Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
sbudideti3's picture
Upload README.md with huggingface_hub
de0b1e8 verified
metadata
dataset_info:
  - config_name: '5768'
    features:
      - name: sentences
        dtype: string
      - name: stance_label
        dtype: string
      - name: time_label
        dtype: string
      - name: certain_label
        dtype: string
      - name: year
        dtype: int64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 174293
        num_examples: 700
      - name: test
        num_bytes: 38004
        num_examples: 150
      - name: val
        num_bytes: 36128
        num_examples: 150
    download_size: 119283
    dataset_size: 248425
  - config_name: '78516'
    features:
      - name: sentences
        dtype: string
      - name: stance_label
        dtype: string
      - name: time_label
        dtype: string
      - name: certain_label
        dtype: string
      - name: year
        dtype: int64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 176209
        num_examples: 700
      - name: test
        num_bytes: 36088
        num_examples: 150
      - name: val
        num_bytes: 36128
        num_examples: 150
    download_size: 118765
    dataset_size: 248425
  - config_name: '944601'
    features:
      - name: sentences
        dtype: string
      - name: stance_label
        dtype: string
      - name: time_label
        dtype: string
      - name: certain_label
        dtype: string
      - name: year
        dtype: int64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 173552
        num_examples: 700
      - name: test
        num_bytes: 38581
        num_examples: 150
      - name: val
        num_bytes: 36292
        num_examples: 150
    download_size: 118108
    dataset_size: 248425
configs:
  - config_name: '5768'
    data_files:
      - split: train
        path: 5768/train-*
      - split: test
        path: 5768/test-*
      - split: val
        path: 5768/val-*
  - config_name: '78516'
    data_files:
      - split: train
        path: 78516/train-*
      - split: test
        path: 78516/test-*
      - split: val
        path: 78516/val-*
  - config_name: '944601'
    data_files:
      - split: train
        path: 944601/train-*
      - split: test
        path: 944601/test-*
      - split: val
        path: 944601/val-*
license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
language:
  - en
tags:
  - finance
  - econ
pretty_name: federal_reserve_system
size_categories:
  - 1K<n<10K

Dataset Summary

For dataset summary, please refer to https://huggingface.co/datasets/gtfintechlab/federal_reserve_system

Additional Information

This dataset is annotated across three different tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation. The tasks have four, two, and two unique labels, respectively. This dataset contains 1,000 sentences taken from the meeting minutes of the Federal Reserve System.

Label Interpretation

Stance Detection

  • Hawkish: The sentence supports contractionary monetary policy.
  • Dovish: The sentence supports expansionary monetary policy.
  • Neutral: The sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment.
  • Irrelevant: The sentence is not related to monetary policy.

Temporal Classification

  • Forward-looking: The sentence discusses future economic events or decisions.
  • Not Forward-looking: The sentence discusses past or current economic events or decisions.

Uncertainty Estimation

  • Certain: Indicates that the sentence presents information definitively.
  • Uncertain: Indicates that the sentence presents information with speculation, possibility, or doubt.

Licensing Information

The federal_reserve_system dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. More information in the paper.

Citation Information

@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
  year={2025}
}

Contact

For any federal_reserve_system dataset related issues and questions, please contact:

  • Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu

  • Siddhant Sukhani: ssukhani3[at]gatech[dot]edu

  • Agam Shah: ashah482[at]gatech[dot]edu

GitHub Link

Link to our GitHub repository.