Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'label\tV_bin\tA_bin\tD_bin\tdirection'}) and 7 missing columns ({'scene_idx', 'conf', 'arousal', 'plot_break', 'dominance', 'label', 'valence'}). This happened while the csv dataset builder was generating data using hf://datasets/jsisonou/narrative-engine-emotion-7c/lexicon/core100.v1.bin.tsv (at revision fbc505ded01484cabc8c969ae38c994129a53f0e) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast label V_bin A_bin D_bin direction: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 435 to {'scene_idx': Value('int64'), 'valence': Value('float64'), 'arousal': Value('float64'), 'dominance': Value('float64'), 'label': Value('string'), 'conf': Value('float64'), 'plot_break': Value('float64')} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'label\tV_bin\tA_bin\tD_bin\tdirection'}) and 7 missing columns ({'scene_idx', 'conf', 'arousal', 'plot_break', 'dominance', 'label', 'valence'}). This happened while the csv dataset builder was generating data using hf://datasets/jsisonou/narrative-engine-emotion-7c/lexicon/core100.v1.bin.tsv (at revision fbc505ded01484cabc8c969ae38c994129a53f0e) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
scene_idx
int64 | valence
float64 | arousal
float64 | dominance
float64 | label
string | conf
float64 | plot_break
float64 |
---|---|---|---|---|---|---|
1 | 0.75 | 0.6 | 0.9 |
pride
| 1 | 0 |
2 | 0.2 | 0.925 | 0.5 |
anger
| 0.705492 | 1 |
3 | 0.43 | 0.83 | 0.41 |
astonishment
| 0.586948 | 0 |
4 | 0.388 | 0.75 | 0.312 |
nervousness
| 0.579233 | 1 |
5 | 0.175 | 0.783 | 0.333 |
tension
| 0.789985 | 1 |
6 | 0.2 | 0.9 | 0.3 |
fear
| 1 | 0 |
7 | 0.63 | 0.61 | 0.46 |
longing
| 0.854314 | 0 |
8 | 0.3 | 0.6 | 0.3 |
worry
| 1 | 0 |
9 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
1 | 0.3 | 0.6 | 0.3 |
worry
| 1 | 0 |
2 | 0.2 | 0.95 | 0.4 |
anger
| 1 | 0 |
3 | 0.4 | 0.5 | 0.3 |
confusion
| 1 | 0 |
4 | 0.425 | 0.9 | 0.525 |
astonishment
| 0.583503 | 0 |
5 | 0.75 | 0.675 | 0.55 |
fascination
| 0.785714 | 1 |
6 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
7 | 0.9 | 0.5 | 0.8 |
compassion
| 1 | 1 |
8 | 0.9 | 0.5 | 0.733 |
grateful
| 0.905714 | 0 |
1 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
2 | 0.7 | 0.6 | 0.6 |
interest
| 1 | 0 |
3 | 0.2 | 0.8 | 0.4 |
tension
| 1 | 0 |
4 | 0.7 | 0.6 | 0.6 |
interest
| 1 | 0 |
5 | 0.45 | 0.875 | 0.35 |
astonishment
| 0.589674 | 0 |
1 | 0.8 | 0.5 | 0.6 |
hope
| 1 | 0 |
2 | 0.225 | 0.825 | 0.45 |
tension
| 0.825036 | 0 |
3 | 0.2 | 0.95 | 0.2 |
shock
| 1 | 0 |
4 | 0.77 | 0.58 | 0.5 |
sympathy
| 0.764394 | 0 |
5 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
6 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
7 | 0.183 | 0.5 | 0.333 |
disappointment
| 0.893939 | 1 |
8 | 0.1 | 0.4 | 0.2 |
sorrow
| 1 | 0 |
1 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
2 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
3 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
4 | 0.1 | 0.8 | 0.45 |
tension
| 0.680562 | 0 |
5 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
6 | 0.3 | 0.6 | 0.5 |
annoyed
| 1 | 0 |
7 | 0.7 | 0.6 | 0.6 |
interest
| 1 | 0 |
8 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
9 | 0.9 | 0.6 | 0.6 |
amusement
| 1 | 0 |
10 | 0.3 | 0.6 | 0.3 |
worry
| 1 | 0 |
11 | 0.15 | 0.7 | 0.6 |
resentment
| 1 | 0 |
12 | 0.183 | 0.883 | 0.283 |
fear
| 0.915872 | 0 |
13 | 0.3 | 0.6 | 0.5 |
annoyed
| 1 | 0 |
14 | 0.85 | 0.4 | 0.7 |
relief
| 1 | 0 |
1 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
2 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
3 | 0.55 | 0.95 | 0.6 |
astonishment
| 0.548246 | 0 |
4 | 0.2 | 0.95 | 0.4 |
anger
| 1 | 0 |
5 | 0.05 | 0.7 | 0.1 |
despair
| 1 | 0 |
1 | 0.3 | 0.6 | 0.3 |
worry
| 1 | 0 |
2 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
3 | 0.6 | 0.55 | 0.45 |
longing
| 0.797969 | 0 |
4 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
5 | 0.75 | 0.6 | 0.7 |
curiosity
| 1 | 0 |
6 | 0.2 | 0.9 | 0.3 |
fear
| 1 | 0 |
1 | 0.483 | 0.667 | 0.433 |
longing
| 0.569841 | 0 |
2 | 0.54 | 0.66 | 0.54 |
longing
| 0.731976 | 0 |
3 | 0.45 | 0.6 | 0.55 |
irritation
| 0.714286 | 0 |
4 | 0.443 | 0.736 | 0.464 |
impatience
| 0.587531 | 0 |
5 | 0.225 | 0.65 | 0.4 |
envy
| 0.785714 | 0 |
6 | 0.15 | 0.5 | 0.3 |
hurt
| 1 | 0 |
7 | 0.75 | 0.525 | 0.75 |
curiosity
| 0.742461 | 0 |
8 | 0.693 | 0.607 | 0.543 |
interest
| 0.834705 | 0 |
9 | 0.664 | 0.529 | 0.486 |
sympathy
| 0.737625 | 1 |
10 | 0.3 | 0.6 | 0.3 |
worry
| 1 | 0 |
1 | 0.35 | 0.6 | 0.55 |
irritation
| 1 | 0 |
2 | 0.662 | 0.475 | 0.562 |
absorption
| 0.71697 | 0 |
3 | 0.65 | 0.5 | 0.6 |
absorption
| 0.714286 | 0 |
4 | 0.167 | 0.9 | 0.333 |
fear
| 0.86666 | 0 |
5 | 0.45 | 0.6 | 0.55 |
irritation
| 0.714286 | 0 |
6 | 0.55 | 0.55 | 0.5 |
longing
| 0.797969 | 0 |
7 | 0.183 | 0.667 | 0.467 |
bitterness
| 0.781153 | 1 |
8 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
1 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
2 | 0.35 | 0.731 | 0.537 |
impatience
| 0.708208 | 1 |
3 | 0.375 | 0.95 | 0.45 |
anger
| 0.479992 | 1 |
4 | 0.51 | 0.72 | 0.64 |
anticipation
| 0.442308 | 1 |
5 | 0.4 | 0.595 | 0.485 |
irritation
| 0.765262 | 0 |
6 | 0.267 | 0.6 | 0.283 |
worry
| 0.893939 | 0 |
7 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
1 | 0.542 | 0.621 | 0.537 |
longing
| 0.794484 | 0 |
2 | 0.75 | 0.49 | 0.7 |
trust
| 0.712861 | 1 |
3 | 0.393 | 0.729 | 0.407 |
impatience
| 0.701172 | 0 |
4 | 0.588 | 0.525 | 0.55 |
longing
| 0.740188 | 1 |
1 | 0.2 | 0.5 | 0.325 |
disappointment
| 0.928571 | 0 |
2 | 0.25 | 0.8 | 0.3 |
nervousness
| 1 | 0 |
3 | 0.328 | 0.694 | 0.406 |
envy
| 0.850007 | 0 |
4 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
5 | 0.3 | 0.6 | 0.3 |
worry
| 1 | 0 |
1 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
2 | 0.2 | 0.586 | 0.307 |
guilt
| 0.955279 | 0 |
3 | 0.45 | 0.533 | 0.433 |
confusion
| 0.583229 | 1 |
4 | 0.5 | 0.5 | 0.5 |
longing
| 0.595939 | 1 |
5 | 0.7 | 0.512 | 0.637 |
absorption
| 0.819005 | 0 |
1 | 0.65 | 0.5 | 0.6 |
absorption
| 0.714286 | 0 |
2 | 0.213 | 0.675 | 0.425 |
jealousy
| 0.77109 | 1 |
3 | 0.2 | 0.95 | 0.4 |
anger
| 1 | 0 |
4 | 0.483 | 0.533 | 0.383 |
confusion
| 0.651628 | 0 |
1 | 0.2 | 0.8 | 0.4 |
tension
| 1 | 0 |
2 | 0.35 | 0.6 | 0.45 |
annoyed
| 0.797969 | 0 |
Latest: v1_0 · vol01 · ep001 — 7c updated (N scenes). No-fee • Research-only • Access request required.
No-fee (access request). Research-only. Includes 5c columns plus conf
and plot_break
. For a public sample, see the 5c Research Pack.
This is the 7c Core Stable edition (Free, Gated) under the JsisOn License (ARR). It contains the emotion curve only (CSV) with the same 7 fields across releases; schema-stable and reproducible. For open exploration see 5c Free; for richer yet stable coverage, 15c Extended (superset).
Anchor Non-Disclosure (ARR)
This edition does not include numeric lexicon anchors. Per-scene VAD values are pre-snap continuous estimates, not label anchor coordinates.
Why 7c (vs 9c)
- Fixed 7 columns, zero-NA policy, range-checked → downstream-stable.
- Internal thresholds/distances are not exposed → IP-safe.
- Curve-only CSV; no JSONL scenes or full text.
- Fixed lexicon version (JS-LEX core100 v1) → stable labels across releases.
- Labels use stable identifiers; the mapping is provided in
lexicon/core100.v1.bin.tsv
.
Schema (7 columns)
scene_idx | valence | arousal | dominance | label | conf | plot_break
Sample (CSV)
scene_idx,valence,arousal,dominance,label,conf,plot_break 1,0.5,0.5,0.5,longing,0.595939,1 2,0.7,0.6,0.6,interest,1,0 3,0.2,0.8,0.4,tension,1,0 4,0.7,0.6,0.6,interest,1,0 5,0.45,0.875,0.35,astonishment,0.589674,0
Fields
scene_idx
(int) — 1-based index within the episodelabel
(string) — primary emotion from JS-LEX core100 v1 (seelexicon/core100.v1.bin.tsv
)conf
(float, 0..1) — confidence forlabel
valence
(float, 0..1)arousal
(float, 0..1)dominance
(float, 0..1)plot_break
(boolean: 0/1)
Files
- data/
7c_curve.csv
— per-scene emotion curve (7 cols) - schema/
public_contract.schema.json
— public interface (no implementation details) - docs/
LICENSE.txt
— JsisOn License (ARR) terms - docs/
GATED_POLICY.md
— access terms - lexicon/
core100.v1.bin.tsv
Lexicon (core100.v1)
- We provide a minimal, non-numeric VAD lexicon to ensure reproducibility without exposing raw anchors.
- File:
lexicon/core100.v1.bin.tsv
(UTF-8, TSV) - Columns:
label, V_bin, A_bin, D_bin, direction
- Bins:
VL, L, M, H, VH
(five ordered levels around the neutral anchor) - Neutral anchor: conceptually (0.5, 0.5, 0.5) — choose midpoints per your protocol.
- Version:
core100.v1
- License: research-only (no redistribution / no training without consent)
- Exact numeric anchors are reserved to the Pro edition;
- attempts to reconstruct anchors are not permitted under ARR.
Reconstruction (optional, by user)
Researchers may map bins to numeric midpoints (e.g., a 5-level scale) in their own
code/protocol to derive approximate VAD values for analysis.
This dataset intentionally does not include numeric coordinates.
Dataset Summary
7-column VAD core for research and prototyping. No source text. Derived from
Batalstone vol.1 pipeline ([email protected]
, JS-LEX core100).
Access & Gating
This is a Gated Free dataset under the JsisOn License (ARR).
- Allowed (non-commercial only): academic research, evaluation, and model training for research.
- Prohibited: commercial training/deployment, resale, sublicensing, redistribution.
Access is free after approval on the Hub (request access and accept ARR terms).
Data Structure
.
├─ data/
│ └─ 7c_curve.csv
├─ schema/
│ └─ public_contract.schema.json
├─ lexicon/
│ └─ core100.v1.bin.tsv
├─ docs/
│ ├─ LICENSE.txt
│ └─ GATED_POLICY.md
- VAD fields are pre-snap continuous estimates;
- numeric lexicon anchors are not part of this edition.
B. Schema (public)
schema/public_contract.schema.json
{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://schemas.jsison.com/batalstone/curve_7c_core.arr.v1.json",
"title": "Batalstone 7c Core Stable — Curve Only (ARR)",
"description": "No numeric lexicon anchors are included; VAD fields are pre-snap continuous estimates.",
"type": "object",
"required": ["scene_idx","valence","arousal","dominance","label","conf","plot_break"],
"properties": {
"scene_idx": { "type": "integer", "minimum": 1, "description": "1-based scene index" },
"valence": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"arousal": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"dominance": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"label": {
"type": "string",
"description": "Primary emotion (JS-LEX core100 v1). See lexicon/core100.v1.bin.tsv (non-numeric bins)."
},
"conf": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"plot_break":{
"description": "0/1 in CSV; cast to boolean by readers",
"oneOf":[{"type":"integer","enum":[0,1]},{"type":"boolean"}]
}
},
"additionalProperties": false
}
from datasets import load_dataset, Features, Value
features = Features({
"scene_idx": Value("int32"),
"valence": Value("float32"),
"arousal": Value("float32"),
"dominance": Value("float32"),
"label": Value("string"),
"conf": Value("float32"),
"plot_break":Value("bool"),
})
ds = load_dataset("jsisonou/webnovel-narrative-emotion",
data_files="data/7c_curve.csv",
split="train",
features=features)
Edition | Columns | Access | Purpose | Why choose it |
---|---|---|---|---|
9c Preview (archived) | 9 + diagnostics | archived | historical preview | experimental fields; unstable |
7c Core (gated, free) | 7 | gated-free (ARR) | research & evaluation standard | stable schema, zero-NA, fixed lexicon, reproducible |
5c Free | 5 | public | quick baselines | ultra-light, open |
Intended Use & Limitations
Research, benchmarking, prototyping. Non-commercial model training and evaluation are allowed; any commercial use requires a separate written agreement (see License).
License
LicenseRef-JsisOn (ARR) — full text in docs/LICENSE.txt
.
Summary: https://js-is-on.com/licenses/1.0/
(Non-commercial research/review only; no redistribution, sublicensing,
or commercial training/deployment.)
Contact: [email protected] → 5c Research Pack
Changelog
1.0.0
— Initial 7c Core Stable (no-TH). Supersedes legacy 9c preview.
@dataset{batalstone_emotion_7c_core_arr_2025, author = {Liia Black}, title = {Webnovel Narrative Emotion — 7c Core Stable (Gated, Free)}, year = {2025}, publisher = {JsisOn OÜ} }
- Downloads last month
- 181