Dataset Viewer
audio
audio | text
string | time_secs
float64 |
---|---|---|
"The birch canoe slid on the smooth planks. Glue the sheets to a dark blue background." | 7.186563 |
test_hf_dataset
This dataset was created to document how to create an audio dataset and upload it to HuggingFace see GitHub repo.
Next step: add more documentation. e.g.:
- contents of the dataset
- context for how the dataset should be used, e.g.:
datasets
package - existing dataset cards, such as the ELI5 dataset card, show common conventions
Example usage of dataset
Example of transcription.
First install extra dependencies, typically within virtual environment.
python3 -m pip install datasets torch transformers
Then save and run this Python script. It runs transcription using the Moonshine model by Useful Sensors link.
"""Adapted from https://github.com/usefulsensors/moonshine#huggingface-transformers"""
from datasets import load_dataset
from transformers import AutoProcessor, MoonshineForConditionalGeneration
dataset = load_dataset("guynich/test_hf_dataset", split="test")
model = MoonshineForConditionalGeneration.from_pretrained(
"UsefulSensors/moonshine-tiny"
)
processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
for index in range(len(dataset)):
audio_array = dataset[index]["audio"]["array"]
sampling_rate = dataset[index]["audio"]["sampling_rate"]
inputs = processor(audio_array, return_tensors="pt", sampling_rate=sampling_rate)
generated_ids = model.generate(**inputs)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(transcription)
Example output.
$ python3 main.py
The birch canoe slid on the smooth planks, glue the sheets to a dark blue background.
$
- Downloads last month
- 59