "performance", "study", "experimental", "recent", "training", "improve", "achieve" ], [ "approach", "value", "processes", "approaches", "requires", "simple", "given", "instead", "necessary", "standard" ], [ "important", "improve", "image", "study", "developed", "used", "effective", "difficult", "uses", "quality" ], [ "use", "specific", "example", "requires", "uses", "available", "allows", "important", "make", "language" ], [ "better", "practical", "example", "theoretical", "particular", "provide", "functions", "research", "results", "provides" ], [ "network", "networks", "neural", "image", "various", "efficient", "input", "large", "multiple", "structure" ], [ "recent", "improve", "able", "human", "work", "knowledge", "available", "make", "possible", "various" ], [ "features", "based", "information", "existing", "important", "user", "feature", "order", "research", "present" ], [ "process", "time", "large", "number", "cost", "efficient", "uses", "applications", "study", "current" ], [ "applications", "application", "based", "analysis", "theoretical", "developed", "study", "applied", "social", "human" ], [ "techniques", "systems", "better", "various", "existing", "research", "user", "applications", "important", "multiple" ], [ "optimization", "function", "algorithm", "algorithms", "optimal", "functions", "linear", "complexity", "parameters", "efficient" ] ]
4.101509
average_word_embeddings_glove.6B.300d
0.58
-0.063003
0.176383
0.728601
42
ArXiv ML Papers
KeyNMF
30
[ [ "learn", "tasks", "learning", "framework", "process", "environment", "demonstrate", "knowledge", "training", "allows" ], [ "methods", "standard", "important", "structure", "simple", "experiments", "theoretical", "various", "suggest", "available" ], [ "types", "object", "technique", "shown", "detection", "present", "available", "using", "able", "developed" ], [ "model", "demonstrate", "modeling", "models", "parameters", "design", "language", "multiple", "distribution", "experiments" ], [ "distribution", "possible", "available", "quality", "identify", "data", "process", "furthermore", "types", "addition" ], [ "problem", "knowledge", "solution", "consider", "model", "practical", "terms", "solve", "optimal", "value" ], [ "different", "types", "able", "specific", "multiple", "various", "similar", "examples", "identify", "components" ], [ "efficient", "simple", "process", "method", "effective", "demonstrate", "proposed", "framework", "experiments", "accuracy" ], [ "improve", "performance", "results", "achieve", "quality", "tasks", "significantly", "training", "accuracy", "recent" ], [ "approaches", "approach", "requires", "necessary", "processes", "instead", "difficult", "value", "standard", "simple" ], [ "effective", "used", "difficult", "make", "important", "improve", "uses", "developed", "quality", "mean" ], [ "analysis", "theoretical", "standard", "developed", "application", "applied", "social", "type", "component", "human" ], [ "results", "studies", "study", "research", "effective", "application", "multiple", "related", "various", "knowledge" ], [ "structure", "network", "neural", "multiple", "various", "input", "networks", "image", "communication", "standard" ], [ "work", "able", "possible", "make", "improve", "recent", "human", "way", "knowledge", "available" ], [ "improve", "information", "important", "specific", "feature", "furthermore", "user", "research", "useful", "order" ], [ "uses", "step", "time", "possible", "process", "making", "required", "cost", "current", "efficiency" ], [ "practical", "functions", "theoretical", "provide", "research", "provides", "way", "results", "example", "addition" ], [ "enables", "developed", "technique", "applications", "techniques", "research", "applied", "useful", "processing", "various" ], [ "optimization", "objective", "functions", "distribution", "function", "optimal", "linear", "parameters", "continuous", "theory" ], [ "algorithm", "algorithms", "linear", "efficient", "optimal", "optimization", "matrix", "complexity", "theoretical", "dimensional" ], [ "results", "present", "proposed", "based", "set", "experimental", "new", "model", "network", "recent" ], [ "critical", "provides", "significant", "research", "physical", "systems", "important", "user", "furthermore", "current" ], [ "existing", "specifically", "require", "features", "multiple", "available", "approaches", "usually", "framework", "make" ], [ "size", "number", "scale", "large", "available", "need", "small", "simple", "limited", "parameters" ], [ "example", "input", "given", "important", "present", "image", "result", "images", "available", "number" ], [ "understanding", "efficient", "technique", "suggest", "understand", "limited", "better", "achieve", "knowledge", "furthermore" ], [ "allows", "various", "solving", "specific", "problems", "solve", "solutions", "result", "context", "number" ], [ "specific", "use", "allows", "important", "requires", "make", "uses", "available", "language", "impact" ], [ "focus", "number", "simple", "specific", "particular", "certain", "functions", "structure", "example", "ability" ] ]
4.639518
average_word_embeddings_glove.6B.300d
0.546667
-0.082642
0.179665
0.765961
42
ArXiv ML Papers
KeyNMF
40
[ [ "tasks", "shown", "context", "environment", "training", "learning", "common", "learn", "policy", "making" ], [ "important", "suggest", "standard", "simple", "experiments", "methods", "structure", "various", "theoretical", "empirical" ], [ "types", "detection", "technique", "developed", "using", "result", "continuous", "shown", "object", "objects" ], [ "model", "models", "parameters", "language", "distribution", "context", "design", "modeling", "accurate", "simple" ], [ "data", "require", "possible", "distribution", "types", "identify", "underlying", "means", "furthermore", "quality" ], [ "optimal", "solve", "consider", "problem", "practical", "solution", "value", "model", "terms", "solutions" ], [ "components", "able", "object", "various", "furthermore", "examples", "types", "different", "similar", "individual" ], [ "resulting", "simple", "proposed", "method", "dynamic", "efficient", "experiments", "effective", "accuracy", "requires" ], [ "present", "image", "images", "able", "language", "visual", "generate", "related", "current", "features" ], [ "instead", "value", "simple", "standard", "difficult", "approaches", "requires", "necessary", "approach", "terms" ], [ "important", "used", "improve", "developed", "difficult", "uses", "effective", "commonly", "make", "mean" ], [ "standard", "analysis", "applied", "theoretical", "social", "developed", "component", "application", "type", "human" ], [ "recent", "experimental", "results", "set", "significant", "test", "larger", "testing", "indicate", "models" ], [ "networks", "network", "neural", "input", "image", "various", "structure", "standard", "communication", "training" ], [ "work", "improve", "shown", "recent", "way", "make", "human", "possible", "able", "difficult" ], [ "useful", "user", "research", "important", "improve", "information", "order", "feature", "context", "furthermore" ], [ "cost", "time", "uses", "making", "efficiency", "step", "current", "control", "setting", "efficient" ], [ "theoretical", "provide", "functions", "practical", "way", "provides", "research", "addition", "empirical", "example" ], [ "critical", "physical", "important", "systems", "current", "provides", "user", "control", "research", "significant" ], [ "functions", "function", "optimal", "parameters", "linear", "distribution", "objective", "optimization", "theory", "continuous" ], [ "complexity", "efficient", "algorithms", "algorithm", "optimal", "linear", "optimization", "theoretical", "matrix", "dimensional" ], [ "new", "model", "network", "proposed", "research", "support", "set", "case", "based", "terms" ], [ "performance", "improve", "tasks", "accuracy", "training", "achieve", "significantly", "quality", "recent", "design" ], [ "approaches", "features", "specifically", "require", "usually", "existing", "efficiency", "make", "addition", "certain" ], [ "large", "need", "number", "size", "parameters", "scale", "small", "simple", "larger", "limited" ], [ "studies", "research", "effective", "application", "various", "study", "subject", "human", "related", "factors" ], [ "terms", "context", "solving", "number", "solutions", "allows", "solve", "complexity", "problems", "result" ], [ "better", "understanding", "understand", "achieve", "suggest", "efficient", "technique", "enables", "limited", "means" ], [ "various", "specific", "new", "way", "behavior", "identify", "tasks", "types", "development", "develop" ], [ "generate", "form", "process", "processes", "image", "quality", "improve", "applied", "model", "design" ], [ "structure", "consider", "ability", "simple", "particular", "certain", "number", "functions", "focus", "developed" ], [ "reasoning", "user", "effect", "knowledge", "possible", "useful", "number", "language", "research", "understanding" ], [ "processing", "example", "computer", "practical", "require", "input", "applications", "useful", "various", "significant" ], [ "human", "ability", "improve", "experiments", "effective", "images", "demonstrate", "image", "furthermore", "able" ], [ "requires", "impact", "important", "quality", "allows", "use", "allow", "make", "uses", "language" ], [ "multiple", "make", "graph", "structure", "uses", "types", "allows", "individual", "representation", "graphs" ], [ "efficient", "able", "technique", "techniques", "furthermore", "variety", "applied", "quality", "models", "images" ], [ "structure", "allows", "tasks", "framework", "provides", "complex", "significant", "evaluation", "control", "achieve" ], [ "research", "code", "processing", "developed", "source", "available", "models", "significant", "addition", "computer" ], [ "given", "probability", "example", "input", "important", "number", "result", "similar", "accuracy", "image" ] ]
5.661899
average_word_embeddings_glove.6B.300d
0.5075
-0.099641
0.17106
0.788403
42
ArXiv ML Papers
KeyNMF
50
[ [ "environment", "shown", "training", "policy", "tasks", "context", "learning", "learn", "common", "development" ], [ "suggest", "experiments", "methods", "standard", "specifically", "approaches", "distribution", "combination", "complexity", "direct" ], [ "developed", "using", "types", "detection", "result", "technique", "shown", "continuous", "object", "objects" ], [ "modeling", "generate", "models", "context", "typically", "approaches", "design", "language", "size", "experiments" ], [ "data", "distribution", "types", "possible", "underlying", "identify", "devices", "require", "quality", "access" ], [ "consider", "problem", "solve", "solution", "optimal", "value", "practical", "solutions", "terms", "distribution" ], [ "able", "different", "types", "examples", "similar", "components", "object", "individual", "identify", "furthermore" ], [ "accuracy", "proposed", "dynamic", "method", "representation", "experiments", "combination", "resulting", "finding", "detection" ], [ "feature", "uses", "generated", "image", "similar", "features", "visual", "images", "input", "experiments" ], [ "allows", "use", "requires", "allow", "uses", "impact", "quality", "make", "language", "difficult" ], [ "developed", "used", "difficult", "uses", "commonly", "mean", "component", "components", "effective", "possible" ], [ "application", "applied", "standard", "developed", "social", "component", "analysis", "theoretical", "human", "type" ], [ "approaches", "approach", "requires", "difficult", "value", "necessary", "instead", "terms", "processes", "control" ], [ "communication", "standard", "network", "networks", "neural", "image", "training", "layer", "detection", "graph" ], [ "work", "recent", "possible", "way", "able", "human", "make", "difficult", "shown", "new" ], [ "order", "information", "user", "feature", "useful", "research", "features", "social", "need", "context" ], [ "possible", "setting", "current", "cost", "making", "control", "step", "uses", "time", "way" ], [ "provide", "theoretical", "functions", "practical", "research", "addition", "way", "provides", "empirical", "necessary" ], [ "control", "research", "critical", "systems", "current", "provides", "user", "require", "physical", "future" ], [ "functions", "function", "optimal", "linear", "objective", "theory", "distribution", "continuous", "probability", "optimization" ], [ "achieve", "features", "training", "tasks", "best", "performance", "good", "design", "recent", "feature" ], [ "based", "set", "proposed", "new", "network", "terms", "research", "support", "case", "language" ], [ "model", "distribution", "modeling", "representation", "design", "instead", "way", "allows", "type", "source" ], [ "approaches", "existing", "usually", "require", "features", "make", "specifically", "contrast", "certain", "addition" ], [ "large", "scale", "number", "size", "need", "small", "set", "larger", "limited", "smaller" ], [ "studies", "application", "study", "subject", "effective", "research", "related", "factors", "characteristics", "human" ], [ "solving", "complexity", "solutions", "problems", "solve", "terms", "allows", "context", "order", "theory" ], [ "better", "understanding", "understand", "achieve", "suggest", "technique", "limited", "types", "means", "enables" ], [ "algorithm", "linear", "optimal", "algorithms", "optimization", "numerical", "matrix", "theoretical", "complexity", "dimensional" ], [ "question", "possible", "given", "instead", "order", "form", "number", "probability", "result", "set" ], [ "terms", "functions", "focus", "number", "particular", "certain", "consider", "ability", "processes", "developed" ], [ "significant", "processing", "require", "users", "computer", "applications", "useful", "practical", "computational", "computing" ], [ "significant", "set", "larger", "experimental", "recent", "results", "testing", "test", "indicate", "accuracy" ], [ "able", "ability", "experiments", "effectiveness", "images", "image", "human", "effective", "demonstrate", "learn" ], [ "specific", "way", "tasks", "new", "behavior", "identify", "develop", "development", "approaches", "significant" ], [ "available", "code", "research", "source", "developed", "processing", "significant", "computer", "addition", "especially" ], [ "variety", "furthermore", "technique", "techniques", "applied", "able", "quality", "developed", "images", "required" ], [ "framework", "tasks", "control", "proposed", "allows", "solution", "provides", "achieve", "evaluation", "complex" ], [ "individual", "make", "uses", "multiple", "allows", "types", "graph", "enables", "experiments", "graphs" ], [ "parameter", "optimization", "parameters", "computational", "allows", "cost", "required", "processes", "dimensional", "similar" ], [ "useful", "user", "effect", "possible", "knowledge", "reasoning", "language", "number", "research", "experience" ], [ "experiments", "theoretical", "simple", "effective", "functions", "empirical", "standard", "requires", "tasks", "ability" ], [ "variety", "ways", "similar", "training", "various", "human", "effective", "applied", "tasks", "extensive" ], [ "structures", "structural", "structure", "complex", "dimensional", "variables", "graph", "defined", "underlying", "representation" ], [ "quality", "significantly", "improve", "making", "increase", "efficiency", "significant", "accuracy", "increasing", "terms" ], [ "generate", "process", "form", "image", "applied", "processes", "allows", "quality", "set", "design" ], [ "focus", "providing", "similar", "examples", "example", "object", "theory", "possible", "allows", "concept" ], [ "especially", "question", "technique", "furthermore", "common", "significant", "making", "number", "important", "make" ], [ "present", "language", "able", "current", "new", "related", "visual", "including", "images", "image" ], [ "efficiency", "solutions", "functions", "efficient", "cost", "result", "design", "develop", "significant", "communication" ] ]
4.755701
average_word_embeddings_glove.6B.300d
0.474
-0.110715
0.17296
0.805725
42
ArXiv ML Papers
FASTopic
10
[ [ "em", "posterior", "mutual", "equation", "estimators", "variational", "carlo", "kernels", "monte", "mcmc" ], [ "optimal", "stochastic", "linear", "gradient", "convergence", "function", "optimization", "algorithm", "sample", "matrix" ], [ "federated", "environment", "research", "agent", "traffic", "online", "agents", "user", "users", "reinforcement" ], [ "examples", "biases", "perturbations", "bias", "predictors", "attacks", "fairness", "adversarial", "causal", "adversaries" ], [ "was", "segmentation", "were", "images", "audio", "speech", "medical", "video", "imaging", "disease" ], [ "feature", "representation", "neural", "networks", "network", "end", "image", "architecture", "convolutional", "generative" ], [ "model", "machine", "data", "datasets", "models", "classification", "task", "from", "tasks", "different" ], [ "graphs", "geometric", "link", "gnns", "node", "nodes", "objects", "clusters", "graph", "clustering" ], [ "semantic", "word", "visual", "language", "text", "natural", "translation", "reasoning", "style", "languages" ], [ "quantum", "efficiency", "memory", "computation", "scaling", "hardware", "quantization", "overhead", "latency", "bit" ] ]
56.874147
average_word_embeddings_glove.6B.300d
1
-0.079675
0.180779
0.857534
42
ArXiv ML Papers
FASTopic
20
[ [ "nonlinear", "link", "gnns", "graph", "graphs", "nodes", "local", "node", "flows", "diffusion" ], [ "vehicle", "driving", "iot", "traffic", "sensors", "coverage", "smart", "wireless", "vehicles", "predefined" ], [ "linguistic", "contexts", "proposals", "explanations", "sentence", "boxes", "meaning", "relevance", "assigned", "document" ], [ "bayesian", "posterior", "variational", "inference", "carlo", "nonparametric", "dirichlet", "mcmc", "nonnegative", "monte" ], [ "width", "molecular", "pooling", "euclidean", "orthogonal", "activation", "separable", "tensors", "tensor", "spectrum" ], [ "generation", "gan", "generative", "enhancement", "music", "character", "frame", "acoustic", "composed", "mismatch" ], [ "object", "representations", "representation", "features", "visual", "feature", "objects", "specific", "human", "detection" ], [ "image", "images", "3d", "segmentation", "convolutional", "imaging", "augmentation", "eeg", "mri", "localization" ], [ "privacy", "users", "user", "service", "media", "item", "federated", "internet", "concerns", "services" ], [ "power", "memory", "energy", "forecasting", "forecast", "forecasts", "consumption", "demand", "temperature", "latency" ], [ "bounds", "sqrt", "delta", "bound", "frac", "mathbb", "tilde", "mathcal", "arms", "ucb" ], [ "techniques", "datasets", "dataset", "accuracy", "available", "art", "scale", "classification", "supervised", "compared" ], [ "programs", "reasoning", "logic", "abstraction", "enforce", "formalism", "symbolic", "inefficient", "easier", "add" ], [ "distribution", "error", "parameters", "estimation", "loss", "samples", "generalization", "regression", "sample", "class" ], [ "in", "and", "of", "on", "as", "the", "to", "this", "that", "are" ], [ "language", "attacks", "speech", "adversarial", "source", "text", "target", "pre", "domain", "against" ], [ "methodologies", "investigation", "centric", "project", "materials", "becoming", "ml", "research", "practices", "discusses" ], [ "policy", "agent", "reinforcement", "decision", "rl", "control", "agents", "reward", "strategies", "goal" ], [ "curve", "diagnosis", "cancer", "detector", "patients", "patient", "diseases", "healthy", "97", "94" ], [ "optimization", "algorithm", "stochastic", "convergence", "matrix", "sparse", "problems", "linear", "algorithms", "gradient" ] ]
416.58248
average_word_embeddings_glove.6B.300d
1
-0.129604
0.166474
0.873438
42
ArXiv ML Papers
FASTopic
30
[ [ "demands", "resnet", "configurations", "modes", "normalization", "transportation", "200", "updated", "pruned", "managing" ], [ "attack", "adversarial", "defense", "malware", "against", "attacks", "detected", "malicious", "threat", "vulnerable" ], [ "root", "periods", "deviations", "exists", "outliers", "vanishing", "relu", "recovery", "boundary", "recover" ], [ "reward", "control", "action", "policies", "policy", "agents", "rl", "agent", "reinforcement", "environments" ], [ "mobile", "devices", "device", "60", "wireless", "throughput", "enhancement", "centralized", "server", "lightweight" ], [ "quantum", "extensions", "logic", "straightforward", "shelf", "correctness", "formalism", "formally", "branch", "classical" ], [ "uncertainty", "dropout", "bayesian", "streams", "insufficient", "uncertainties", "observational", "imputation", "measurement", "uncertain" ], [ "user", "users", "twitter", "name", "recommendation", "website", "personal", "media", "item", "recommender" ], [ "function", "algorithm", "algorithms", "optimal", "bounds", "linear", "problem", "case", "epsilon", "bound" ], [ "gradient", "iterations", "convexity", "proximal", "convergence", "descent", "readily", "accelerated", "solvers", "sgd" ], [ "to", "data", "model", "and", "on", "in", "from", "by", "are", "of" ], [ "structure", "domain", "feature", "features", "representations", "representation", "information", "learn", "unsupervised", "source" ], [ "regret", "bandit", "sqrt", "bandits", "entries", "armed", "delta", "ucb", "arms", "uniformly" ], [ "dimensional", "matrix", "kernel", "sparse", "low", "computational", "dimensionality", "method", "clustering", "rank" ], [ "music", "sentences", "audio", "acoustic", "languages", "word", "speaker", "english", "corpus", "speech" ], [ "inform", "humans", "human", "reasoning", "explanations", "explanation", "explainable", "perception", "manipulation", "robotics" ], [ "nas", "segmentation", "image", "pixel", "images", "patch", "imaging", "optical", "reconstructed", "patches" ], [ "regression", "monte", "em", "varepsilon", "mcmc", "logistic", "square", "computes", "lasso", "estimator" ], [ "some", "ml", "many", "systems", "research", "applications", "techniques", "machine", "how", "several" ], [ "ideal", "1d", "convolutions", "tensor", "tensors", "coordinates", "activation", "spectrum", "accelerators", "pooling" ], [ "nodes", "graph", "graphs", "node", "clusters", "gnns", "vertex", "directed", "distinguishing", "passing" ], [ "tasks", "task", "level", "attention", "language", "text", "natural", "knowledge", "trained", "bert" ], [ "prediction", "dataset", "detection", "were", "classification", "system", "was", "test", "sensors", "monitoring" ], [ "label", "labels", "classifier", "privacy", "private", "perturbations", "fair", "class", "treatment", "bias" ], [ "discriminative", "generative", "inductive", "localization", "intuition", "impressive", "svhn", "discovering", "invariance", "performances" ], [ "neural", "networks", "layer", "architecture", "memory", "architectures", "network", "loss", "power", "convolutional" ], [ "forecasting", "series", "modeling", "variables", "relational", "causal", "rnns", "inferring", "forecasts", "phenomena" ], [ "price", "formalize", "imbalance", "fairness", "interventions", "credit", "assessing", "compliance", "criteria", "biases" ], [ "disease", "clinical", "health", "cancer", "papers", "methodologies", "medicine", "diseases", "databases", "countries" ], [ "inducing", "variational", "equations", "distributions", "symmetric", "equation", "posterior", "hilbert", "analytically", "covariance" ] ]
397.196201
average_word_embeddings_glove.6B.300d
1
-0.175521
0.149348
0.882518
42
ArXiv ML Papers
FASTopic
40
[ [ "centralized", "server", "engine", "accelerators", "federated", "library", "service", "devices", "execute", "latency" ], [ "rl", "policy", "agent", "reinforcement", "agents", "forgetting", "robot", "actions", "reward", "action" ], [ "urban", "year", "records", "spread", "market", "weather", "city", "reached", "days", "day" ], [ "cost", "scaling", "healthy", "bit", "memory", "efficiency", "reduced", "efficient", "filter", "precision" ], [ "thorough", "explaining", "qualitative", "explanation", "relational", "strengths", "explanations", "causal", "concepts", "papers" ], [ "nodes", "node", "graph", "link", "graphs", "gnns", "vertices", "edges", "gnn", "vertex" ], [ "minutes", "xgboost", "par", "accuracies", "82", "streams", "percentage", "stream", "anomalies", "boosting" ], [ "quantum", "mathematical", "theorem", "correctness", "logic", "formal", "extensions", "equally", "package", "occur" ], [ "generative", "models", "prediction", "model", "modeling", "series", "predictions", "forecasts", "forecasting", "forecast" ], [ "systems", "machine", "research", "ml", "process", "some", "social", "how", "applications", "recent" ], [ "heuristic", "communication", "distributed", "hundreds", "impractical", "messages", "search", "reach", "searching", "round" ], [ "convergence", "problem", "gradient", "optimization", "convex", "optimal", "function", "non", "problems", "stochastic" ], [ "gpus", "transmission", "layer", "backbone", "convolutional", "1d", "wireless", "enhancement", "modules", "architecture" ], [ "et", "dirichlet", "em", "clustering", "nonnegative", "clusters", "al", "2015", "provable", "families" ], [ "images", "image", "object", "segmentation", "3d", "scene", "pixel", "video", "videos", "camera" ], [ "item", "preferences", "users", "user", "personal", "recommendation", "ranking", "recommender", "interactive", "online" ], [ "fairness", "gender", "biases", "bias", "interventions", "fair", "outcomes", "treatment", "criteria", "affected" ], [ "regression", "estimator", "logistic", "interval", "covariates", "decay", "squared", "deviation", "error", "estimators" ], [ "anomaly", "system", "traffic", "detection", "time", "proposed", "was", "data", "high", "power" ], [ "bandits", "optimality", "tilde", "armed", "regret", "sqrt", "bandit", "arms", "ucb", "strictly" ], [ "operates", "pruning", "backpropagation", "operate", "reconstructing", "pruned", "nas", "paths", "cifar10", "removing" ], [ "2021", "rarely", "credit", "compliance", "experiences", "imitation", "difficulties", "drive", "counterfactual", "consequences" ], [ "word", "sentences", "language", "bert", "languages", "text", "sentence", "name", "bleu", "linguistic" ], [ "protein", "cognitive", "resonance", "brain", "biological", "artifacts", "rnns", "recognizing", "observing", "eeg" ], [ "distance", "label", "metric", "features", "feature", "nearest", "classifier", "classification", "set", "correlation" ], [ "disease", "clinical", "patients", "patient", "diagnosis", "health", "diseases", "healthcare", "wearable", "cancer" ], [ "unlabeled", "art", "training", "trained", "supervised", "datasets", "methods", "large", "dataset", "labeled" ], [ "control", "trajectory", "controller", "delay", "equations", "dynamics", "safe", "transitions", "informed", "transition" ], [ "adversarial", "attacks", "robustness", "against", "robust", "perturbations", "attack", "defense", "attacker", "vulnerable" ], [ "distributions", "inference", "bayesian", "variational", "estimation", "distribution", "parameter", "posterior", "variables", "gaussian" ], [ "hilbert", "coordinates", "width", "curse", "functions", "infinite", "vanishing", "activation", "relu", "kernels" ], [ "extracts", "invariance", "normalization", "remove", "augment", "pooling", "vae", "auxiliary", "mixture", "patch" ], [ "domain", "representations", "representation", "source", "knowledge", "task", "tasks", "target", "transfer", "learn" ], [ "project", "discusses", "functionality", "technologies", "projects", "becoming", "materials", "easier", "software", "engineering" ], [ "tensor", "hessian", "squares", "subspace", "proximal", "thresholding", "newton", "sgd", "solvers", "principal" ], [ "audio", "visual", "speech", "recognition", "media", "speaker", "voice", "twitter", "participants", "attention" ], [ "with", "on", "as", "by", "can", "of", "neural", "networks", "network", "to" ], [ "algorithm", "algorithms", "linear", "bounds", "sample", "matrix", "complexity", "random", "number", "theoretical" ], [ "ideas", "latent", "formalism", "dimensional", "enforce", "topological", "transformation", "coding", "geometric", "transformations" ], [ "quality", "driving", "dataset", "test", "human", "study", "system", "their", "best", "not" ] ]
396.602338
average_word_embeddings_glove.6B.300d
0.995
-0.161884
0.158562
0.875394
42
ArXiv ML Papers
FASTopic
50
[ [ "market", "credit", "price", "compliance", "financial", "drive", "service", "spread", "demand", "managing" ], [ "subspaces", "squares", "normalizing", "approximates", "laplacian", "newton", "solvers", "approximating", "approximated", "subspace" ], [ "these", "been", "deep", "tasks", "machine", "how", "systems", "their", "task", "have" ], [ "conclude", "qualitative", "quantitative", "assessing", "methodologies", "biases", "explanations", "know", "thorough", "bias" ], [ "attack", "attacker", "adversarial", "adversaries", "against", "attacks", "defense", "robots", "vulnerable", "perturbation" ], [ "accuracies", "25", "60", "82", "94", "resnet", "xgboost", "18", "day", "91" ], [ "matrix", "order", "linear", "dimensional", "tensor", "rank", "optimization", "problems", "sparse", "kernel" ], [ "combinatorial", "add", "heuristic", "encourages", "appealing", "search", "heuristics", "predefined", "programming", "inefficient" ], [ "forces", "discovery", "relational", "functional", "phenomena", "causal", "inferring", "dynamics", "biological", "capturing" ], [ "variance", "distribution", "error", "sample", "regression", "estimation", "estimator", "bound", "sampling", "gaussian" ], [ "research", "project", "discusses", "industry", "media", "workflow", "ml", "name", "software", "twitter" ], [ "perturbations", "noise", "generalization", "training", "loss", "normalization", "improve", "robustness", "robust", "overfitting" ], [ "dictionary", "nonnegative", "curse", "metric", "orthogonal", "factorization", "manifold", "distance", "euclidean", "color" ], [ "dirichlet", "observational", "modification", "dropout", "multivariate", "calibrated", "svhn", "additive", "probabilistic", "latent" ], [ "volume", "streams", "stream", "24", "measurement", "measurements", "trends", "spatio", "anomalies", "minutes" ], [ "speedups", "configurations", "whilst", "retaining", "optimizes", "surrogate", "runtime", "complexities", "oracle", "complement" ], [ "transformers", "vae", "sequence", "character", "programs", "asr", "scratch", "suite", "python", "hope" ], [ "lipschitz", "delta", "frac", "varepsilon", "arms", "omega", "mathbb", "mathcal", "ucb", "regime" ], [ "positive", "views", "occurs", "categorical", "boxes", "relation", "proposal", "distinguishing", "correspond", "adaptively" ], [ "are", "in", "by", "on", "of", "to", "this", "and", "that", "the" ], [ "clustering", "supervised", "available", "samples", "datasets", "synthetic", "methods", "data", "dataset", "large" ], [ "sentence", "translate", "sentences", "bidirectional", "names", "corpora", "linguistic", "bleu", "english", "corpus" ], [ "points", "properties", "class", "theoretical", "provide", "functions", "general", "function", "non", "classes" ], [ "stochastic", "momentum", "descent", "sgd", "gradient", "proximal", "convergence", "optimisation", "convexity", "nonconvex" ], [ "recommendation", "feature", "source", "domain", "item", "target", "users", "knowledge", "user", "domains" ], [ "federated", "decentralized", "strict", "centralized", "server", "exhaustive", "distillation", "distributed", "overhead", "heterogeneity" ], [ "algorithm", "online", "bandit", "queries", "regret", "optimal", "algorithms", "decision", "problem", "setting" ], [ "models", "series", "modeling", "prediction", "forecasting", "model", "predictions", "forecast", "uncertainty", "predictive" ], [ "outliers", "spectrum", "spatially", "double", "count", "sketch", "consequence", "em", "localized", "temperature" ], [ "distributions", "bayesian", "wasserstein", "variational", "bernoulli", "nonparametric", "carlo", "posterior", "imply", "pac" ], [ "best", "feature", "was", "classifier", "classification", "ct", "features", "were", "accuracy", "test" ], [ "speech", "text", "speaker", "language", "style", "music", "representations", "acoustic", "semantic", "attention" ], [ "extracts", "label", "labels", "labeling", "patches", "codes", "exploited", "cells", "weak", "selects" ], [ "fourier", "informed", "quantum", "classical", "decades", "nonlinear", "differentiation", "tensors", "equations", "derivatives" ], [ "covid", "disease", "cancer", "patients", "diagnosis", "patient", "protein", "weather", "curve", "diseases" ], [ "imputation", "nearest", "square", "screening", "calibration", "largest", "interval", "neighbor", "root", "hyperparameters" ], [ "quantized", "lightweight", "enhancement", "1d", "bandwidth", "transmission", "channels", "compress", "accelerators", "channel" ], [ "graphs", "nodes", "link", "gnns", "graph", "node", "gnn", "vertex", "vertices", "edges" ], [ "imbalance", "augmentation", "annotated", "annotation", "annotations", "database", "transferring", "sound", "textual", "actively" ], [ "scene", "images", "object", "3d", "objects", "video", "shape", "image", "segmentation", "resolution" ], [ "urban", "city", "device", "demands", "infrastructure", "mobile", "transportation", "rapid", "cloud", "consumption" ], [ "enabling", "manipulation", "mri", "artifacts", "optical", "creates", "modal", "catastrophic", "camera", "reconstruct" ], [ "outlier", "detection", "detector", "iot", "sensor", "sensors", "driving", "vehicle", "detect", "malware" ], [ "explainable", "human", "experiences", "humans", "goals", "force", "expert", "players", "robotic", "imitation" ], [ "contextual", "answers", "fairness", "fair", "counterfactual", "interventions", "preferences", "identity", "notion", "learner" ], [ "concepts", "reasoning", "learners", "abstraction", "materials", "cognitive", "forgetting", "reason", "facilitating", "logic" ], [ "networks", "architecture", "neural", "layer", "convolutional", "network", "layers", "cnns", "architectures", "pruning" ], [ "efficiency", "efficient", "memory", "cost", "accuracy", "energy", "computational", "scaling", "achieve", "performance" ], [ "feed", "activations", "architectural", "activation", "backpropagation", "neuron", "neurons", "paths", "recursive", "movement" ], [ "control", "agents", "agent", "rl", "reward", "policy", "reinforcement", "policies", "action", "games" ] ]
401.022002
average_word_embeddings_glove.6B.300d
0.996
-0.197069
0.154347
0.893485
42
ArXiv ML Papers
S³_angular
10
[ [ "expression", "experiences", "similarities", "characterized", "belief", "nature", "differences", "relationship", "explain", "understood" ], [ "producing", "equipped", "combine", "navigation", "audio", "robot", "digital", "memory", "transformers", "enabled" ], [ "topological", "vertices", "symmetric", "manifold", "graphs", "graph", "orthogonal", "topology", "vertex", "tensor" ], [ "prediction", "forecasting", "projections", "forecasts", "forecast", "models", "model", "comparable", "predictions", "robust" ], [ "particle", "artificial", "equations", "geometry", "synthesis", "quantum", "technique", "nonlinear", "experiment", "differential" ], [ "foundation", "include", "library", "science", "technical", "focuses", "established", "languages", "engineering", "dedicated" ], [ "given", "point", "number", "times", "small", "far", "time", "numbers", "large", "initial" ], [ "introduce", "compact", "essentially", "simplicity", "platform", "dynamic", "mode", "dual", "traditional", "attractive" ], [ "max", "vs", "semi", "dl", "ml", "99", "min", "f1", "par", "88" ], [ "accelerate", "transition", "extend", "extending", "accelerated", "controlling", "rapid", "expansion", "contribute", "tremendous" ] ]
0.934259
average_word_embeddings_glove.6B.300d
1
-0.338978
0.226506
0.890888
42
ArXiv ML Papers
S³_angular
20
[ [ "choosing", "typical", "combinations", "selecting", "accordingly", "vary", "overlap", "differ", "desirable", "depending" ], [ "flows", "catastrophic", "forecasts", "predicted", "magnitude", "forecast", "weather", "worst", "expected", "traffic" ], [ "armed", "attacks", "targeting", "forces", "regime", "prevent", "deployed", "attack", "bandit", "threat" ], [ "module", "gps", "parameters", "validation", "parameter", "calibration", "calibrated", "computed", "configuration", "initialization" ], [ "added", "given", "mean", "zero", "order", "sum", "right", "adding", "instance", "means" ], [ "network", "neural", "networks", "connections", "channels", "channel", "backpropagation", "neurons", "propagation", "posterior" ], [ "loss", "lack", "poor", "despite", "performance", "weak", "losses", "worse", "handling", "attention" ], [ "population", "families", "branch", "applicable", "classifying", "centers", "apply", "poorly", "communities", "classes" ], [ "implementing", "normalization", "consideration", "framework", "policies", "policy", "stability", "integration", "ensuring", "recommendation" ], [ "consensus", "correct", "follow", "target", "possible", "date", "conclusion", "scenario", "decisions", "suggested" ], [ "cancer", "patients", "diseases", "disease", "prevalence", "clinical", "brain", "diagnosis", "genetic", "researchers" ], [ "graph", "vertices", "vertex", "nodes", "node", "graphs", "convex", "closely", "topology", "edges" ], [ "special", "includes", "unit", "currently", "consists", "program", "addition", "consisting", "form", "new" ], [ "textual", "paper", "usage", "derived", "incomplete", "statistical", "extraction", "estimates", "standard", "definition" ], [ "quality", "excellent", "boost", "high", "competitive", "efficiency", "low", "improved", "better", "improve" ], [ "convergence", "obtaining", "facilitate", "filtering", "gradient", "relaxation", "intra", "advance", "directions", "sensitive" ], [ "strongly", "viewed", "nature", "independent", "observed", "positive", "biased", "described", "describes", "relationship" ], [ "web", "internet", "users", "online", "twitter", "google", "website", "server", "distributed", "offline" ], [ "optimization", "stochastic", "variational", "optimisation", "iterative", "minimization", "nonlinear", "dirichlet", "deterministic", "multivariate" ], [ "sensitive", "specific", "processes", "certain", "inherent", "characteristics", "particular", "minimize", "risks", "mechanisms" ] ]
1.008063
average_word_embeddings_glove.6B.300d
0.995
-0.318467
0.232512
0.89284
42
ArXiv ML Papers
S³_angular
30
[ [ "16", "19", "28", "13", "17", "12", "14", "18", "71", "24" ], [ "challenging", "demands", "elements", "purely", "context", "compositional", "dimension", "constraints", "interpretation", "unprecedented" ], [ "proof", "explanation", "clear", "valid", "details", "answer", "explanations", "make", "reason", "making" ], [ "region", "city", "leading", "highest", "represented", "ranking", "prominent", "rank", "known", "high" ], [ "research", "studies", "science", "explored", "focused", "scientific", "literature", "focusing", "topics", "study" ], [ "music", "interesting", "sampled", "combinations", "entries", "shows", "turns", "times", "variations", "typical" ], [ "incorporating", "introducing", "approaches", "formulation", "designs", "aspects", "design", "style", "geometric", "designing" ], [ "neurons", "connections", "backpropagation", "neural", "networks", "convolutional", "network", "channels", "programming", "connected" ], [ "candidates", "countries", "participants", "transition", "parallel", "basis", "responses", "simultaneously", "measured", "proportional" ], [ "leveraged", "outperform", "consumption", "price", "market", "share", "trend", "globally", "fidelity", "rates" ], [ "estimator", "regression", "bayesian", "iterative", "parametric", "multivariate", "nonparametric", "interpolation", "bayes", "stochastic" ], [ "practice", "overhead", "poor", "manual", "mean", "conditioning", "running", "driving", "fine", "trains" ], [ "maps", "predicting", "forecast", "short", "forecasting", "projections", "prediction", "forecasts", "weather", "traffic" ], [ "detector", "magnetic", "transformer", "physics", "particle", "chemical", "molecular", "power", "light", "fusion" ], [ "parameter", "variance", "length", "width", "bounds", "approximate", "maximum", "square", "posterior", "extent" ], [ "critical", "success", "production", "performance", "performs", "improvement", "produced", "role", "successful", "absence" ], [ "efficacy", "basis", "validated", "provided", "uniformly", "conditional", "conditioned", "strongly", "hessian", "aggregate" ], [ "conversion", "nets", "whilst", "relying", "account", "sources", "assumed", "retaining", "temporal", "delta" ], [ "realized", "tremendous", "surprising", "shed", "enormous", "accelerate", "importantly", "confidence", "deeper", "remarkable" ], [ "interface", "compatible", "software", "server", "hardware", "functionality", "implementations", "embedded", "computing", "platforms" ], [ "model", "modeling", "models", "modeled", "fit", "car", "compact", "fashion", "modelling", "version" ], [ "words", "english", "language", "languages", "word", "speech", "translation", "speaker", "texts", "text" ], [ "attacks", "attack", "targeting", "threat", "attacker", "forces", "targeted", "attempts", "adversaries", "armed" ], [ "catastrophic", "anomalies", "consequence", "arising", "consequences", "resulting", "affecting", "occur", "caused", "arise" ], [ "suggested", "desirable", "actual", "determining", "sampling", "optimal", "date", "reasonable", "likelihood", "population" ], [ "consist", "primary", "classes", "predictors", "interval", "intermediate", "typical", "auxiliary", "factors", "vary" ], [ "fourier", "mathematical", "algorithms", "computer", "quantum", "computation", "asymptotic", "advances", "computational", "contributions" ], [ "amenable", "various", "appear", "perform", "computationally", "augment", "approximations", "suboptimal", "pairwise", "ensembles" ], [ "substantially", "scaling", "compression", "resulting", "substantial", "throughput", "reduced", "processing", "reduction", "costs" ], [ "block", "eventually", "called", "extension", "transfer", "allowing", "later", "allow", "delta", "blocks" ] ]
1.071836
average_word_embeddings_glove.6B.300d
0.986667
-0.358635
0.215587
0.906856
42
ArXiv ML Papers
S³_angular
40
[ [ "comparable", "remarkably", "consistently", "impressive", "estimators", "explainable", "sufficiently", "rarely", "grained", "scalability" ], [ "unknown", "temporal", "consequently", "assumed", "conversion", "delta", "assuming", "sources", "widely", "simpler" ], [ "formalize", "exploitation", "combines", "utilizing", "utilizes", "dependency", "pooling", "mechanisms", "involves", "modelling" ], [ "reach", "proven", "labels", "aim", "viable", "aiming", "reliable", "alternatives", "feasible", "alternative" ], [ "modeled", "independently", "supervised", "overfitting", "learnable", "denoising", "updating", "investigates", "gans", "annotated" ], [ "forces", "threat", "targeting", "attack", "attacks", "armed", "attempts", "targeted", "attempt", "malicious" ], [ "model", "models", "mini", "modeling", "autoregressive", "car", "surrogate", "built", "hybrid", "drive" ], [ "arms", "superior", "requiring", "count", "obtaining", "block", "allowing", "received", "recognition", "procedure" ], [ "functionality", "compatible", "interface", "developers", "software", "server", "mobile", "hardware", "95", "embedded" ], [ "wise", "valued", "storage", "valuable", "redundant", "purpose", "utility", "metrics", "defense", "pac" ], [ "genetic", "synthesis", "protein", "molecular", "differentiation", "activation", "cells", "domains", "encodes", "interactions" ], [ "formalize", "supported", "validated", "conditional", "normalizing", "strongly", "activations", "basis", "place", "validation" ], [ "vehicle", "passing", "bridge", "traffic", "transport", "transportation", "service", "car", "nearest", "train" ], [ "surprisingly", "extremely", "makes", "kind", "prone", "intelligent", "inherently", "compact", "classifier", "proved" ], [ "extension", "extended", "exploration", "short", "discovery", "sequences", "conversion", "space", "search", "expansion" ], [ "distances", "configurations", "runtime", "suitable", "dataset", "contexts", "variability", "locations", "variances", "exhibits" ], [ "cnn", "propagation", "backpropagation", "neural", "cells", "networks", "network", "programming", "convolutional", "neurons" ], [ "quantum", "classical", "age", "theory", "modern", "example", "authors", "literature", "life", "phenomena" ], [ "condition", "guarantees", "present", "necessary", "provided", "compliance", "relevant", "complete", "guarantee", "return" ], [ "policy", "policies", "aim", "formulate", "aims", "flexible", "adopt", "appropriate", "optimal", "objectives" ], [ "objects", "2019", "70", "magnitude", "2017", "scale", "90", "relation", "object", "80" ], [ "observe", "survey", "analyzed", "experts", "examine", "characterize", "believe", "closely", "analyze", "suggested" ], [ "twitter", "feedback", "online", "offline", "personalized", "recommendations", "users", "user", "responses", "options" ], [ "infrastructure", "substantially", "incremental", "constructing", "redundant", "suggests", "construction", "extraction", "augmentation", "inefficient" ], [ "color", "vision", "camera", "eye", "image", "viewed", "images", "pixels", "create", "3d" ], [ "features", "feature", "includes", "identifying", "profile", "unique", "attributes", "highlights", "character", "defining" ], [ "research", "biology", "science", "scientific", "contributions", "advances", "studies", "engineering", "center", "developments" ], [ "changes", "class", "fail", "requirements", "change", "meet", "program", "code", "accelerate", "failure" ], [ "translation", "meaning", "language", "texts", "languages", "words", "word", "english", "derived", "dictionary" ], [ "vehicles", "codes", "kinds", "boxes", "items", "covariates", "sensors", "devices", "labels", "sets" ], [ "exposure", "entropy", "scheme", "provable", "incorporates", "rl", "distributional", "sparsity", "coverage", "distortion" ], [ "design", "aspects", "aspect", "max", "architectural", "designing", "characteristics", "critic", "improvements", "wasserstein" ], [ "cancer", "patients", "disease", "diagnosis", "heart", "diseases", "treat", "clinical", "patient", "health" ], [ "training", "learned", "guidance", "trained", "calibration", "learnt", "learn", "evaluations", "assigned", "background" ], [ "ones", "groups", "families", "especially", "locally", "mainly", "counterparts", "communities", "notably", "benefit" ], [ "unclear", "date", "area", "early", "short", "far", "overlap", "location", "likely", "locations" ], [ "composed", "style", "consists", "squares", "shape", "scales", "layers", "alternating", "frame", "stacked" ], [ "material", "feed", "caused", "coarse", "materials", "additive", "remove", "mixture", "filter", "flow" ], [ "constrain", "importantly", "realized", "learns", "forgetting", "discovering", "discover", "unseen", "aware", "wasserstein" ], [ "algorithms", "algorithm", "iteratively", "polynomial", "heuristics", "help", "implementations", "compute", "reconstruct", "recursive" ] ]
1.261012
average_word_embeddings_glove.6B.300d
0.975
-0.363008
0.204249
0.902059
42
ArXiv ML Papers
S³_angular
50
[ [ "dual", "stationary", "multi", "facilitating", "providing", "proportional", "distribution", "non", "soft", "direct" ], [ "identify", "affected", "developers", "fail", "generalize", "communities", "integrate", "downstream", "classify", "operate" ], [ "applicability", "applicable", "predictors", "validated", "intermediate", "applies", "vae", "outlier", "learnable", "pass" ], [ "initialization", "leverage", "expectation", "probabilities", "attain", "fold", "demonstrates", "python", "exponentially", "leveraging" ], [ "considerable", "mining", "activities", "elements", "element", "drawn", "numerical", "superiority", "actions", "generated" ], [ "framework", "basis", "elements", "solution", "forms", "phases", "principles", "possible", "present", "yield" ], [ "share", "weaker", "price", "market", "gains", "exchange", "leveraged", "derivatives", "auto", "financial" ], [ "languages", "language", "english", "word", "meaning", "linguistic", "translate", "words", "dictionary", "translation" ], [ "express", "gpus", "gps", "recognition", "expressed", "respect", "recognizing", "temporal", "extending", "distance" ], [ "verification", "process", "processes", "continuous", "inspection", "processing", "automated", "stochastic", "semi", "monitoring" ], [ "measurement", "association", "universal", "collect", "color", "eeg", "applies", "criteria", "preference", "patterns" ], [ "preference", "block", "discrimination", "transferred", "involving", "taken", "involve", "transferring", "class", "involved" ], [ "uses", "distinguishing", "characteristic", "attributes", "particular", "characteristics", "techniques", "certain", "good", "combination" ], [ "signal", "signals", "acoustic", "audio", "message", "voice", "speech", "speaker", "addressing", "sensing" ], [ "stored", "data", "unstructured", "databases", "evidence", "database", "static", "compressed", "single", "storage" ], [ "actual", "person", "similarity", "allows", "reasonable", "comparable", "modal", "ability", "simpler", "identical" ], [ "regression", "patch", "supports", "mapping", "survey", "root", "partitioning", "showing", "recovery", "smoothing" ], [ "rules", "modified", "limits", "generalization", "modification", "modifications", "synthetic", "extensions", "definition", "generic" ], [ "generating", "transformers", "solely", "binary", "purposes", "power", "consumption", "instead", "non", "energy" ], [ "optimized", "scalable", "hardware", "gpu", "server", "platforms", "architectures", "implementations", "scalability", "gpus" ], [ "utilization", "enhance", "beneficial", "enhancement", "augment", "enhancing", "boosting", "rich", "efficient", "promising" ], [ "paradigm", "converge", "distinct", "coherent", "shape", "directions", "direction", "unified", "closely", "broadly" ], [ "enforce", "code", "rule", "rules", "imposes", "codes", "compliance", "absolute", "labeling", "strict" ], [ "fairness", "diversity", "individual", "regardless", "gender", "fundamental", "equal", "respect", "balance", "perturbations" ], [ "evolution", "defines", "change", "defining", "taxonomy", "changing", "current", "protocol", "classification", "evolving" ], [ "classical", "view", "interpretation", "art", "newton", "overhead", "deviation", "perspective", "aware", "maximization" ], [ "distortion", "negative", "difference", "perception", "bias", "tradeoff", "reasoning", "biases", "cognitive", "hypothesis" ], [ "mcmc", "easy", "comparisons", "costly", "hard", "expensive", "labeling", "labels", "easier", "way" ], [ "investigation", "retrieval", "analyses", "analysis", "verification", "assessment", "technical", "evaluation", "module", "augmentation" ], [ "internet", "online", "mobile", "phenomena", "sgd", "wireless", "videos", "99", "unseen", "interactive" ], [ "coherent", "semantically", "convexity", "magnitude", "visual", "characterization", "gan", "incomplete", "elements", "assessment" ], [ "approximation", "background", "overview", "count", "abstraction", "sketch", "consistency", "epsilon", "usually", "indicate" ], [ "available", "maps", "practical", "distances", "navigation", "applicability", "divergence", "kl", "beneficial", "helpful" ], [ "variance", "sampling", "probability", "sample", "random", "beta", "bernoulli", "error", "distributions", "deviation" ], [ "match", "play", "players", "games", "game", "matches", "super", "plays", "scoring", "best" ], [ "graphs", "vertices", "graph", "vertex", "edges", "node", "nodes", "embedding", "undesirable", "embeddings" ], [ "solely", "interventions", "action", "potential", "impact", "strategy", "successful", "significant", "feasible", "consequence" ], [ "notably", "mainly", "region", "origin", "previously", "captured", "classic", "distinct", "bandits", "superiority" ], [ "ranking", "contrast", "highest", "highly", "comparison", "compared", "intelligent", "superior", "far", "margin" ], [ "network", "channels", "neural", "programming", "backpropagation", "networks", "channel", "connections", "cnn", "cells" ], [ "issue", "question", "documents", "regarding", "confirm", "revisit", "unclear", "discussed", "release", "reasons" ], [ "threat", "targeting", "detect", "detecting", "detection", "malware", "detector", "vulnerability", "malicious", "identification" ], [ "requires", "category", "comes", "given", "kind", "brings", "grows", "event", "takes", "arises" ], [ "hessian", "matrix", "vector", "tensors", "tensor", "symmetric", "vectors", "matrices", "convolution", "gpu" ], [ "solving", "tasks", "task", "obstacles", "integrating", "difficulty", "challenges", "involves", "capturing", "crucial" ], [ "proving", "believe", "belief", "confidence", "prove", "superiority", "motivation", "claim", "implicit", "proof" ], [ "inputs", "quantization", "perceptual", "invariance", "conditioned", "selection", "max", "shed", "gained", "select" ], [ "rank", "actually", "uniform", "achieved", "appear", "furthermore", "rarely", "identical", "consequently", "simultaneously" ], [ "scores", "current", "points", "textual", "scoring", "outputs", "score", "variable", "primary", "transformer" ], [ "ascent", "accelerated", "rate", "rapid", "descent", "gradient", "rates", "gradients", "curve", "convergence" ] ]
1.450473
average_word_embeddings_glove.6B.300d
0.954
-0.361875
0.209012
0.904924
42
ArXiv ML Papers
S³_combined
10
[ [ "expression", "similarities", "phenomena", "relationship", "influence", "distinct", "belief", "nature", "understanding", "differences" ], [ "sensor", "sensors", "audio", "digital", "camera", "equipped", "video", "robot", "optical", "devices" ], [ "vertices", "graph", "topological", "symmetric", "vertex", "graphs", "orthogonal", "topology", "tensor", "nodes" ], [ "forecast", "models", "model", "forecasts", "forecasting", "projections", "prediction", "growth", "statistical", "predictions" ], [ "geometry", "nonlinear", "technique", "method", "techniques", "quantum", "equations", "physics", "synthesis", "linear" ], [ "science", "engineering", "languages", "published", "biology", "literature", "library", "research", "foundation", "physics" ], [ "time", "number", "points", "times", "10", "high", "rate", "point", "half", "small" ], [ "simplicity", "mode", "style", "compact", "version", "platform", "graphical", "image", "sound", "video" ], [ "vs", "82", "91", "min", "71", "88", "rl", "94", "83", "averaged" ], [ "infrastructure", "stability", "accelerate", "alleviate", "extending", "expansion", "forces", "energy", "transition", "operations" ] ]
0.926694
average_word_embeddings_glove.6B.300d
0.98
-0.290118
0.266428
0.910757
42
ArXiv ML Papers
S³_combined
20
[ [ "depending", "vary", "sizes", "settings", "selecting", "different", "pairwise", "combinations", "predefined", "desirable" ], [ "catastrophic", "forecasts", "forecast", "weather", "traffic", "forecasting", "predicting", "worst", "uncertainties", "flows" ], [ "prevent", "bandit", "forces", "agents", "deployed", "attacks", "attacker", "armed", "enforce", "attack" ], [ "gps", "controller", "parameter", "module", "parameters", "calibration", "evaluation", "configuration", "classifier", "test" ], [ "polynomial", "equation", "sum", "integer", "zero", "right", "factor", "sentence", "cause", "left" ], [ "network", "neurons", "networks", "neural", "connections", "channels", "channel", "wireless", "backpropagation", "activation" ], [ "losses", "problems", "difficulties", "suffer", "performance", "lack", "poor", "loss", "training", "worse" ], [ "training", "centers", "branch", "priori", "communities", "classes", "families", "classification", "population", "operate" ], [ "policy", "framework", "stability", "relations", "implementation", "implementing", "compliance", "comprehensive", "policies", "normalization" ], [ "correct", "algorithm", "target", "goal", "consensus", "conclusion", "date", "scenario", "prediction", "strategy" ], [ "brain", "cancer", "disease", "diseases", "patients", "protein", "clinical", "cells", "genetic", "diagnosis" ], [ "nodes", "graphs", "nonconvex", "graph", "vertices", "node", "convex", "edges", "vertex", "topological" ], [ "consisting", "functions", "unit", "joint", "special", "consists", "named", "units", "introduced", "new" ], [ "paper", "textual", "statistical", "derived", "estimate", "layer", "compression", "estimates", "usage", "standard" ], [ "quality", "technology", "excellent", "competitive", "efficient", "low", "efficiency", "imaging", "maximize", "enhancing" ], [ "signals", "https", "gradient", "relaxation", "filtering", "signal", "facilitate", "frequencies", "denoising", "subspace" ], [ "biased", "positive", "observations", "negative", "conducted", "evidence", "bias", "relationship", "results", "views" ], [ "web", "twitter", "online", "internet", "server", "users", "user", "website", "databases", "google" ], [ "iterative", "nonlinear", "variational", "multivariate", "optimization", "stochastic", "dirichlet", "minimization", "deterministic", "optimisation" ], [ "behaviors", "minimize", "variables", "processes", "factors", "mechanisms", "specific", "inherent", "sensitive", "risks" ] ]
1.04701
average_word_embeddings_glove.6B.300d
0.995
-0.28966
0.243583
0.885332
42
ArXiv ML Papers
S³_combined
30
[ [ "19", "preliminary", "2019", "2018", "28", "2017", "14", "13", "16", "autoregressive" ], [ "constraints", "ensemble", "demands", "elements", "initialization", "dimension", "compositional", "element", "architectural", "interpretation" ], [ "false", "valid", "answer", "proof", "answers", "explanation", "explanations", "documents", "questions", "details" ], [ "city", "rank", "regions", "region", "highest", "prominent", "ranking", "areas", "area", "gained" ], [ "science", "scientific", "research", "survey", "studies", "topics", "literature", "biology", "physics", "studied" ], [ "interesting", "combinations", "mixture", "music", "videos", "sampled", "random", "sample", "samples", "acoustic" ], [ "style", "design", "architectural", "designs", "modifications", "introducing", "formulation", "techniques", "series", "geometric" ], [ "channels", "networks", "backpropagation", "connections", "network", "neural", "channel", "convolutional", "programming", "neurons" ], [ "proportional", "candidates", "resolution", "responses", "process", "parallel", "measured", "coordinate", "tasks", "simultaneous" ], [ "market", "consumption", "outperform", "price", "rates", "share", "leveraged", "trend", "weaker", "yields" ], [ "estimator", "regression", "bayesian", "iterative", "stochastic", "bayes", "multivariate", "inference", "parametric", "probabilistic" ], [ "conditioning", "practice", "overhead", "poor", "trains", "safety", "driving", "fine", "manual", "unsupervised" ], [ "traffic", "forecast", "prediction", "weather", "maps", "forecasting", "forecasts", "flows", "predicting", "predictions" ], [ "molecular", "detector", "particle", "physics", "chemical", "magnetic", "energy", "quantum", "transformer", "generator" ], [ "width", "posterior", "length", "parameter", "density", "variance", "approximate", "maximum", "bounds", "square" ], [ "success", "production", "stability", "improvement", "role", "performs", "performances", "performance", "successful", "excellent" ], [ "efficacy", "conditional", "performances", "uniformly", "positive", "observation", "material", "vs", "false", "exhibits" ], [ "nets", "temporal", "inefficient", "relying", "agent", "modes", "vary", "sources", "averaging", "methods" ], [ "remarkable", "extracting", "confidence", "deeper", "deep", "tremendous", "gains", "yields", "impressive", "enormous" ], [ "functionality", "interface", "software", "server", "hardware", "platforms", "user", "computing", "kernel", "implementations" ], [ "version", "models", "modeling", "model", "car", "fit", "built", "compact", "fashion", "designs" ], [ "languages", "words", "english", "language", "word", "translation", "texts", "speech", "text", "dictionary" ], [ "attacks", "attack", "targeting", "forces", "malicious", "attacker", "malware", "threat", "armed", "targeted" ], [ "arising", "occur", "consequences", "uncertainties", "catastrophic", "events", "severe", "suffers", "caused", "effects" ], [ "population", "optimal", "genetic", "optimum", "desirable", "variability", "location", "randomly", "locations", "sampling" ], [ "intermediate", "classes", "requirements", "predictors", "auxiliary", "classification", "vary", "languages", "consisting", "consists" ], [ "quantum", "algorithms", "computation", "computational", "cognitive", "mathematical", "computer", "fourier", "asymptotic", "physics" ], [ "computationally", "perform", "pairwise", "approximations", "performances", "ensembles", "various", "numerous", "tasks", "datasets" ], [ "compression", "throughput", "substantial", "costs", "extraction", "processing", "widespread", "increased", "reduction", "considerable" ], [ "construction", "block", "process", "transfer", "extension", "allow", "prevent", "thousands", "closed", "aid" ] ]
1.178767
average_word_embeddings_glove.6B.300d
0.956667
-0.331822
0.226281
0.899027
42
ArXiv ML Papers
S³_combined
40
[ [ "estimators", "remarkably", "explainable", "scalability", "impressive", "improvements", "surprisingly", "margin", "accurate", "grained" ], [ "nets", "speaker", "sources", "inefficient", "unknown", "temporal", "delta", "vary", "deep", "encoding" ], [ "mcmc", "exploitation", "classification", "dependency", "pooling", "method", "technique", "monte", "clustering", "formalize" ], [ "viable", "alternatives", "alternative", "proven", "feasible", "reliable", "labels", "reach", "prove", "producing" ], [ "overfitting", "supervised", "modeled", "gans", "learnable", "investigates", "updating", "annotated", "denoising", "adapts" ], [ "forces", "targeting", "armed", "malware", "malicious", "attack", "threat", "attacks", "attacker", "targeted" ], [ "engine", "models", "modeling", "autoregressive", "model", "mini", "car", "surrogate", "hybrid", "built" ], [ "class", "mri", "obtaining", "procedure", "inspection", "recognition", "superior", "requiring", "identification", "resonance" ], [ "server", "software", "mobile", "interface", "developers", "compatible", "implementations", "functionality", "applications", "computing" ], [ "defense", "space", "wise", "storage", "valued", "valuable", "metrics", "utility", "quantized", "robot" ], [ "molecular", "cells", "genetic", "encoded", "encodes", "protein", "synthesis", "activation", "domains", "neurons" ], [ "activations", "formalize", "kernel", "normalization", "normalizing", "vanilla", "conditional", "covariance", "supported", "hypothesis" ], [ "traffic", "transportation", "transport", "train", "nearest", "trains", "vehicles", "car", "bridge", "navigation" ], [ "classifier", "intelligent", "prone", "surprisingly", "compact", "reliable", "extremely", "strong", "proved", "noisy" ], [ "exploration", "extension", "space", "short", "sequences", "extended", "search", "operations", "training", "discovery" ], [ "distances", "dataset", "runtime", "locations", "configurations", "tests", "suitable", "implementations", "variability", "densities" ], [ "programming", "convolutional", "backpropagation", "network", "networks", "cnn", "neural", "neurons", "cells", "propagation" ], [ "mathematical", "age", "music", "quantum", "classical", "theory", "modern", "literature", "physics", "phenomena" ], [ "guarantees", "necessary", "condition", "obtain", "guarantee", "provided", "compliance", "stability", "provide", "verify" ], [ "policy", "policies", "formulate", "adopt", "flexible", "objectives", "coordinate", "optimal", "aims", "implement" ], [ "objects", "2015", "pruning", "2017", "magnitude", "classification", "2018", "2019", "object", "taxonomy" ], [ "survey", "explore", "analyze", "analyzed", "observe", "closely", "experts", "conducted", "examine", "detected" ], [ "users", "twitter", "personalized", "feedback", "online", "user", "responses", "recommendations", "messages", "offline" ], [ "usage", "pruning", "infrastructure", "inefficient", "incremental", "construction", "substantially", "extraction", "building", "augmentation" ], [ "image", "3d", "pixels", "vision", "eye", "images", "color", "pixel", "landscape", "camera" ], [ "features", "feature", "videos", "highlights", "identifying", "privacy", "differentiable", "character", "includes", "profile" ], [ "foundation", "scientific", "engineering", "center", "biology", "science", "research", "studies", "physics", "papers" ], [ "codes", "classes", "structural", "changes", "fail", "requirements", "class", "code", "detect", "accelerate" ], [ "translation", "word", "text", "words", "languages", "english", "dictionary", "language", "texts", "meaning" ], [ "codes", "vehicles", "sensors", "labels", "machines", "items", "automatic", "boxes", "devices", "contrastive" ], [ "rl", "coverage", "compression", "provable", "textual", "codes", "entropy", "sparsity", "bias", "distributional" ], [ "improvements", "max", "design", "critic", "architectural", "efficiency", "aspects", "characteristics", "classical", "designing" ], [ "cancer", "disease", "patient", "patients", "diseases", "diagnosis", "treat", "clinical", "heart", "medical" ], [ "learnt", "learn", "classes", "training", "trained", "gps", "guidance", "evaluations", "calibration", "unbiased" ], [ "neighboring", "areas", "families", "countries", "diverse", "groups", "locally", "regions", "communities", "counterparts" ], [ "area", "population", "location", "date", "range", "neighborhood", "reasonable", "target", "locations", "remote" ], [ "composed", "layers", "style", "layer", "mixture", "shape", "upper", "squares", "consists", "dense" ], [ "coarse", "additive", "remove", "mixture", "materials", "feed", "material", "caused", "temperature", "chemical" ], [ "constrain", "discover", "discovering", "wasserstein", "unseen", "learns", "bottleneck", "forgetting", "finds", "revisit" ], [ "algorithms", "iteratively", "polynomial", "algorithm", "reconstruct", "heuristics", "implementations", "memory", "help", "compute" ] ]
1.224885
average_word_embeddings_glove.6B.300d
0.94
-0.344065
0.209929
0.898738
42
ArXiv ML Papers
S³_combined
50
[ [ "soft", "stationary", "distribution", "margin", "dual", "proportional", "providing", "boundary", "facilitating", "continuous" ], [ "identify", "regions", "countries", "detect", "developers", "discriminate", "latent", "downstream", "integrate", "communities" ], [ "outlier", "intermediate", "learnable", "benchmark", "predictors", "bounds", "applicability", "threshold", "criteria", "ensembles" ], [ "outperforming", "latent", "initialization", "leverage", "python", "vanilla", "attain", "exploit", "achieve", "probabilities" ], [ "architectural", "mining", "considerable", "activities", "superiority", "construction", "numerical", "elements", "coarse", "huge" ], [ "elements", "scenarios", "basis", "solutions", "solution", "yield", "samples", "modalities", "framework", "feasibility" ], [ "share", "exchange", "derivatives", "leveraged", "price", "federated", "weaker", "benchmark", "gains", "market" ], [ "language", "words", "translation", "english", "languages", "word", "meaning", "translate", "linguistic", "dictionary" ], [ "expressed", "recognition", "express", "gps", "gpus", "temporal", "relations", "respect", "normalized", "distance" ], [ "processes", "process", "automated", "monitoring", "stochastic", "gaussian", "inspection", "continuous", "markov", "processing" ], [ "association", "color", "universal", "measurement", "criteria", "collect", "architectural", "patterns", "eeg", "shelf" ], [ "mri", "discrimination", "class", "posterior", "transferred", "preference", "classes", "facial", "involving", "superior" ], [ "attributes", "uses", "distinguishing", "characteristic", "techniques", "characteristics", "strengths", "quality", "simplicity", "methods" ], [ "speech", "signal", "signals", "speaker", "audio", "addressing", "message", "acoustic", "voice", "noise" ], [ "stored", "evidence", "data", "unstructured", "database", "compressed", "databases", "storage", "information", "lightweight" ], [ "conditional", "reasonable", "similarity", "accurately", "modal", "person", "classifier", "simpler", "partial", "execute" ], [ "logistic", "regression", "patch", "survey", "tree", "root", "recovery", "supports", "vanilla", "partitioning" ], [ "modified", "modifications", "rules", "synthetic", "bounds", "limits", "modification", "generalization", "generic", "extensions" ], [ "power", "binary", "generating", "solely", "consumption", "energy", "pruning", "transformers", "randomly", "alternating" ], [ "server", "gpu", "scalable", "scalability", "platforms", "atari", "architectures", "hardware", "implementations", "gpus" ], [ "enhance", "utilization", "enhancing", "efficient", "rich", "rl", "enhancement", "augment", "efficiency", "boosting" ], [ "formulate", "unified", "directions", "agnostic", "broadly", "shape", "coherent", "converge", "paradigm", "direction" ], [ "codes", "labeling", "absolute", "strict", "safety", "rules", "code", "imposes", "privacy", "compliance" ], [ "perturbations", "individual", "respect", "gender", "fundamental", "fairness", "denoising", "diversity", "equal", "challenges" ], [ "classification", "defines", "et", "protocol", "entropy", "evolving", "changing", "taxonomy", "defining", "change" ], [ "classical", "overhead", "view", "art", "maximization", "deviation", "settings", "dictionary", "definition", "music" ], [ "hypothesis", "biases", "negative", "distortion", "reasoning", "perception", "bias", "cognitive", "poisoning", "perceptual" ], [ "labels", "costly", "accurate", "pairwise", "expensive", "reliable", "mcmc", "distances", "convolutional", "labeling" ], [ "training", "investigation", "evaluation", "verification", "retrieval", "inspection", "analysis", "insight", "intelligence", "module" ], [ "internet", "online", "mobile", "videos", "wireless", "interactive", "phenomena", "dirichlet", "google", "streaming" ], [ "coding", "aggregating", "malicious", "visual", "magnitude", "coherent", "similarity", "results", "errors", "sequences" ], [ "sketch", "results", "approximation", "correction", "overview", "consistency", "epsilon", "statistical", "abstraction", "autoregressive" ], [ "navigation", "kl", "distances", "ml", "applicability", "available", "practical", "logistic", "distribution", "sizes" ], [ "sampling", "variance", "random", "beta", "sample", "bernoulli", "gaussian", "error", "estimator", "distributions" ], [ "super", "scoring", "matches", "match", "games", "play", "players", "game", "goals", "plays" ], [ "embeddings", "edges", "graph", "graphs", "benchmark", "nodes", "node", "vertex", "vertices", "embedding" ], [ "strategy", "interventions", "outcomes", "successful", "hypothesis", "statistically", "feasible", "effects", "programming", "programs" ], [ "regions", "region", "notably", "origin", "classic", "superiority", "central", "captured", "mainly", "logistic" ], [ "compared", "margin", "favorably", "superior", "ranking", "highest", "highly", "intelligent", "biased", "weighted" ], [ "channels", "backpropagation", "programming", "networks", "neural", "network", "channel", "convolutional", "cnn", "cells" ], [ "issue", "intractable", "revisit", "question", "confirm", "details", "documents", "release", "discussed", "regret" ], [ "malicious", "detector", "detection", "detecting", "detect", "malware", "threat", "targeting", "identification", "vulnerability" ], [ "comes", "event", "mild", "occurs", "severe", "brings", "grows", "category", "magnitude", "phase" ], [ "vectors", "vector", "tensor", "hessian", "tensors", "algebra", "matrices", "symmetric", "rank", "gradient" ], [ "obstacles", "task", "solving", "tasks", "challenges", "difficulty", "capturing", "goals", "crucial", "involves" ], [ "usefulness", "empirically", "proving", "belief", "reliable", "superiority", "proof", "confidence", "prove", "predictive" ], [ "inputs", "pruning", "perceptual", "trees", "invariance", "quantization", "selection", "shed", "label", "rl" ], [ "rank", "pattern", "achieve", "achieved", "uniform", "papers", "paper", "frequency", "appear", "identical" ], [ "outputs", "scoring", "goals", "score", "points", "textual", "scores", "output", "transformer", "variable" ], [ "rate", "descent", "gradient", "rates", "accelerated", "ascent", "rapid", "gradients", "convergence", "stochastic" ] ]
1.334867
average_word_embeddings_glove.6B.300d
0.906
-0.34613
0.198195
0.89588
42
BBC News
GMM
10
[ [ "prices", "rates", "economy", "growth", "rise", "dollar", "rate", "economic", "spending", "deficit" ], [ "oscar", "awards", "film", "actor", "award", "director", "comedy", "actress", "best", "aviator" ], [ "liverpool", "club", "wales", "coach", "side", "chelsea", "rugby", "england", "ireland", "players" ], [ "brown", "prime", "tory", "party", "howard", "election", "minister", "labour", "blair", "leader" ], [ "users", "net", "security", "software", "search", "virus", "internet", "site", "microsoft", "computer" ], [ "yukos", "shares", "company", "firm", "deutsche", "stock", "oil", "financial", "deal", "state" ], [ "broadband", "phones", "technology", "apple", "sony", "digital", "mobile", "tv", "video", "phone" ], [ "olympic", "championships", "champion", "60m", "athletics", "indoor", "race", "holmes", "athens", "gold" ], [ "music", "band", "album", "rock", "hop", "hip", "singer", "song", "chart", "artists" ], [ "open", "australian", "roddick", "seed", "match", "round", "henman", "federer", "beat", "champion" ] ]
1.504865
average_word_embeddings_glove.6B.300d
0.99
0.110742
0.225802
0.933737
42
BBC News
GMM
20
[ [ "oil", "countries", "economy", "economic", "budget", "china", "india", "debt", "president", "bush" ], [ "actor", "film", "award", "actress", "oscar", "director", "awards", "best", "aviator", "comedy" ], [ "ireland", "italy", "capt", "france", "edinburgh", "try", "penalty", "wasps", "wing", "gara" ], [ "blair", "party", "howard", "labour", "election", "prime", "tory", "leader", "brown", "chancellor" ], [ "sites", "security", "virus", "software", "search", "users", "microsoft", "spam", "site", "programs" ], [ "doping", "drugs", "trial", "athens", "charged", "banned", "arrested", "court", "charges", "greek" ], [ "online", "net", "phone", "technology", "bt", "broadband", "mobile", "service", "data", "internet" ], [ "host", "africa", "italy", "japan", "final", "winners", "cup", "august", "republic", "rugby" ], [ "50", "cent", "box", "show", "films", "series", "film", "festival", "office", "million" ], [ "seed", "henman", "match", "roddick", "australian", "round", "open", "federer", "beat", "champion" ], [ "album", "rock", "robbie", "band", "pop", "singer", "song", "chart", "songs", "single" ], [ "rights", "human", "police", "law", "lord", "laws", "terror", "bill", "lords", "parliament" ], [ "indoor", "championships", "champion", "race", "60m", "olympic", "holmes", "gold", "jump", "seconds" ], [ "prices", "economy", "rates", "dollar", "growth", "rise", "rate", "sales", "economic", "figures" ], [ "minutes", "chelsea", "everton", "scored", "united", "liverpool", "ball", "newcastle", "goal", "striker" ], [ "dvd", "apple", "digital", "sony", "mac", "gadget", "mini", "games", "gadgets", "mobile" ], [ "club", "rugby", "coach", "england", "players", "wales", "cup", "team", "liverpool", "league" ], [ "deutsche", "shares", "company", "yukos", "firm", "shareholders", "bid", "stock", "exchange", "deal" ], [ "hip", "hop", "game", "mtv", "spanish", "music", "black", "language", "halo", "stone" ], [ "workers", "council", "000", "unions", "local", "tax", "minimum", "pay", "pension", "increase" ] ]
1.856538
average_word_embeddings_glove.6B.300d
0.955
0.047522
0.203056
0.937627
42
BBC News
GMM
30
[ [ "budget", "eu", "economy", "poverty", "deficit", "debt", "countries", "bush", "economic", "imf" ], [ "film", "actress", "award", "oscar", "best", "actor", "awards", "aviator", "nominated", "director" ], [ "robinson", "lions", "nations", "rugby", "england", "coach", "wales", "six", "ireland", "squad" ], [ "net", "speeds", "broadband", "3g", "calls", "mobile", "bt", "users", "service", "networks" ], [ "human", "terror", "rights", "lords", "lord", "law", "police", "id", "hunting", "clarke" ], [ "australian", "roddick", "match", "henman", "federer", "beat", "seed", "serve", "final", "open" ], [ "euros", "profits", "sales", "shares", "company", "firm", "profit", "deal", "market", "stock" ], [ "music", "band", "song", "album", "hop", "chart", "rock", "stone", "hip", "rap" ], [ "sky", "broadcast", "mtv", "television", "channel", "tv", "broadcaster", "stations", "viewers", "satellite" ], [ "shareholders", "exchange", "bid", "takeover", "deutsche", "stock", "offer", "talks", "london", "frankfurt" ], [ "indoor", "race", "holmes", "gold", "champion", "olympic", "60m", "championships", "jump", "seconds" ], [ "growth", "rates", "economy", "prices", "rate", "economic", "exports", "dollar", "figures", "bank" ], [ "election", "labour", "tory", "blair", "howard", "brown", "party", "prime", "leader", "chancellor" ], [ "cup", "nations", "rugby", "coach", "lions", "welsh", "woodward", "ireland", "players", "wales" ], [ "league", "manager", "club", "football", "chelsea", "liverpool", "arsenal", "champions", "madrid", "team" ], [ "users", "programs", "virus", "websites", "microsoft", "spam", "security", "windows", "software", "program" ], [ "singer", "brother", "star", "50", "cent", "her", "show", "arrested", "she", "police" ], [ "bankruptcy", "russian", "khodorkovsky", "gazprom", "auction", "fraud", "yukos", "sec", "court", "company" ], [ "technology", "net", "information", "use", "site", "firms", "computer", "data", "attacks", "using" ], [ "doping", "drugs", "greek", "athens", "banned", "tests", "collins", "test", "olympics", "athletes" ], [ "xbox", "tickets", "sold", "sales", "films", "potter", "ticket", "harry", "san", "halo" ], [ "cup", "tennis", "henman", "davis", "open", "wimbledon", "murray", "roddick", "australian", "round" ], [ "box", "film", "series", "films", "comedy", "book", "lee", "movie", "story", "office" ], [ "minimum", "public", "children", "tax", "workers", "local", "council", "pension", "health", "plans" ], [ "search", "programmes", "tv", "web", "content", "internet", "video", "google", "visual", "net" ], [ "capt", "italy", "gara", "edinburgh", "wasps", "penalty", "try", "ireland", "murphy", "half" ], [ "mobiles", "phone", "mobile", "phones", "digital", "cameras", "music", "tv", "handsets", "gartner" ], [ "minutes", "goal", "injury", "united", "newcastle", "chelsea", "everton", "liverpool", "ball", "side" ], [ "mini", "gadget", "games", "sony", "dvd", "apple", "mac", "gadgets", "nintendo", "gaming" ], [ "airline", "india", "oil", "china", "gas", "air", "state", "airlines", "owned", "company" ] ]
2.355865
average_word_embeddings_glove.6B.300d
0.9
0.072226
0.200504
0.933844
42
BBC News
GMM
40
[ [ "countries", "budget", "economic", "eu", "debt", "economy", "poverty", "imf", "spending", "deficit" ], [ "best", "actress", "oscar", "film", "awards", "award", "actor", "aviator", "nominated", "prize" ], [ "try", "england", "ireland", "half", "penalty", "side", "gara", "hodgson", "robinson", "ball" ], [ "service", "calls", "broadband", "networks", "bt", "speeds", "3g", "mobile", "net", "users" ], [ "police", "silk", "labour", "id", "party", "vote", "voting", "cards", "blair", "commissioner" ], [ "australian", "roddick", "match", "henman", "federer", "beat", "seed", "serve", "final", "open" ], [ "euros", "sales", "profits", "shares", "profit", "stock", "firm", "deal", "company", "stake" ], [ "album", "song", "elvis", "chart", "best", "band", "rock", "robbie", "songs", "pop" ], [ "mtv", "sky", "tv", "programmes", "channel", "broadcast", "television", "satellite", "channels", "viewers" ], [ "shareholders", "exchange", "bid", "takeover", "deutsche", "stock", "offer", "talks", "london", "frankfurt" ], [ "60m", "seconds", "champion", "holmes", "championships", "olympic", "indoor", "gold", "jump", "race" ], [ "housing", "dollar", "bank", "rates", "prices", "market", "mortgage", "euro", "lending", "rise" ], [ "labour", "party", "blair", "leader", "election", "prime", "howard", "minister", "brown", "silk" ], [ "coach", "england", "wales", "nations", "lions", "rugby", "squad", "ireland", "cup", "welsh" ], [ "chelsea", "club", "liverpool", "manager", "arsenal", "league", "champions", "madrid", "football", "united" ], [ "microsoft", "security", "search", "spam", "software", "users", "programs", "virus", "google", "windows" ], [ "star", "her", "singer", "cent", "50", "brother", "she", "show", "celebrity", "rapper" ], [ "yukos", "bankruptcy", "auction", "gazprom", "russian", "russia", "unit", "court", "khodorkovsky", "putin" ], [ "data", "computer", "attacks", "use", "information", "net", "internet", "technology", "users", "site" ], [ "doping", "tests", "athens", "olympics", "drugs", "federation", "greek", "athletics", "charges", "athletes" ], [ "films", "xbox", "san", "sales", "sold", "harry", "tickets", "potter", "halo", "japan" ], [ "davis", "open", "cup", "australian", "grand", "henman", "roddick", "round", "tennis", "slam" ], [ "box", "film", "comedy", "book", "films", "actor", "lee", "office", "festival", "movie" ], [ "committee", "children", "minimum", "social", "parents", "health", "care", "increase", "child", "report" ], [ "black", "hop", "hip", "music", "game", "spanish", "games", "stone", "halo", "rap" ], [ "edinburgh", "glasgow", "squad", "leeds", "wing", "capt", "newcastle", "cardiff", "rugby", "wasps" ], [ "phone", "phones", "mobile", "digital", "tv", "music", "mobiles", "video", "cameras", "handsets" ], [ "chelsea", "striker", "newcastle", "united", "minutes", "goal", "mourinho", "ball", "everton", "injury" ], [ "dvd", "mac", "nintendo", "mini", "gadget", "apple", "sony", "gadgets", "machine", "gaming" ], [ "banks", "bank", "financial", "firms", "sec", "china", "company", "state", "executives", "foreign" ], [ "drugs", "doping", "drug", "fraud", "sullivan", "collins", "jones", "banned", "accounting", "white" ], [ "taxes", "labour", "election", "council", "tory", "tax", "tories", "howard", "cuts", "local" ], [ "rugby", "lions", "football", "tennis", "players", "team", "woodward", "cup", "sport", "tour" ], [ "car", "vehicles", "auto", "models", "recall", "cars", "plant", "production", "engines", "company" ], [ "terror", "court", "human", "lords", "lord", "law", "rights", "trial", "police", "hunt" ], [ "virus", "mail", "spam", "messages", "mails", "attacks", "contains", "security", "warning", "infected" ], [ "rate", "economic", "quarter", "economy", "exports", "figures", "sales", "growth", "consumer", "china" ], [ "flight", "costs", "airlines", "india", "compensation", "carriers", "airline", "travel", "air", "passengers" ], [ "energy", "gazprom", "oil", "india", "gas", "russian", "russia", "owned", "yukos", "company" ], [ "squad", "slam", "wales", "france", "capt", "saturday", "wing", "replacement", "damien", "grand" ] ]
2.746569
average_word_embeddings_glove.6B.300d
0.8375
0.048686
0.202768
0.936229
42
BBC News
GMM
50
[ [ "poverty", "eu", "economic", "budget", "countries", "spending", "bush", "economy", "deficit", "subsidies" ], [ "best", "actress", "oscar", "film", "awards", "award", "actor", "aviator", "nominated", "prize" ], [ "england", "robinson", "lions", "rugby", "nations", "coach", "woodward", "wales", "six", "ireland" ], [ "service", "calls", "broadband", "networks", "bt", "speeds", "3g", "mobile", "net", "users" ], [ "ban", "hunting", "id", "law", "police", "hunt", "cards", "bill", "plans", "rules" ], [ "australian", "roddick", "match", "henman", "federer", "beat", "seed", "serve", "final", "open" ], [ "profits", "shares", "euros", "profit", "stock", "firm", "company", "sales", "deal", "stake" ], [ "music", "hop", "band", "hip", "rock", "album", "song", "chart", "stone", "robbie" ], [ "sky", "broadcast", "mtv", "television", "channel", "tv", "broadcaster", "stations", "viewers", "satellite" ], [ "shareholders", "exchange", "bid", "takeover", "deutsche", "stock", "offer", "talks", "london", "frankfurt" ], [ "olympic", "indoor", "race", "jump", "60m", "champion", "seconds", "championships", "title", "000m" ], [ "rates", "interest", "bank", "housing", "slowdown", "inflation", "rise", "rate", "hold", "manufacturing" ], [ "lib", "seats", "tories", "election", "kennedy", "party", "conservatives", "vote", "labour", "howard" ], [ "rugby", "wales", "cup", "side", "ireland", "coach", "slam", "nations", "welsh", "final" ], [ "league", "real", "mourinho", "madrid", "arsenal", "chelsea", "champions", "goal", "play", "liverpool" ], [ "software", "microsoft", "security", "virus", "programs", "windows", "program", "users", "files", "viruses" ], [ "her", "cent", "brother", "singer", "star", "show", "50", "she", "rapper", "celebrity" ], [ "yukos", "bankruptcy", "auction", "gazprom", "russian", "russia", "unit", "court", "khodorkovsky", "putin" ], [ "power", "use", "net", "technology", "information", "computer", "data", "attacks", "using", "project" ], [ "again", "compete", "sprinter", "olympics", "suspension", "testing", "collins", "kim", "chambers", "learning" ], [ "films", "sales", "xbox", "tickets", "potter", "sold", "harry", "japan", "san", "halo" ], [ "open", "tennis", "cup", "davis", "australian", "roddick", "henman", "wimbledon", "round", "grand" ], [ "actor", "film", "book", "office", "series", "lee", "box", "movie", "comedy", "films" ], [ "report", "companies", "aids", "law", "social", "human", "research", "rights", "file", "elections" ], [ "programmes", "content", "digital", "video", "tv", "radio", "definition", "music", "media", "service" ], [ "leicester", "rugby", "simon", "squad", "glasgow", "edinburgh", "leeds", "training", "wasps", "robinson" ], [ "phone", "tv", "gartner", "mobile", "mobiles", "phones", "digital", "handsets", "cameras", "camera" ], [ "chelsea", "mourinho", "injury", "liverpool", "united", "fa", "cup", "everton", "arsenal", "league" ], [ "sony", "mini", "gadget", "mac", "apple", "dvd", "games", "nintendo", "gaming", "gadgets" ], [ "banks", "bank", "firms", "state", "investors", "china", "argentina", "foreign", "companies", "financial" ], [ "sullivan", "company", "sec", "attorney", "insurance", "drug", "charges", "fraud", "prosecutors", "accounting" ], [ "tax", "election", "taxes", "tory", "cuts", "labour", "howard", "tories", "chancellor", "spending" ], [ "athletics", "athens", "race", "collins", "holmes", "championships", "francis", "she", "relay", "lewis" ], [ "car", "vehicles", "auto", "models", "recall", "cars", "plant", "production", "engines", "company" ], [ "lord", "trial", "rights", "suspects", "human", "terror", "lords", "murder", "law", "police" ], [ "virus", "mail", "spam", "messages", "mails", "attacks", "contains", "security", "warning", "infected" ], [ "growth", "consumer", "economic", "unemployment", "economy", "rate", "spending", "quarter", "exports", "manufacturing" ], [ "flight", "costs", "airlines", "india", "compensation", "carriers", "airline", "travel", "air", "passengers" ], [ "gas", "gazprom", "oil", "energy", "india", "russian", "yukos", "russia", "owned", "company" ], [ "damien", "replacement", "slam", "france", "grand", "wales", "wing", "squad", "jean", "ireland" ], [ "athletes", "athens", "doping", "greek", "drugs", "tests", "olympics", "banned", "test", "charges" ], [ "exports", "currency", "dollar", "china", "euro", "trade", "deficit", "economic", "prices", "growth" ], [ "silk", "leadership", "prince", "mp", "leader", "party", "robert", "him", "lord", "lords" ], [ "retail", "lending", "sales", "figures", "december", "prices", "mortgage", "house", "rose", "rise" ], [ "children", "pension", "local", "councils", "workers", "council", "pay", "minimum", "increase", "tax" ], [ "labour", "election", "tony", "brown", "minister", "prime", "blunkett", "blair", "iraq", "howard" ], [ "club", "liverpool", "football", "manager", "contract", "arsenal", "smith", "united", "league", "players" ], [ "league", "newcastle", "drawn", "chelsea", "everton", "premiership", "united", "face", "derby", "west" ], [ "users", "google", "web", "sites", "site", "search", "websites", "engine", "spam", "engines" ], [ "half", "gara", "murphy", "ball", "goal", "penalty", "ireland", "minute", "try", "minutes" ] ]
3.011143
average_word_embeddings_glove.6B.300d
0.8
0.056565
0.20117
0.932836