name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
BitVec.msb_eq_getLsbD_last
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Lemmas.lean
theorem msb_eq_getLsbD_last (x : BitVec w) : x.msb = x.getLsbD (w - 1)
w : Nat x : BitVec w ⊢ x.msb = x.getLsbD (w - 1)
simp only [BitVec.msb, getMsbD]
w : Nat x : BitVec w ⊢ (decide (0 < w) && x.getLsbD (w - 1 - 0)) = x.getLsbD (w - 1)
4adf3a04a1b670a9
MeasureTheory.AEEqFun.coeFn_pair
Mathlib/MeasureTheory/Function/AEEqFun.lean
theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x)
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : MeasurableSpace α μ : Measure α inst✝¹ : TopologicalSpace β inst✝ : TopologicalSpace γ f : α →ₘ[μ] β g : α →ₘ[μ] γ ⊢ ↑(mk (fun x => (↑f x, ↑g x)) ⋯) =ᶠ[ae μ] fun x => (↑f x, ↑g x)
apply coeFn_mk
no goals
05adb7a4a5c38670
WeierstrassCurve.natDegree_coeff_Φ_ofNat
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Degree.lean
private lemma natDegree_coeff_Φ_ofNat (n : ℕ) : (W.Φ n).natDegree ≤ n ^ 2 ∧ (W.Φ n).coeff (n ^ 2) = 1
case succ.succ R : Type u inst✝ : CommRing R W : WeierstrassCurve R dm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).natDegree ≤ m + n := fun {m n} {p q} => natDegree_mul_le_of_le dp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ m → (p ^ n).natDegree ≤ n * m := fun {m n} {p} => natDegree_pow_le_of_le n cm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).coeff (m + n) = p.coeff m * q.coeff n := fun {m n} {p q} => coeff_mul_of_natDegree_le h : ∀ {n : ℕ}, (W.preΨ' n).natDegree ≤ WeierstrassCurve.expDegree n ∧ (W.preΨ' n).coeff (WeierstrassCurve.expDegree n) = ↑(WeierstrassCurve.expCoeff n) := fun {n} => WeierstrassCurve.natDegree_coeff_preΨ' W n n : ℕ hd : (n + 1 + 1) ^ 2 = 1 + 2 * WeierstrassCurve.expDegree (n + 2) + if Even (n + 1) then 0 else 3 hd' : (n + 1 + 1) ^ 2 = WeierstrassCurve.expDegree (n + 3) + WeierstrassCurve.expDegree (n + 1) + if Even (n + 1) then 3 else 0 ⊢ (W.Φ ↑(n + 1 + 1)).natDegree ≤ (n + 1 + 1) ^ 2 ∧ (W.Φ ↑(n + 1 + 1)).coeff ((n + 1 + 1) ^ 2) = 1
have hc : (1 : ℤ) = 1 * expCoeff (n + 2) ^ 2 * (if Even (n + 1) then 1 else 4) - expCoeff (n + 3) * expCoeff (n + 1) * (if Even (n + 1) then 4 else 1) := by push_cast [← @Int.cast_inj ℚ, expCoeff_cast, Nat.even_add_one, ite_not] split_ifs <;> ring1
case succ.succ R : Type u inst✝ : CommRing R W : WeierstrassCurve R dm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).natDegree ≤ m + n := fun {m n} {p q} => natDegree_mul_le_of_le dp : ∀ {m n : ℕ} {p : R[X]}, p.natDegree ≤ m → (p ^ n).natDegree ≤ n * m := fun {m n} {p} => natDegree_pow_le_of_le n cm : ∀ {m n : ℕ} {p q : R[X]}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).coeff (m + n) = p.coeff m * q.coeff n := fun {m n} {p q} => coeff_mul_of_natDegree_le h : ∀ {n : ℕ}, (W.preΨ' n).natDegree ≤ WeierstrassCurve.expDegree n ∧ (W.preΨ' n).coeff (WeierstrassCurve.expDegree n) = ↑(WeierstrassCurve.expCoeff n) := fun {n} => WeierstrassCurve.natDegree_coeff_preΨ' W n n : ℕ hd : (n + 1 + 1) ^ 2 = 1 + 2 * WeierstrassCurve.expDegree (n + 2) + if Even (n + 1) then 0 else 3 hd' : (n + 1 + 1) ^ 2 = WeierstrassCurve.expDegree (n + 3) + WeierstrassCurve.expDegree (n + 1) + if Even (n + 1) then 3 else 0 hc : 1 = (1 * WeierstrassCurve.expCoeff (n + 2) ^ 2 * if Even (n + 1) then 1 else 4) - WeierstrassCurve.expCoeff (n + 3) * WeierstrassCurve.expCoeff (n + 1) * if Even (n + 1) then 4 else 1 ⊢ (W.Φ ↑(n + 1 + 1)).natDegree ≤ (n + 1 + 1) ^ 2 ∧ (W.Φ ↑(n + 1 + 1)).coeff ((n + 1 + 1) ^ 2) = 1
44ae74066fe30e40
PosNum.cast_le
Mathlib/Data/Num/Lemmas.lean
theorem cast_le [LinearOrderedSemiring α] {m n : PosNum} : (m : α) ≤ n ↔ m ≤ n
α : Type u_1 inst✝ : LinearOrderedSemiring α m n : PosNum ⊢ ¬↑n < ↑m ↔ m ≤ n
exact not_congr cast_lt
no goals
beda75c4ffeeb046
MeasureTheory.LocallyIntegrable.integrable_smul_right_of_hasCompactSupport
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
theorem LocallyIntegrable.integrable_smul_right_of_hasCompactSupport [NormedSpace ℝ E] [OpensMeasurableSpace X] [T2Space X] {f : X → ℝ} (hf : LocallyIntegrable f μ) {g : X → E} (hg : Continuous g) (h'g : HasCompactSupport g) : Integrable (fun x ↦ f x • g x) μ
X : Type u_1 E : Type u_3 inst✝⁵ : MeasurableSpace X inst✝⁴ : TopologicalSpace X inst✝³ : NormedAddCommGroup E μ : Measure X inst✝² : NormedSpace ℝ E inst✝¹ : OpensMeasurableSpace X inst✝ : T2Space X f : X → ℝ hf : LocallyIntegrable f μ g : X → E hg : Continuous g h'g : HasCompactSupport g K : Set X := tsupport g hK : IsCompact K ⊢ (K.indicator fun x => f x • g x) = fun x => f x • g x
apply indicator_eq_self.2
X : Type u_1 E : Type u_3 inst✝⁵ : MeasurableSpace X inst✝⁴ : TopologicalSpace X inst✝³ : NormedAddCommGroup E μ : Measure X inst✝² : NormedSpace ℝ E inst✝¹ : OpensMeasurableSpace X inst✝ : T2Space X f : X → ℝ hf : LocallyIntegrable f μ g : X → E hg : Continuous g h'g : HasCompactSupport g K : Set X := tsupport g hK : IsCompact K ⊢ (support fun x => f x • g x) ⊆ K
07b57f28d472aaa4
TopCat.Presheaf.pushforwardEq_hom_app
Mathlib/Topology/Sheaves/Presheaf.lean
theorem pushforwardEq_hom_app {X Y : TopCat.{w}} {f g : X ⟶ Y} (h : f = g) (ℱ : X.Presheaf C) (U) : (pushforwardEq h ℱ).hom.app U = ℱ.map (eqToHom (by aesop_cat))
C✝ : Type u inst✝³ : Category.{v, u} C✝ X✝ : TopCat C : Type u_1 inst✝² : Category.{?u.46617, u_1} C FC : C → C → Type u_2 CC : C → Type u_3 inst✝¹ : (X Y : C) → FunLike (FC X Y) (CC X) (CC Y) inst✝ : ConcreteCategory C FC X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ (Opens.map f).op.obj U = (Opens.map g).op.obj U
aesop_cat
no goals
3e968e77c81c4ec6
MeasureTheory.Measure.AbsolutelyContinuous.zero
Mathlib/MeasureTheory/Measure/AbsolutelyContinuous.lean
@[simp] protected lemma zero (μ : Measure α) : 0 ≪ μ := fun _ _ ↦ by simp
α : Type u_1 mα : MeasurableSpace α μ : Measure α x✝¹ : Set α x✝ : μ x✝¹ = 0 ⊢ 0 x✝¹ = 0
simp
no goals
b65f07860a7b6e9d
MvQPF.recF_eq_of_wEquiv
Mathlib/Data/QPF/Multivariate/Constructions/Fix.lean
theorem recF_eq_of_wEquiv (α : TypeVec n) {β : Type u} (u : F (α.append1 β) → β) (x y : q.P.W α) : WEquiv x y → recF u x = recF u y
case refine_2 n : ℕ F : TypeVec.{u} (n + 1) → Type u q : MvQPF F α : TypeVec.{u} n β : Type u u : F (α ::: β) → β x y : (P F).W α a₀✝ : (P F).A f'₀✝ : (P F).drop.B a₀✝ ⟹ α f₀✝ : (P F).last.B a₀✝ → (P F).W α a₁✝ : (P F).A f'₁✝ : (P F).drop.B a₁✝ ⟹ α f₁✝ : (P F).last.B a₁✝ → (P F).W α h✝ : WEquiv ((P F).wMk a₀✝ f'₀✝ f₀✝) ((P F).wMk a₁✝ f'₁✝ f₁✝) a₀ : (P F).A f'₀ : (P F).drop.B a₀ ⟹ α f₀ : (P F).last.B a₀ → (P F).W α a₁ : (P F).A f'₁ : (P F).drop.B a₁ ⟹ α f₁ : (P F).last.B a₁ → (P F).W α h : abs ⟨a₀, (P F).appendContents f'₀ f₀⟩ = abs ⟨a₁, (P F).appendContents f'₁ f₁⟩ ⊢ recF u ((P F).wMk a₀ f'₀ f₀) = recF u ((P F).wMk a₁ f'₁ f₁)
simp only [recF_eq', abs_map, MvPFunctor.wDest'_wMk, h]
no goals
ad7305cb6e79d41e
CategoryTheory.SemiadditiveOfBinaryBiproducts.distrib
Mathlib/CategoryTheory/Preadditive/OfBiproducts.lean
theorem distrib (f g h k : X ⟶ Y) : (f +ᵣ g) +ₗ h +ᵣ k = (f +ₗ h) +ᵣ g +ₗ k
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasZeroMorphisms C inst✝ : HasBinaryBiproducts C X Y : C f g h k : X ⟶ Y diag : X ⊞ X ⟶ Y ⊞ Y := biprod.lift (biprod.desc f g) (biprod.desc h k) hd₁ : biprod.inl ≫ diag = biprod.lift f h ⊢ biprod.inr ≫ diag = biprod.lift g k
ext <;> simp [diag]
no goals
8859d6f168de6f6c
Zsqrtd.nonneg_mul
Mathlib/NumberTheory/Zsqrtd/Basic.lean
theorem nonneg_mul {a b : ℤ√d} (ha : Nonneg a) (hb : Nonneg b) : Nonneg (a * b) := match a, b, nonneg_cases ha, nonneg_cases hb, ha, hb with | _, _, ⟨_, _, Or.inl rfl⟩, ⟨_, _, Or.inl rfl⟩, _, _ => trivial | _, _, ⟨x, y, Or.inl rfl⟩, ⟨z, w, Or.inr <| Or.inr rfl⟩, _, hb => nonneg_mul_lem hb | _, _, ⟨x, y, Or.inl rfl⟩, ⟨z, w, Or.inr <| Or.inl rfl⟩, _, hb => nonneg_mul_lem hb | _, _, ⟨x, y, Or.inr <| Or.inr rfl⟩, ⟨z, w, Or.inl rfl⟩, ha, _ => by rw [mul_comm]; exact nonneg_mul_lem ha | _, _, ⟨x, y, Or.inr <| Or.inl rfl⟩, ⟨z, w, Or.inl rfl⟩, ha, _ => by rw [mul_comm]; exact nonneg_mul_lem ha | _, _, ⟨x, y, Or.inr <| Or.inr rfl⟩, ⟨z, w, Or.inr <| Or.inr rfl⟩, ha, hb => by rw [calc (⟨-x, y⟩ * ⟨-z, w⟩ : ℤ√d) = ⟨_, _⟩ := rfl _ = ⟨x * z + d * y * w, -(x * w + y * z)⟩
d : ℕ a b : ℤ√↑d ha✝ : a.Nonneg hb : b.Nonneg x y z w : ℕ ha : { re := ↑x, im := -↑y }.Nonneg x✝ : { re := ↑z, im := ↑w }.Nonneg ⊢ ({ re := ↑x, im := -↑y } * { re := ↑z, im := ↑w }).Nonneg
rw [mul_comm]
d : ℕ a b : ℤ√↑d ha✝ : a.Nonneg hb : b.Nonneg x y z w : ℕ ha : { re := ↑x, im := -↑y }.Nonneg x✝ : { re := ↑z, im := ↑w }.Nonneg ⊢ ({ re := ↑z, im := ↑w } * { re := ↑x, im := -↑y }).Nonneg
46d597e584ea62c6
Matrix.Represents.one
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
theorem Matrix.Represents.one : (1 : Matrix ι ι R).Represents b 1
ι : Type u_1 inst✝⁴ : Fintype ι M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M b : ι → M inst✝ : DecidableEq ι ⊢ ((LinearMap.llcomp R (ι → R) (ι → R) M) ((Fintype.linearCombination R R) b) ∘ₗ algEquivMatrix'.symm.toLinearMap) 1 = (PiToModule.fromEnd R b) 1
rw [LinearMap.comp_apply, AlgEquiv.toLinearMap_apply, _root_.map_one]
ι : Type u_1 inst✝⁴ : Fintype ι M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M b : ι → M inst✝ : DecidableEq ι ⊢ ((LinearMap.llcomp R (ι → R) (ι → R) M) ((Fintype.linearCombination R R) b)) 1 = (PiToModule.fromEnd R b) 1
bbbc202286fcc352
CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight
Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean
theorem tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight {Y Y' Z : C} [ExactPairing Y Y'] (f : Y ⟶ Z) : (tensorRightHomEquiv _ Y _ _).symm (η_ Y Y' ≫ f ▷ Y') = (λ_ _).hom ≫ f := calc _ = η_ Y Y' ▷ Y ⊗≫ (f ▷ (Y' ⊗ Y) ≫ Z ◁ ε_ Y Y') ⊗≫ 𝟙 _
C : Type u₁ inst✝² : Category.{v₁, u₁} C inst✝¹ : MonoidalCategory C Y Y' Z : C inst✝ : ExactPairing Y Y' f : Y ⟶ Z ⊢ ⊗𝟙.hom ⊗≫ f = (λ_ Y).hom ≫ f
monoidal
no goals
0f6e5fba767e74b3
hasStrictFDerivAt_list_prod_attach'
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
theorem hasStrictFDerivAt_list_prod_attach' {l : List ι} {x : {i // i ∈ l} → 𝔸} : HasStrictFDerivAt (𝕜 := 𝕜) (fun x ↦ (l.attach.map x).prod) (∑ i : Fin l.length, ((l.attach.take i).map x).prod • smulRight (proj l.attach[i.cast List.length_attach.symm]) ((l.attach.drop (.succ i)).map x).prod) x
𝕜 : Type u_1 inst✝² : NontriviallyNormedField 𝕜 ι : Type u_5 𝔸 : Type u_6 inst✝¹ : NormedRing 𝔸 inst✝ : NormedAlgebra 𝕜 𝔸 l : List ι x : { i // i ∈ l } → 𝔸 ⊢ ∀ (i : Fin l.length), i ∈ Finset.univ ↔ (finCongr ⋯) i ∈ Finset.univ
simp
no goals
57ae8c85eed86688
dvd_prime_pow
Mathlib/Algebra/GroupWithZero/Associated.lean
theorem dvd_prime_pow [CancelCommMonoidWithZero M] {p q : M} (hp : Prime p) (n : ℕ) : q ∣ p ^ n ↔ ∃ i ≤ n, Associated q (p ^ i)
case zero M : Type u_1 inst✝ : CancelCommMonoidWithZero M p : M hp : Prime p q : M ⊢ q ∣ p ^ 0 ↔ ∃ i, i ≤ 0 ∧ q ~ᵤ p ^ i
simp [← isUnit_iff_dvd_one, associated_one_iff_isUnit]
no goals
55f0c39be5bdf205
LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero
Mathlib/GroupTheory/ArchimedeanDensely.lean
lemma LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero {G₀ : Type*} [LinearOrderedCommGroupWithZero G₀] [Nontrivial G₀ˣ] {g : G₀} (hg : g ≠ 0) : Set.WellFoundedOn {x : G₀ | x ≤ g} (· > ·) ↔ Nonempty (G₀ ≃*o ℤₘ₀)
case refine_2 G₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero G₀ inst✝ : Nontrivial G₀ˣ g : G₀ hg : g ≠ 0 hg' : g⁻¹ ≠ 0 h : ({x | x ≤ g} \ {0}).WellFoundedOn fun x1 x2 => x1 > x2 ⊢ ∀ a ∈ {x | g⁻¹ ≤ x}, ∀ b ∈ {x | g⁻¹ ≤ x}, a < b → Function.onFun (fun x1 x2 => x1 > x2) (fun x => x⁻¹) a b
simp only [mem_setOf_eq, Function.onFun, gt_iff_lt]
case refine_2 G₀ : Type u_2 inst✝¹ : LinearOrderedCommGroupWithZero G₀ inst✝ : Nontrivial G₀ˣ g : G₀ hg : g ≠ 0 hg' : g⁻¹ ≠ 0 h : ({x | x ≤ g} \ {0}).WellFoundedOn fun x1 x2 => x1 > x2 ⊢ ∀ (a : G₀), g⁻¹ ≤ a → ∀ (b : G₀), g⁻¹ ≤ b → a < b → b⁻¹ < a⁻¹
b1f0a3d6058790d2
rat_inv_continuous_lemma
Mathlib/Algebra/Order/CauSeq/Basic.lean
theorem rat_inv_continuous_lemma {β : Type*} [DivisionRing β] (abv : β → α) [IsAbsoluteValue abv] {ε K : α} (ε0 : 0 < ε) (K0 : 0 < K) : ∃ δ > 0, ∀ {a b : β}, K ≤ abv a → K ≤ abv b → abv (a - b) < δ → abv (a⁻¹ - b⁻¹) < ε
α : Type u_1 inst✝² : LinearOrderedField α β : Type u_3 inst✝¹ : DivisionRing β abv : β → α inst✝ : IsAbsoluteValue abv ε K : α ε0 : 0 < ε K0 : 0 < K a b : β ha : K ≤ abv a hb : K ≤ abv b h : abv (a - b) < K * ε * K a0 : 0 < abv a ⊢ abv (a⁻¹ - b⁻¹) < ε
have b0 := K0.trans_le hb
α : Type u_1 inst✝² : LinearOrderedField α β : Type u_3 inst✝¹ : DivisionRing β abv : β → α inst✝ : IsAbsoluteValue abv ε K : α ε0 : 0 < ε K0 : 0 < K a b : β ha : K ≤ abv a hb : K ≤ abv b h : abv (a - b) < K * ε * K a0 : 0 < abv a b0 : 0 < abv b ⊢ abv (a⁻¹ - b⁻¹) < ε
a1ac660eaca776c2
Cubic.disc_eq_prod_three_roots
Mathlib/Algebra/CubicDiscriminant.lean
theorem disc_eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.disc = (φ P.a * φ P.a * (x - y) * (x - z) * (y - z)) ^ 2
F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : (map φ P).roots = {x, y, z} ⊢ φ P.disc = (φ P.a * φ P.a * (x - y) * (x - z) * (y - z)) ^ 2
simp only [disc, RingHom.map_add, RingHom.map_sub, RingHom.map_mul, map_pow, map_ofNat]
F : Type u_3 K : Type u_4 P : Cubic F inst✝¹ : Field F inst✝ : Field K φ : F →+* K x y z : K ha : P.a ≠ 0 h3 : (map φ P).roots = {x, y, z} ⊢ φ P.b ^ 2 * φ P.c ^ 2 - 4 * φ P.a * φ P.c ^ 3 - 4 * φ P.b ^ 3 * φ P.d - 27 * φ P.a ^ 2 * φ P.d ^ 2 + 18 * φ P.a * φ P.b * φ P.c * φ P.d = (φ P.a * φ P.a * (x - y) * (x - z) * (y - z)) ^ 2
abba4934026db346
Polynomial.coeff_eq_zero_of_lt_natTrailingDegree
Mathlib/Algebra/Polynomial/Degree/TrailingDegree.lean
theorem coeff_eq_zero_of_lt_natTrailingDegree {p : R[X]} {n : ℕ} (h : n < p.natTrailingDegree) : p.coeff n = 0
R : Type u inst✝ : Semiring R p : R[X] n : ℕ h : n < p.natTrailingDegree ⊢ p.coeff n = 0
apply coeff_eq_zero_of_lt_trailingDegree
case h R : Type u inst✝ : Semiring R p : R[X] n : ℕ h : n < p.natTrailingDegree ⊢ ↑n < p.trailingDegree
351ae9308e5c06a2
Nat.Simproc.le_add_ge
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Nat/Simproc.lean
theorem le_add_ge (a : Nat) {b c : Nat} (h : a ≥ c) : (a ≤ b + c) = (a - c ≤ b)
a b c : Nat h : a ≥ c r : (a ≤ b + c) = (a - c ≤ b) ⊢ (a ≤ b + c) = (a - c ≤ b)
exact r
no goals
3450a843b2f206da
WeierstrassCurve.Projective.addX_neg
Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean
lemma addX_neg (P : Fin 3 → R) : W'.addX P (W'.neg P) = 0
R : Type r inst✝ : CommRing R W' : Projective R P : Fin 3 → R ⊢ -P x * (-P y - W'.a₁ * P x - W'.a₃ * P z) ^ 2 * P z + P x * P y ^ 2 * P z - 2 * P x * P y * (-P y - W'.a₁ * P x - W'.a₃ * P z) * P z + 2 * P x * P y * (-P y - W'.a₁ * P x - W'.a₃ * P z) * P z - W'.a₁ * P x ^ 2 * (-P y - W'.a₁ * P x - W'.a₃ * P z) * P z + W'.a₁ * P x ^ 2 * P y * P z + W'.a₂ * P x ^ 2 * P x * P z - W'.a₂ * P x * P x ^ 2 * P z - W'.a₃ * P x * P y * P z ^ 2 + W'.a₃ * P x * (-P y - W'.a₁ * P x - W'.a₃ * P z) * P z ^ 2 - 2 * W'.a₃ * P x * (-P y - W'.a₁ * P x - W'.a₃ * P z) * P z * P z + 2 * W'.a₃ * P x * P y * P z * P z + W'.a₄ * P x ^ 2 * P z ^ 2 - W'.a₄ * P x ^ 2 * P z ^ 2 + 3 * W'.a₆ * P x * P z * P z ^ 2 - 3 * W'.a₆ * P x * P z ^ 2 * P z = 0
ring1
no goals
e87e09a2e4abccff
ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv
Mathlib/Probability/Distributions/Exponential.lean
lemma lintegral_exponentialPDF_eq_antiDeriv {r : ℝ} (hr : 0 < r) (x : ℝ) : ∫⁻ y in Iic x, exponentialPDF r y = ENNReal.ofReal (if 0 ≤ x then 1 - exp (-(r * x)) else 0)
r : ℝ hr : 0 < r x : ℝ h : 0 ≤ x this : ∫ (a : ℝ) in Ι 0 x, r * rexp (-(r * a)) = ∫ (a : ℝ) in 0 ..x, r * rexp (-(r * a)) ⊢ ∀ x_1 ∈ Ioo 0 x, HasDerivWithinAt (fun a => -1 * rexp (-(r * a))) (r * rexp (-(r * x_1))) (Ioi x_1) x_1
simp only [neg_mul, one_mul]
r : ℝ hr : 0 < r x : ℝ h : 0 ≤ x this : ∫ (a : ℝ) in Ι 0 x, r * rexp (-(r * a)) = ∫ (a : ℝ) in 0 ..x, r * rexp (-(r * a)) ⊢ ∀ x_1 ∈ Ioo 0 x, HasDerivWithinAt (fun a => -rexp (-(r * a))) (r * rexp (-(r * x_1))) (Ioi x_1) x_1
8690d2dfbd86b4ca
ProbabilityTheory.condExp_generateFrom_singleton
Mathlib/Probability/Kernel/Condexp.lean
lemma condExp_generateFrom_singleton (hs : MeasurableSet s) {f : Ω → F} (hf : Integrable f μ) : μ[f | generateFrom {s}] =ᵐ[μ.restrict s] fun _ ↦ ∫ x, f x ∂μ[|s]
case pos Ω : Type u_1 F : Type u_2 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ s : Set Ω inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hs : MeasurableSet s f : Ω → F hf : Integrable f μ hμs : μ s = 0 ⊢ μ[f|MeasurableSpace.generateFrom {s}] =ᶠ[ae (μ.restrict s)] fun x => ∫ (x : Ω), f x ∂μ[|s]
rw [Measure.restrict_eq_zero.2 hμs]
case pos Ω : Type u_1 F : Type u_2 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ s : Set Ω inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hs : MeasurableSet s f : Ω → F hf : Integrable f μ hμs : μ s = 0 ⊢ μ[f|MeasurableSpace.generateFrom {s}] =ᶠ[ae 0] fun x => ∫ (x : Ω), f x ∂μ[|s]
b3ab2e228c69d4b5
HasEnoughRootsOfUnity.natCard_rootsOfUnity
Mathlib/RingTheory/RootsOfUnity/EnoughRootsOfUnity.lean
/-- If `M` satisfies `HasEnoughRootsOfUnity`, then the group of `n`th roots of unity in `M` (is cyclic and) has order `n`. -/ lemma natCard_rootsOfUnity (M : Type*) [CommMonoid M] (n : ℕ) [NeZero n] [HasEnoughRootsOfUnity M n] : Nat.card (rootsOfUnity n M) = n
case intro.refine_2 M : Type u_1 inst✝² : CommMonoid M n : ℕ inst✝¹ : NeZero n inst✝ : HasEnoughRootsOfUnity M n ζ : M h : IsPrimitiveRoot ζ n ⊢ n ∣ Monoid.exponent ↥(rootsOfUnity n M)
nth_rewrite 1 [h.eq_orderOf]
case intro.refine_2 M : Type u_1 inst✝² : CommMonoid M n : ℕ inst✝¹ : NeZero n inst✝ : HasEnoughRootsOfUnity M n ζ : M h : IsPrimitiveRoot ζ n ⊢ orderOf ζ ∣ Monoid.exponent ↥(rootsOfUnity n M)
0eca4e6e7b4b2527
Submodule.fst_map_snd
Mathlib/LinearAlgebra/Prod.lean
theorem fst_map_snd : (Submodule.fst R M M₂).map (LinearMap.snd R M M₂) = ⊥
R : Type u M : Type v M₂ : Type w inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ ⊢ map (snd R M M₂) (fst R M M₂) ≤ ⊥
intro x
R : Type u M : Type v M₂ : Type w inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ x : M₂ ⊢ x ∈ map (snd R M M₂) (fst R M M₂) → x ∈ ⊥
d3a1b789547d9be0
CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit
Mathlib/CategoryTheory/Limits/Indization/FilteredColimits.lean
theorem exists_nonempty_limit_obj_of_isColimit [IsFiltered K] {c : Cocone H} (hc : IsColimit c) (T : Over (colimit F)) (hT : c.pt ≅ T) (h : Nonempty <| limit <| 𝒢 ⋙ yoneda.obj T) : ∃ k, Nonempty <| limit <| 𝒢 ⋙ yoneda.obj (H.obj k)
C : Type u inst✝⁵ : Category.{v, u} C I : Type v inst✝⁴ : SmallCategory I F : I ⥤ Cᵒᵖ ⥤ Type v J : Type v inst✝³ : SmallCategory J inst✝² : FinCategory J G : J ⥤ CostructuredArrow yoneda (colimit F) K : Type v inst✝¹ : SmallCategory K H : K ⥤ Over (colimit F) inst✝ : IsFiltered K c : Cocone H hc : IsColimit c T : Over (colimit F) hT : c.pt ≅ T h : Nonempty (limit ((G.op ⋙ (toOver yoneda (colimit F)).op) ⋙ yoneda.obj T)) ⊢ ∃ k, Nonempty (limit ((G.op ⋙ (toOver yoneda (colimit F)).op) ⋙ yoneda.obj (H.obj k)))
refine exists_nonempty_limit_obj_of_colimit F G H ?_
C : Type u inst✝⁵ : Category.{v, u} C I : Type v inst✝⁴ : SmallCategory I F : I ⥤ Cᵒᵖ ⥤ Type v J : Type v inst✝³ : SmallCategory J inst✝² : FinCategory J G : J ⥤ CostructuredArrow yoneda (colimit F) K : Type v inst✝¹ : SmallCategory K H : K ⥤ Over (colimit F) inst✝ : IsFiltered K c : Cocone H hc : IsColimit c T : Over (colimit F) hT : c.pt ≅ T h : Nonempty (limit ((G.op ⋙ (toOver yoneda (colimit F)).op) ⋙ yoneda.obj T)) ⊢ Nonempty (limit ((G.op ⋙ (toOver yoneda (colimit F)).op) ⋙ yoneda.obj (colimit H)))
a0d80d0bd0abda50
controlled_closure_of_complete
Mathlib/Analysis/Normed/Group/ControlledClosure.lean
theorem controlled_closure_of_complete {f : NormedAddGroupHom G H} {K : AddSubgroup H} {C ε : ℝ} (hC : 0 < C) (hε : 0 < ε) (hyp : f.SurjectiveOnWith K C) : f.SurjectiveOnWith K.topologicalClosure (C + ε)
case pos G : Type u_1 inst✝² : NormedAddCommGroup G inst✝¹ : CompleteSpace G H : Type u_2 inst✝ : NormedAddCommGroup H f : NormedAddGroupHom G H K : AddSubgroup H C ε : ℝ hC : 0 < C hε : 0 < ε hyp : f.SurjectiveOnWith K C h : H h_in : h ∈ K.topologicalClosure hyp_h : h = 0 ⊢ ∃ g, f g = h ∧ ‖g‖ ≤ (C + ε) * ‖h‖
rw [hyp_h]
case pos G : Type u_1 inst✝² : NormedAddCommGroup G inst✝¹ : CompleteSpace G H : Type u_2 inst✝ : NormedAddCommGroup H f : NormedAddGroupHom G H K : AddSubgroup H C ε : ℝ hC : 0 < C hε : 0 < ε hyp : f.SurjectiveOnWith K C h : H h_in : h ∈ K.topologicalClosure hyp_h : h = 0 ⊢ ∃ g, f g = 0 ∧ ‖g‖ ≤ (C + ε) * ‖0‖
39e3d4e13f8bf078
totallyBounded_iff_filter
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem totallyBounded_iff_filter {s : Set α} : TotallyBounded s ↔ ∀ f, NeBot f → f ≤ 𝓟 s → ∃ c ≤ f, Cauchy c
case mp α : Type u uniformSpace : UniformSpace α s : Set α ⊢ TotallyBounded s → ∀ (f : Filter α), f.NeBot → f ≤ 𝓟 s → ∃ c ≤ f, Cauchy c
exact fun H f hf hfs => ⟨Ultrafilter.of f, Ultrafilter.of_le f, (Ultrafilter.of f).cauchy_of_totallyBounded H ((Ultrafilter.of_le f).trans hfs)⟩
no goals
8d4389700a78bd05
List.Sublist.findIdx?_isSome
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Find.lean
theorem Sublist.findIdx?_isSome {l₁ l₂ : List α} (h : l₁ <+ l₂) : (l₁.findIdx? p).isSome → (l₂.findIdx? p).isSome
case intro.intro α : Type u_1 p : α → Bool l₁ l₂ : List α h : l₁ <+ l₂ w : α m : w ∈ l₁ q : p w = true ⊢ ∃ x, x ∈ l₂ ∧ p x = true
exact ⟨w, h.mem m, q⟩
no goals
1f65915bbb3a011a
MeasureTheory.Measure.rnDeriv_pos
Mathlib/MeasureTheory/Decomposition/RadonNikodym.lean
lemma rnDeriv_pos [HaveLebesgueDecomposition μ ν] (hμν : μ ≪ ν) : ∀ᵐ x ∂μ, 0 < μ.rnDeriv ν x
α : Type u_1 m : MeasurableSpace α μ ν : Measure α inst✝ : μ.HaveLebesgueDecomposition ν hμν : μ ≪ ν ⊢ ∀ᵐ (x : α) ∂ν, μ.rnDeriv ν x ≠ 0 → 0 < μ.rnDeriv ν x
exact ae_of_all _ (fun x hx ↦ lt_of_le_of_ne (zero_le _) hx.symm)
no goals
d070182cd8f5d1b6
Std.DHashMap.Internal.Raw₀.getKey?_eq_some_getKey
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/RawLemmas.lean
theorem getKey?_eq_some_getKey [EquivBEq α] [LawfulHashable α] (h : m.1.WF) {a : α} {h'} : m.getKey? a = some (m.getKey a h')
α : Type u β : α → Type v m : Raw₀ α β inst✝³ : BEq α inst✝² : Hashable α inst✝¹ : EquivBEq α inst✝ : LawfulHashable α h : m.val.WF a : α h' : m.contains a = true ⊢ m.getKey? a = some (m.getKey a h')
simp_to_model using List.getKey?_eq_some_getKey
no goals
03d9f1f761c25bbe
irreducible_or_factor
Mathlib/Algebra/Prime/Defs.lean
theorem irreducible_or_factor {M} [Monoid M] (x : M) (h : ¬IsUnit x) : Irreducible x ∨ ∃ a b, ¬IsUnit a ∧ ¬IsUnit b ∧ a * b = x
M : Type u_2 inst✝ : Monoid M x : M h✝ : ¬IsUnit x this : (p : Prop) → Decidable p H : ∀ (x_1 : M), ¬IsUnit x_1 → ∀ (x_2 : M), ¬IsUnit x_2 → ¬x_1 * x_2 = x a b : M h : x = a * b o : ¬IsUnit a ∧ ¬IsUnit b ⊢ False
exact H _ o.1 _ o.2 h.symm
no goals
f17346327bf6e20c
BoxIntegral.Box.measurableSet_coe
Mathlib/Analysis/BoxIntegral/Partition/Measure.lean
theorem measurableSet_coe : MeasurableSet (I : Set (ι → ℝ))
ι : Type u_1 I : Box ι inst✝ : Countable ι ⊢ MeasurableSet ↑I
rw [coe_eq_pi]
ι : Type u_1 I : Box ι inst✝ : Countable ι ⊢ MeasurableSet (univ.pi fun i => Ioc (I.lower i) (I.upper i))
df5e6d98efba6af5
Submodule.rank_le
Mathlib/LinearAlgebra/Dimension/Basic.lean
theorem Submodule.rank_le (s : Submodule R M) : Module.rank R s ≤ Module.rank R M
R : Type u M : Type v inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M s : Submodule R M ⊢ Module.rank R ↥s ≤ Module.rank R ↥⊤
exact rank_mono le_top
no goals
4f7b59dfebaa0f7e
Cardinal.increasing_cantorFunction
Mathlib/Data/Real/Cardinality.lean
theorem increasing_cantorFunction (h1 : 0 < c) (h2 : c < 1 / 2) {n : ℕ} {f g : ℕ → Bool} (hn : ∀ k < n, f k = g k) (fn : f n = false) (gn : g n = true) : cantorFunction c f < cantorFunction c g
case h.e'_4.refine_1.zero c : ℝ h1 : 0 < c h2 : c < 1 / 2 h3 : c < 1 f g : ℕ → Bool hn✝ : ∀ k < 0, f k = g k fn : f 0 = false gn : g 0 = true f_max : ℕ → Bool := fun n => rec false (fun x x => true) n hf_max : ∀ (n : ℕ), f n = true → f_max n = true g_min : ℕ → Bool := fun n => rec true (fun x x => false) n hg_min : ∀ (n : ℕ), g_min n = true → g n = true this : c / (1 - c) < 1 hn : 0 ≠ 0 ⊢ cantorFunctionAux c g_min 0 = 0
contradiction
no goals
157da5ded2b82856
Localization.awayLift_mk
Mathlib/RingTheory/Localization/Away/Basic.lean
lemma awayLift_mk {A : Type*} [CommRing A] (f : R →+* A) (r : R) (a : R) (v : A) (hv : f r * v = 1) (j : ℕ) : Localization.awayLift f r (isUnit_iff_exists_inv.mpr ⟨v, hv⟩) (Localization.mk a ⟨r ^ j, j, rfl⟩) = f a * v ^ j
R : Type u_1 inst✝¹ : CommSemiring R A : Type u_4 inst✝ : CommRing A f : R →+* A r a : R v : A hv : f r * v = 1 j : ℕ ⊢ f a * ↑((IsUnit.liftRight ((↑f).restrict (Submonoid.powers r)) ⋯) ⟨r ^ j, ⋯⟩)⁻¹ = f a * v ^ j
rw [Units.mul_inv_eq_iff_eq_mul]
R : Type u_1 inst✝¹ : CommSemiring R A : Type u_4 inst✝ : CommRing A f : R →+* A r a : R v : A hv : f r * v = 1 j : ℕ ⊢ f a = f a * v ^ j * ↑((IsUnit.liftRight ((↑f).restrict (Submonoid.powers r)) ⋯) ⟨r ^ j, ⋯⟩)
6cf43cbb51580878
VitaliFamily.ae_eventually_measure_zero_of_singular
Mathlib/MeasureTheory/Covering/Differentiation.lean
theorem ae_eventually_measure_zero_of_singular (hρ : ρ ⟂ₘ μ) : ∀ᵐ x ∂μ, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 0)
case h α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ ε > 0, ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑ε * μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑(u n) * μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑(u n) * μ a h'x : ∀ᶠ (a : Set α) in v.filterAt x, 0 < μ a z : ℝ≥0∞ hz : z > 0 ⊢ ∀ᶠ (b : Set α) in v.filterAt x, ρ b / μ b < z
obtain ⟨w, w_pos, w_lt⟩ : ∃ w : ℝ≥0, (0 : ℝ≥0∞) < w ∧ (w : ℝ≥0∞) < z := ENNReal.lt_iff_exists_nnreal_btwn.1 hz
case h.intro.intro α : Type u_1 inst✝⁴ : PseudoMetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ ε > 0, ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑ε * μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑(u n) * μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in v.filterAt x, ρ a < ↑(u n) * μ a h'x : ∀ᶠ (a : Set α) in v.filterAt x, 0 < μ a z : ℝ≥0∞ hz : z > 0 w : ℝ≥0 w_pos : 0 < ↑w w_lt : ↑w < z ⊢ ∀ᶠ (b : Set α) in v.filterAt x, ρ b / μ b < z
27b6e7c43d8d9d57
LinearMap.exists_monic_and_coeff_mem_pow_and_aeval_eq_zero_of_range_le_smul
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
theorem LinearMap.exists_monic_and_coeff_mem_pow_and_aeval_eq_zero_of_range_le_smul [Module.Finite R M] (f : Module.End R M) (I : Ideal R) (hI : LinearMap.range f ≤ I • ⊤) : ∃ p : R[X], p.Monic ∧ (∀ k, p.coeff k ∈ I ^ (p.natDegree - k)) ∧ Polynomial.aeval f p = 0
case inl M : Type u_2 inst✝³ : AddCommGroup M R : Type u_3 inst✝² : CommRing R inst✝¹ : Module R M inst✝ : Module.Finite R M f : Module.End R M I : Ideal R hI : range f ≤ I • ⊤ h✝ : Subsingleton R ⊢ ∃ p, p.Monic ∧ (∀ (k : ℕ), p.coeff k ∈ I ^ (p.natDegree - k)) ∧ (aeval f) p = 0
exact ⟨0, Polynomial.monic_of_subsingleton _, by simp⟩
no goals
f240718b63d9a548
linearIndependent_fin2
Mathlib/LinearAlgebra/LinearIndependent/Lemmas.lean
theorem linearIndependent_fin2 {f : Fin 2 → V} : LinearIndependent K f ↔ f 1 ≠ 0 ∧ ∀ a : K, a • f 1 ≠ f 0
K : Type u_3 V : Type u inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V f : Fin 2 → V ⊢ LinearIndependent K f ↔ f 1 ≠ 0 ∧ ∀ (a : K), a • f 1 ≠ f 0
rw [linearIndependent_fin_succ, linearIndependent_unique_iff, range_unique, mem_span_singleton, not_exists, show Fin.tail f default = f 1 by rw [← Fin.succ_zero_eq_one]; rfl]
no goals
361cc2ff5c048802
CategoryTheory.Limits.colim.map_mono'
Mathlib/CategoryTheory/Abelian/GrothendieckAxioms/Colim.lean
/-- Assume that `colim : (J ⥤ C) ⥤ C` preserves monomorphisms, and `φ : X₁ ⟶ X₂` is a monomorphism in `J ⥤ C`, then if `f : c₁.pt ⟶ c₂.pt` is a morphism between the points of colimit cocones for `X₁` and `X₂` in such a way that `f` idenfities to `colim.map φ`, then `f` is a monomorphism. -/ lemma colim.map_mono' [HasColimitsOfShape J C] [(colim : (J ⥤ C) ⥤ C).PreservesMonomorphisms] {X₁ X₂ : J ⥤ C} (φ : X₁ ⟶ X₂) [Mono φ] {c₁ : Cocone X₁} (hc₁ : IsColimit c₁) {c₂ : Cocone X₂} (hc₂ : IsColimit c₂) (f : c₁.pt ⟶ c₂.pt) (hf : ∀ j, c₁.ι.app j ≫ f = φ.app j ≫ c₂.ι.app j) : Mono f
C : Type u inst✝⁴ : Category.{v, u} C J : Type u' inst✝³ : Category.{v', u'} J inst✝² : HasColimitsOfShape J C inst✝¹ : colim.PreservesMonomorphisms X₁ X₂ : J ⥤ C φ : X₁ ⟶ X₂ inst✝ : Mono φ c₁ : Cocone X₁ hc₁ : IsColimit c₁ c₂ : Cocone X₂ hc₂ : IsColimit c₂ f : c₁.pt ⟶ c₂.pt hf : ∀ (j : J), c₁.ι.app j ≫ f = φ.app j ≫ c₂.ι.app j j : J ⊢ c₁.ι.app j ≫ (hc₁.coconePointUniqueUpToIso (colimit.isColimit X₁)).hom ≫ colimMap φ = c₁.ι.app j ≫ f ≫ (hc₂.coconePointUniqueUpToIso (colimit.isColimit X₂)).hom
rw [IsColimit.comp_coconePointUniqueUpToIso_hom_assoc, colimit.cocone_ι, ι_colimMap, reassoc_of% (hf j), IsColimit.comp_coconePointUniqueUpToIso_hom, colimit.cocone_ι]
no goals
a626527c67c68c80
Polynomial.Chebyshev.U_neg_sub_one
Mathlib/RingTheory/Polynomial/Chebyshev.lean
theorem U_neg_sub_one (n : ℤ) : U R (-n - 1) = -U R (n - 1)
case add_two R : Type u_1 inst✝ : CommRing R n : ℕ ih1 : U R (-(↑n + 1) - 1) = -U R (↑n + 1 - 1) ih2 : U R (-↑n - 1) = -U R (↑n - 1) h₁ : U R (↑n + 1) = 2 * X * U R ↑n - U R (↑n - 1) ⊢ U R (-(↑n + 2) - 1) = -U R (↑n + 2 - 1)
have h₂ := U_sub_two R (-n - 1)
case add_two R : Type u_1 inst✝ : CommRing R n : ℕ ih1 : U R (-(↑n + 1) - 1) = -U R (↑n + 1 - 1) ih2 : U R (-↑n - 1) = -U R (↑n - 1) h₁ : U R (↑n + 1) = 2 * X * U R ↑n - U R (↑n - 1) h₂ : U R (-↑n - 1 - 2) = 2 * X * U R (-↑n - 1 - 1) - U R (-↑n - 1) ⊢ U R (-(↑n + 2) - 1) = -U R (↑n + 2 - 1)
c30da371377b8a1e
IsCompactlyGenerated.BooleanGenerators.sSup_inter
Mathlib/Order/BooleanGenerators.lean
lemma sSup_inter (hS : BooleanGenerators S) {T₁ T₂ : Set α} (hT₁ : T₁ ⊆ S) (hT₂ : T₂ ⊆ S) : sSup (T₁ ∩ T₂) = (sSup T₁) ⊓ (sSup T₂)
case a.intro.intro.a.a.left α : Type u_1 inst✝¹ : CompleteLattice α S : Set α inst✝ : IsCompactlyGenerated α hS : BooleanGenerators S T₁ T₂ : Set α hT₁ : T₁ ⊆ S hT₂ : T₂ ⊆ S X : Set α hX : X ⊆ S hX' : sSup T₁ ⊓ sSup T₂ = sSup X I : α hI : I ∈ X ⊢ I ∈ T₁
apply (hS.mono hT₁).mem_of_isAtom_of_le_sSup_atoms _ _ _
α : Type u_1 inst✝¹ : CompleteLattice α S : Set α inst✝ : IsCompactlyGenerated α hS : BooleanGenerators S T₁ T₂ : Set α hT₁ : T₁ ⊆ S hT₂ : T₂ ⊆ S X : Set α hX : X ⊆ S hX' : sSup T₁ ⊓ sSup T₂ = sSup X I : α hI : I ∈ X ⊢ IsAtom I α : Type u_1 inst✝¹ : CompleteLattice α S : Set α inst✝ : IsCompactlyGenerated α hS : BooleanGenerators S T₁ T₂ : Set α hT₁ : T₁ ⊆ S hT₂ : T₂ ⊆ S X : Set α hX : X ⊆ S hX' : sSup T₁ ⊓ sSup T₂ = sSup X I : α hI : I ∈ X ⊢ I ≤ sSup T₁
7804e1cb5854118b
spectrum.units_conjugate
Mathlib/Algebra/Algebra/Spectrum.lean
/-- Conjugation by a unit preserves the spectrum, inverse on right. -/ @[simp] lemma spectrum.units_conjugate {a : A} {u : Aˣ} : spectrum R (u * a * u⁻¹) = spectrum R a
R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Ring A inst✝ : Algebra R A a : A u : Aˣ this : ∀ (b : A) (v : Aˣ), spectrum R (↑v * b * ↑v⁻¹) ⊆ spectrum R b ⊢ spectrum R a = spectrum R (↑u⁻¹ * (↑u * a * ↑u⁻¹) * ↑u⁻¹⁻¹)
simp [mul_assoc]
no goals
7561a35e3d28b7df
geometric_hahn_banach_compact_closed
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
theorem geometric_hahn_banach_compact_closed (hs₁ : Convex ℝ s) (hs₂ : IsCompact s) (ht₁ : Convex ℝ t) (ht₂ : IsClosed t) (disj : Disjoint s t) : ∃ (f : E →L[ℝ] ℝ) (u v : ℝ), (∀ a ∈ s, f a < u) ∧ u < v ∧ ∀ b ∈ t, v < f b
case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_2 inst✝⁵ : TopologicalSpace E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E inst✝² : IsTopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E hs₁ : Convex ℝ s hs₂ : IsCompact s ht₁ : Convex ℝ t ht₂ : IsClosed t disj : Disjoint s t hs : s.Nonempty _ht : t.Nonempty U V : Set E hU : IsOpen U hV : IsOpen V hU₁ : Convex ℝ U hV₁ : Convex ℝ V sU : s ⊆ U tV : t ⊆ V disj' : Disjoint U V f : E →L[ℝ] ℝ u : ℝ hf₁ : ∀ a ∈ U, f a < u hf₂ : ∀ b ∈ V, u < f b x : E hx₁ : x ∈ s hx₂ : IsMaxOn (⇑f) s x ⊢ ∃ f u v, (∀ a ∈ s, f a < u) ∧ u < v ∧ ∀ b ∈ t, v < f b
have : f x < u := hf₁ x (sU hx₁)
case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro E : Type u_2 inst✝⁵ : TopologicalSpace E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s t : Set E inst✝² : IsTopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E hs₁ : Convex ℝ s hs₂ : IsCompact s ht₁ : Convex ℝ t ht₂ : IsClosed t disj : Disjoint s t hs : s.Nonempty _ht : t.Nonempty U V : Set E hU : IsOpen U hV : IsOpen V hU₁ : Convex ℝ U hV₁ : Convex ℝ V sU : s ⊆ U tV : t ⊆ V disj' : Disjoint U V f : E →L[ℝ] ℝ u : ℝ hf₁ : ∀ a ∈ U, f a < u hf₂ : ∀ b ∈ V, u < f b x : E hx₁ : x ∈ s hx₂ : IsMaxOn (⇑f) s x this : f x < u ⊢ ∃ f u v, (∀ a ∈ s, f a < u) ∧ u < v ∧ ∀ b ∈ t, v < f b
521e7c09704a58a0
AddEquiv.isRegular_congr
Mathlib/RingTheory/Regular/RegularSequence.lean
lemma _root_.AddEquiv.isRegular_congr {e : M ≃+ M₂} {as bs} (h : List.Forall₂ (fun (r : R) (s : S) => ∀ x, e (r • x) = s • e x) as bs) : IsRegular M as ↔ IsRegular M₂ bs
R : Type u_1 S : Type u_2 M : Type u_3 M₂ : Type u_4 inst✝⁵ : CommRing R inst✝⁴ : CommRing S inst✝³ : AddCommGroup M inst✝² : AddCommGroup M₂ inst✝¹ : Module R M inst✝ : Module S M₂ e : M ≃+ M₂ as : List R bs : List S h : List.Forall₂ (fun r s => ∀ (x : M), e (r • x) = s • e x) as bs e' : M ⧸ (Ideal.ofList as • ⊤).toAddSubgroup ≃+ M₂ ⧸ (Ideal.ofList bs • ⊤).toAddSubgroup := QuotientAddGroup.congr (Ideal.ofList as • ⊤).toAddSubgroup (Ideal.ofList bs • ⊤).toAddSubgroup e ⋯ ⊢ IsWeaklyRegular M as ∧ ¬Subsingleton (M ⧸ Ideal.ofList as • ⊤) ↔ IsWeaklyRegular M₂ bs ∧ ¬Subsingleton (M₂ ⧸ Ideal.ofList bs • ⊤)
exact and_congr (e.isWeaklyRegular_congr h) e'.subsingleton_congr.not
no goals
2e0fe779af8112df
CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles
Mathlib/Algebra/Homology/ShortComplex/RightHomology.lean
@[reassoc (attr := simp)] lemma rightHomologyι_comp_fromOpcycles : S.rightHomologyι ≫ S.fromOpcycles = 0 := S.rightHomologyι_descOpcycles_π_eq_zero_of_boundary S.g (𝟙 _) (by rw [comp_id])
C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasZeroMorphisms C S : ShortComplex C inst✝ : S.HasRightHomology ⊢ S.g = S.g ≫ 𝟙 S.X₃
rw [comp_id]
no goals
3672986cf90eece5
Convex.taylor_approx_two_segment
Mathlib/Analysis/Calculus/FDeriv/Symmetric.lean
theorem Convex.taylor_approx_two_segment {v w : E} (hv : x + v ∈ interior s) (hw : x + v + w ∈ interior s) : (fun h : ℝ => f (x + h • v + h • w) - f (x + h • v) - h • f' x w - h ^ 2 • f'' v w - (h ^ 2 / 2) • f'' w w) =o[𝓝[>] 0] fun h => h ^ 2
E : Type u_1 F : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E s_conv : Convex ℝ s f : E → F f' : E → E →L[ℝ] F f'' : E →L[ℝ] E →L[ℝ] F hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x x : E xs : x ∈ s hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖ v w : E hv : x + v ∈ interior s hw : x + v + w ∈ interior s ε : ℝ εpos : 0 < ε δ : ℝ δpos : δ > 0 sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1} ⊢ ∀ᶠ (h : ℝ) in 𝓝[>] 0, h * (‖v‖ + ‖w‖) < δ
have : Filter.Tendsto (fun h => h * (‖v‖ + ‖w‖)) (𝓝[>] (0 : ℝ)) (𝓝 (0 * (‖v‖ + ‖w‖))) := (continuous_id.mul continuous_const).continuousWithinAt
E : Type u_1 F : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E s_conv : Convex ℝ s f : E → F f' : E → E →L[ℝ] F f'' : E →L[ℝ] E →L[ℝ] F hf : ∀ x ∈ interior s, HasFDerivAt f (f' x) x x : E xs : x ∈ s hx : ∀ ⦃c : ℝ⦄, 0 < c → ∀ᶠ (x_1 : E) in 𝓝[interior s] x, ‖f' x_1 - f' x - f'' (x_1 - x)‖ ≤ c * ‖x_1 - x‖ v w : E hv : x + v ∈ interior s hw : x + v + w ∈ interior s ε : ℝ εpos : 0 < ε δ : ℝ δpos : δ > 0 sδ : Metric.ball x δ ∩ interior s ⊆ {x_1 | (fun x_2 => ‖f' x_2 - f' x - f'' (x_2 - x)‖ ≤ ε * ‖x_2 - x‖) x_1} this : Tendsto (fun h => h * (‖v‖ + ‖w‖)) (𝓝[>] 0) (𝓝 (0 * (‖v‖ + ‖w‖))) ⊢ ∀ᶠ (h : ℝ) in 𝓝[>] 0, h * (‖v‖ + ‖w‖) < δ
b5ca530ac5b123c0
SimpleGraph.Walk.IsHamiltonianCycle.length_eq
Mathlib/Combinatorics/SimpleGraph/Hamiltonian.lean
/-- The length of a hamiltonian cycle is the number of vertices. -/ lemma IsHamiltonianCycle.length_eq [Fintype α] (hp : p.IsHamiltonianCycle) : p.length = Fintype.card α
α : Type u_1 inst✝¹ : DecidableEq α G : SimpleGraph α a : α p : G.Walk a a inst✝ : Fintype α hp : p.IsHamiltonianCycle ⊢ 1 ≤ Fintype.card α
rw [Nat.succ_le, Fintype.card_pos_iff]
α : Type u_1 inst✝¹ : DecidableEq α G : SimpleGraph α a : α p : G.Walk a a inst✝ : Fintype α hp : p.IsHamiltonianCycle ⊢ Nonempty α
17b11aabd3f48153
IsometryEquiv.midpoint_fixed
Mathlib/Analysis/Normed/Affine/MazurUlam.lean
theorem midpoint_fixed {x y : PE} : ∀ e : PE ≃ᵢ PE, e x = x → e y = y → e (midpoint ℝ x y) = midpoint ℝ x y
case intro E : Type u_1 PE : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : MetricSpace PE inst✝ : NormedAddTorsor E PE x y : PE z : PE := midpoint ℝ x y s : Set (PE ≃ᵢ PE) := {e | e x = x ∧ e y = y} this : Nonempty ↑s h_bdd : BddAbove (range fun e => dist (↑e z) z) R : PE ≃ᵢ PE := (pointReflection ℝ z).toIsometryEquiv f : PE ≃ᵢ PE → PE ≃ᵢ PE := fun e => ((e.trans R).trans e.symm).trans R hf_dist : ∀ (e : PE ≃ᵢ PE), dist ((f e) z) z = 2 * dist (e z) z e : PE ≃ᵢ PE hx : e x = x hy : e y = y ⊢ f e ∈ s
constructor <;> simp [f, R, z, hx, hy, e.symm_apply_eq.2 hx.symm, e.symm_apply_eq.2 hy.symm]
no goals
b718555705b87dec
HomologicalComplex.isSeparating_separatingFamily
Mathlib/CategoryTheory/Generator/HomologicalComplex.lean
lemma isSeparating_separatingFamily : IsSeparating (Set.range (separatingFamily c X))
C : Type u inst✝⁴ : Category.{v, u} C ι : Type w inst✝³ : DecidableEq ι c : ComplexShape ι inst✝² : c.HasNoLoop inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C α : Type t X : α → C hX : IsSeparating (Set.range X) ⊢ IsSeparating (Set.range (separatingFamily c X))
intro K L f g h
C : Type u inst✝⁴ : Category.{v, u} C ι : Type w inst✝³ : DecidableEq ι c : ComplexShape ι inst✝² : c.HasNoLoop inst✝¹ : HasZeroMorphisms C inst✝ : HasZeroObject C α : Type t X : α → C hX : IsSeparating (Set.range X) K L : HomologicalComplex C c f g : K ⟶ L h : ∀ G ∈ Set.range (separatingFamily c X), ∀ (h : G ⟶ K), h ≫ f = h ≫ g ⊢ f = g
5bd607e9a8a5401a