Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 4,301 Bytes
6e08daa
 
f776e42
6e08daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f776e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e08daa
 
 
 
 
 
 
 
 
f776e42
 
 
 
 
 
 
 
3141f3b
 
 
 
 
 
 
 
2230210
 
 
 
 
 
 
 
 
 
 
6e08daa
2230210
 
 
 
 
7a91206
2230210
 
 
6351069
 
 
 
 
2230210
6351069
 
 
2230210
6351069
 
 
2230210
 
7a91206
2230210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a91206
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
dataset_info:
- config_name: '5768'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 153793
    num_examples: 700
  - name: test
    num_bytes: 33014
    num_examples: 150
  - name: val
    num_bytes: 33089
    num_examples: 150
  download_size: 102201
  dataset_size: 219896
- config_name: '78516'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 153433
    num_examples: 700
  - name: test
    num_bytes: 33192
    num_examples: 150
  - name: val
    num_bytes: 33271
    num_examples: 150
  download_size: 101970
  dataset_size: 219896
- config_name: '944601'
  features:
  - name: sentences
    dtype: string
  - name: stance_label
    dtype: string
  - name: time_label
    dtype: string
  - name: certain_label
    dtype: string
  - name: year
    dtype: int64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 155675
    num_examples: 700
  - name: test
    num_bytes: 32490
    num_examples: 150
  - name: val
    num_bytes: 31731
    num_examples: 150
  download_size: 101209
  dataset_size: 219896
configs:
- config_name: '5768'
  data_files:
  - split: train
    path: 5768/train-*
  - split: test
    path: 5768/test-*
  - split: val
    path: 5768/val-*
- config_name: '78516'
  data_files:
  - split: train
    path: 78516/train-*
  - split: test
    path: 78516/test-*
  - split: val
    path: 78516/val-*
- config_name: '944601'
  data_files:
  - split: train
    path: 944601/train-*
  - split: test
    path: 944601/test-*
  - split: val
    path: 944601/val-*
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- en
tags:
- finance
- econ
pretty_name: reserve_bank_of_australia
size_categories:
- 1K<n<10K
---

## Dataset Summary
For dataset summary, please refer to [https://huggingface.co/datasets/gtfintechlab/reserve_bank_of_australia](https://huggingface.co/datasets/gtfintechlab/reserve_bank_of_australia)

## Additional Information
This dataset is annotated across three different tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation. The tasks have four, two, and two unique labels, respectively. This dataset contains 1,000 sentences taken from the meeting minutes of the Reserve Bank of Australia. 

### Label Interpretation

#### Stance Detection
- **Hawkish:** The sentence supports contractionary monetary policy.
- **Dovish:** The sentence supports expansionary monetary policy.
- **Neutral:** The sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment.
- **Irrelevant:** The sentence is not related to monetary policy.

#### Temporal Classification
- **Forward-looking:** The sentence discusses future economic events or decisions.
- **Not Forward-looking:** The sentence discusses past or current economic events or decisions.

#### Uncertainty Estimation
- **Certain:** Indicates that the sentence presents information definitively.
- **Uncertain:** Indicates that the sentence presents information with speculation, possibility, or doubt.

## Licensing Information
The reserve_bank_of_australia dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. [More information in the paper.](https://arxiv.org/)

## Citation Information
```bibtex
@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
  year={2025}
}
```
## Contact
For any reserve_bank_of_australia dataset related issues and questions, please contact:

- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu

- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu

- Agam Shah: ashah482[at]gatech[dot]edu

## GitHub Link
[Link to our GitHub repository.](https://github.com/gtfintechlab/WorldsCentralBanks)