|
--- |
|
language: |
|
- af |
|
- ak |
|
- am |
|
- ar |
|
- fr |
|
- gaa |
|
- ha |
|
- ig |
|
- rw |
|
- nso |
|
- st |
|
- sn |
|
- sw |
|
- tn |
|
- tw |
|
- xh |
|
- yo |
|
- zu |
|
pretty_name: >- |
|
AfriVox: An African benchmark dataset for Automatic Speech |
|
Translation and Speech Recognition |
|
--- |
|
# AfriVox: An African benchmark dataset for Automatic Speech Translation and Speech Recognition |
|
|
|
|
|
### Project Overview |
|
This project creates a benchmark dataset for evaluating Automatic Speech Translation and Speech recognition models on African languages. This benchmark dataset covers 18 African languages. See language details below. |
|
|
|
### License |
|
|
|
[![CC BY-NC-SA 4.0][cc-by-nc-sa-shield]][cc-by-nc-sa] |
|
|
|
This work is licensed under a |
|
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. |
|
|
|
[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] |
|
|
|
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ |
|
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png |
|
[cc-by-nc-sa-shield]: https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg |
|
|
|
|
|
|
|
|
|
### Usage Instructions |
|
**Accessing the Dataset**: The dataset can be accessed through Hugging Face: |
|
```python |
|
from datasets import load_dataset |
|
afrivox = load_dataset("intronhealth/afrivox") |
|
``` |
|
|
|
## Afrivox stats |
|
|
|
- Dataset size = 18,881 |
|
- Total number of languages = 18 |
|
- Total number of hours = 64.26 |
|
|
|
|
|
### Duration (hours) per domian: |
|
| domain | duration (hours)| |
|
|------------|-----------------| |
|
|medical |35.27 | |
|
|non-medical | 28.99 | |
|
|
|
### Gender Distribution |
|
| gender | count | |
|
|--------|-------:| |
|
| Male | 8879 | |
|
| Female | 10002 | |
|
|
|
|
|
### Dataset Summary by Language and Domain |
|
| language | medical (hrs) | non-medical (hrs) | total_hrs | num_speakers | num_samples | |
|
|---------------|--------:|------------:|----------:|-------------:|------------:| |
|
| afrikaans | 1.79 | 2.27 | 4.05 | 42 | 1406 | |
|
| akan | 0.67 | 0.58 | 1.24 | 15 | 411 | |
|
| amharic | 0.37 | 0.26 | 0.62 | 8 | 214 | |
|
| arabic | 1.47 | 1.13 | 2.60 | 26 | 799 | |
|
| french | 0.30 | 0.21 | 0.51 | 9 | 135 | |
|
| ga | 0.00 | 0.01 | 0.01 | 1 | 5 | |
|
| hausa | 3.81 | 1.71 | 5.53 | 125 | 1869 | |
|
| igbo | 1.66 | 1.42 | 3.08 | 37 | 970 | |
|
| kinyarwanda | 2.80 | 2.20 | 5.00 | 48 | 1172 | |
|
| pedi | 2.18 | 1.94 | 4.13 | 33 | 1121 | |
|
| sesotho | 2.56 | 2.11 | 4.68 | 28 | 1356 | |
|
| shona | 2.81 | 2.18 | 4.99 | 41 | 1114 | |
|
| swahili | 3.35 | 2.57 | 5.92 | 121 | 1377 | |
|
| tswana | 2.09 | 3.56 | 5.65 | 51 | 1573 | |
|
| twi | 0.58 | 0.13 | 0.71 | 4 | 339 | |
|
| xhosa | 3.31 | 2.70 | 6.01 | 58 | 1799 | |
|
| yoruba | 1.56 | 1.25 | 2.81 | 78 | 890 | |
|
| zulu | 3.95 | 2.75 | 6.70 | 73 | 2331 | |
|
|
|
|
|
|
|
|
|
|
|
|
|
### Data column descriptions |
|
|
|
- **speaker_id** [string]: speaker id for mapping to the audio file to the speaker |
|
- **audio_path** [string]: path to the audio file |
|
- **transcription** [string]: text transcription of the audio file |
|
- **translation** [string]: text translation of the audio file |
|
- **domain** [string]: domain (medical or non-medical) |
|
- **language** [string]: language of the audio file |
|
- **gender** [string]: gender of the speaker |
|
- **duration** [float]: duration of the audio file in seconds |