Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception: SplitsNotFoundError Message: The split names could not be parsed from the dataset config. Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 159, in compute compute_split_names_from_info_response( File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 131, in compute_split_names_from_info_response config_info_response = get_previous_step_or_raise(kind="config-info", dataset=dataset, config=config) File "/src/libs/libcommon/src/libcommon/simple_cache.py", line 567, in get_previous_step_or_raise raise CachedArtifactError( libcommon.simple_cache.CachedArtifactError: The previous step failed. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 499, in get_dataset_config_info for split_generator in builder._split_generators( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 99, in _split_generators inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema File "pyarrow/table.pxi", line 5317, in pyarrow.lib.concat_tables File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Must pass at least one table The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 75, in compute_split_names_from_streaming_response for split in get_dataset_split_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 572, in get_dataset_split_names info = get_dataset_config_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 504, in get_dataset_config_info raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
Introduction
This respository introduces how to reproduce the Dense
, Sparse
, and Dense+Sparse
evaluation results of the paper BGE-M3 on the MIRACL dev split.
Requirements
# Install Java (Linux)
apt update
apt install openjdk-21-jdk
# Install Pyserini
pip install pyserini
# Install Faiss
## CPU version
conda install -c conda-forge faiss-cpu
## GPU version
conda install -c conda-forge faiss-gpu
It should be noted that the Pyserini code needs to be modified to support the multiple alpha settings in pyserini/fusion
. I have already submitted a pull request to the official repository to support this feature. You can refer to this PR to modify the code.
2CR
Download and Unzip
# Download
## MIRACL topics and qrels
git clone https://huggingface.co/datasets/miracl/miracl
mv miracl/*/*/* topics-and-qrels
## Dense and Sparse Index
git lfs install
git clone https://huggingface.co/datasets/hanhainebula/bge-m3_miracl_2cr
cat bge-m3_miracl_2cr/dense/en.tar.gz.part_* > bge-m3_miracl_2cr/dense/en.tar.gz
cat bge-m3_miracl_2cr/dense/de.tar.gz.part_* > bge-m3_miracl_2cr/dense/de.tar.gz
# Unzip
languages=(ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo)
## Dense
for lang in ${languages[@]}; do
tar -zxvf bge-m3_miracl_2cr/dense/${lang}.tar.gz -C bge-m3_miracl_2cr/dense/
done
## Sparse
for lang in ${languages[@]}; do
tar -zxvf bge-m3_miracl_2cr/sparse/${lang}.tar.gz -C bge-m3_miracl_2cr/sparse/
done
Reproduction
Dense
# Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
lang=zh
# Generate run
python -m pyserini.search.faiss \
--threads 16 --batch-size 512 \
--encoder-class auto \
--encoder BAAI/bge-m3 \
--pooling cls --l2-norm \
--topics topics-and-qrels/topics.miracl-v1.0-${lang}-dev.tsv \
--index bge-m3_miracl_2cr/dense/${lang} \
--output bge-m3_miracl_2cr/dense/runs/${lang}.txt \
--hits 1000
# Evaluate
## nDCG@10
python -m pyserini.eval.trec_eval \
-c -M 100 -m ndcg_cut.10 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/dense/runs/${lang}.txt
## Recall@100
python -m pyserini.eval.trec_eval \
-c -m recall.100 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/dense/runs/${lang}.txt
Sparse
# Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
lang=zh
# Generate run
python -m pyserini.search.lucene \
--threads 16 --batch-size 128 \
--topics bge-m3_miracl_2cr/sparse/${lang}/query_embd.tsv \
--index bge-m3_miracl_2cr/sparse/${lang}/index \
--output bge-m3_miracl_2cr/sparse/runs/${lang}.txt \
--output-format trec \
--impact --hits 1000
# Evaluate
## nDCG@10
python -m pyserini.eval.trec_eval \
-c -M 100 -m ndcg_cut.10 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/sparse/runs/${lang}.txt
## Recall@100
python -m pyserini.eval.trec_eval \
-c -m recall.100 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/sparse/runs/${lang}.txt
Dense+Sparse
Note: You should first merge this PR to support the multiple alpha settings in pyserini/fusion
.
# Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
lang=zh
# Generate dense run and sparse run
python -m pyserini.search.faiss \
--threads 16 --batch-size 512 \
--encoder-class auto \
--encoder BAAI/bge-m3 \
--pooling cls --l2-norm \
--topics topics-and-qrels/topics.miracl-v1.0-${lang}-dev.tsv \
--index bge-m3_miracl_2cr/dense/${lang} \
--output bge-m3_miracl_2cr/dense/runs/${lang}.txt \
--hits 1000
python -m pyserini.search.lucene \
--threads 16 --batch-size 128 \
--topics bge-m3_miracl_2cr/sparse/${lang}/query_embd.tsv \
--index bge-m3_miracl_2cr/sparse/${lang}/index \
--output bge-m3_miracl_2cr/sparse/runs/${lang}.txt \
--output-format trec \
--impact --hits 1000
# Generate dense+sparse run
mkdir -p bge-m3_miracl_2cr/fusion/runs
python -m pyserini.fusion \
--method interpolation \
--runs bge-m3_miracl_2cr/dense/runs/${lang}.txt bge-m3_miracl_2cr/sparse/runs/${lang}.txt \
--alpha 1 3e-5 \
--output bge-m3_miracl_2cr/fusion/runs/${lang}.txt \
--depth 1000 --k 1000
# Evaluation
## nDCG@10
python -m pyserini.eval.trec_eval \
-c -M 100 -m ndcg_cut.10 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/fusion/runs/${lang}.txt
## Recall@100
python -m pyserini.eval.trec_eval \
-c -m recall.100 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/fusion/runs/${lang}.txt
Note:
- The hybrid method we used for MIRACL in BGE-M3 paper is:
s_dense + 0.3 * s_sparse
. But when the sparse score is calculated, it has already been multiplied by 100^2, so the alpha for sparse run here is 3e-5, instead of 0.3.
- Downloads last month
- 43