Dataset Viewer
Auto-converted to Parquet
text
stringlengths
0
2k
heading1
stringlengths
4
79
source_page_url
stringclasses
178 values
source_page_title
stringclasses
178 values
`gradio-rs` is a Gradio Client in Rust built by [@JacobLinCool](https://github.com/JacobLinCool). You can find the repo [here](https://github.com/JacobLinCool/gradio-rs), and more in depth API documentation [here](https://docs.rs/gradio/latest/gradio/).
Introduction
https://gradio.app/docs/third-party-clients/rust-client
Third Party Clients - Rust Client Docs
Here is an example of using BS-RoFormer model to separate vocals and background music from an audio file. use gradio::{PredictionInput, Client, ClientOptions}; [tokio::main] async fn main() { if std::env::args().len() < 2 { println!("Please provide an audio file path as an argument"); std::process::exit(1); } let args: Vec<String> = std::env::args().collect(); let file_path = &args[1]; println!("File: {}", file_path); let client = Client::new("JacobLinCool/vocal-separation", ClientOptions::default()) .await .unwrap(); let output = client .predict( "/separate", vec![ PredictionInput::from_file(file_path), PredictionInput::from_value("BS-RoFormer"), ], ) .await .unwrap(); println!( "Vocals: {}", output[0].clone().as_file().unwrap().url.unwrap() ); println!( "Background: {}", output[1].clone().as_file().unwrap().url.unwrap() ); } You can find more examples [here](https://github.com/JacobLinCool/gradio- rs/tree/main/examples).
Usage
https://gradio.app/docs/third-party-clients/rust-client
Third Party Clients - Rust Client Docs
cargo install gradio gr --help Take [stabilityai/stable- diffusion-3-medium](https://huggingface.co/spaces/stabilityai/stable- diffusion-3-medium) HF Space as an example: > gr list stabilityai/stable-diffusion-3-medium API Spec for stabilityai/stable-diffusion-3-medium: /infer Parameters: prompt ( str ) negative_prompt ( str ) seed ( float ) numeric value between 0 and 2147483647 randomize_seed ( bool ) width ( float ) numeric value between 256 and 1344 height ( float ) numeric value between 256 and 1344 guidance_scale ( float ) numeric value between 0.0 and 10.0 num_inference_steps ( float ) numeric value between 1 and 50 Returns: Result ( filepath ) Seed ( float ) numeric value between 0 and 2147483647 > gr run stabilityai/stable-diffusion-3-medium infer 'Rusty text "AI & CLI" on the snow.' '' 0 true 1024 1024 5 28 Result: https://stabilityai-stable-diffusion-3-medium.hf.space/file=/tmp/gradio/5735ca7775e05f8d56d929d8f57b099a675c0a01/image.webp Seed: 486085626 For file input, simply use the file path as the argument: gr run hf-audio/whisper-large-v3 predict 'test-audio.wav' 'transcribe' output: " Did you know you can try the coolest model on your command line?"
Command Line Interface
https://gradio.app/docs/third-party-clients/rust-client
Third Party Clients - Rust Client Docs
Gradio applications support programmatic requests from many environments: * The [Python Client](/docs/python-client): `gradio-client` allows you to make requests from Python environments. * The [JavaScript Client](/docs/js-client): `@gradio/client` allows you to make requests in TypeScript from the browser or server-side. * You can also query gradio apps [directly from cURL](/guides/querying-gradio-apps-with-curl).
Gradio Clients
https://gradio.app/docs/third-party-clients/introduction
Third Party Clients - Introduction Docs
We also encourage the development and use of third party clients built by the community: * [Rust Client](/docs/third-party-clients/rust-client): `gradio-rs` built by [@JacobLinCool](https://github.com/JacobLinCool) allows you to make requests in Rust. * [Powershell Client](https://github.com/rrg92/powershai): `powershai` built by [@rrg92](https://github.com/rrg92) allows you to make requests to Gradio apps directly from Powershell. See [here for documentation](https://github.com/rrg92/powershai/blob/main/docs/en-US/providers/HUGGING-FACE.md)
Community Clients
https://gradio.app/docs/third-party-clients/introduction
Third Party Clients - Introduction Docs
The main Client class for the Python client. This class is used to connect to a remote Gradio app and call its API endpoints.
Description
https://gradio.app/docs/python-client/client
Python Client - Client Docs
from gradio_client import Client client = Client("abidlabs/whisper-large-v2") connecting to a Hugging Face Space client.predict("test.mp4", api_name="/predict") >> What a nice recording! returns the result of the remote API call client = Client("https://bec81a83-5b5c-471e.gradio.live") connecting to a temporary Gradio share URL job = client.submit("hello", api_name="/predict") runs the prediction in a background thread job.result() >> 49 returns the result of the remote API call (blocking call)
Example usage
https://gradio.app/docs/python-client/client
Python Client - Client Docs
Parameters ▼ src: str either the name of the Hugging Face Space to load, (e.g. "abidlabs/whisper- large-v2") or the full URL (including "http" or "https") of the hosted Gradio app to load (e.g. "http://mydomain.com/app" or "https://bec81a83-5b5c-471e.gradio.live/"). hf_token: str | None default `= None` optional Hugging Face token to use to access private Spaces. By default, the locally saved token is used if there is one. Find your tokens here: https://huggingface.co/settings/tokens. max_workers: int default `= 40` maximum number of thread workers that can be used to make requests to the remote Gradio app simultaneously. verbose: bool default `= True` whether the client should print statements to the console. auth: tuple[str, str] | None default `= None` httpx_kwargs: dict[str, Any] | None default `= None` additional keyword arguments to pass to `httpx.Client`, `httpx.stream`, `httpx.get` and `httpx.post`. This can be used to set timeouts, proxies, http auth, etc. headers: dict[str, str] | None default `= None` additional headers to send to the remote Gradio app on every request. By default only the HF authorization and user-agent headers are sent. This parameter will override the default headers if they have the same keys. download_files: str | Path | Literal[False] default `= "/tmp/gradio"` directory where the client should download output files on the local machine from the remote API. By default, uses the value of the GRADIO_TEMP_DIR environment variable which, if not set by the user, is a temporary directory on your machine. If False, the client does not download files and returns a FileData dataclass object with the filepath on the remote machine instead. ssl_verify: bool default `= True` if False, skips certificate validation which allows the client to connect to Gradio apps that are using self-signed
Initialization
https://gradio.app/docs/python-client/client
Python Client - Client Docs
h on the remote machine instead. ssl_verify: bool default `= True` if False, skips certificate validation which allows the client to connect to Gradio apps that are using self-signed certificates. analytics_enabled: bool default `= True` Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
Initialization
https://gradio.app/docs/python-client/client
Python Client - Client Docs
Description Event listeners allow you to respond to user interactions with the UI components you've defined in a Gradio Blocks app. When a user interacts with an element, such as changing a slider value or uploading an image, a function is called. Supported Event Listeners The Client component supports the following event listeners. Each event listener takes the same parameters, which are listed in the Event Parameters table below. Listener | Description ---|--- `Client.predict(fn, ···)` | Calls the Gradio API and returns the result (this is a blocking call). Arguments can be provided as positional arguments or as keyword arguments (latter is recommended). <br> `Client.submit(fn, ···)` | Creates and returns a Job object which calls the Gradio API in a background thread. The job can be used to retrieve the status and result of the remote API call. Arguments can be provided as positional arguments or as keyword arguments (latter is recommended). <br> `Client.view_api(fn, ···)` | Prints the usage info for the API. If the Gradio app has multiple API endpoints, the usage info for each endpoint will be printed separately. If return_format="dict" the info is returned in dictionary format, as shown in the example below. <br> `Client.duplicate(fn, ···)` | Duplicates a Hugging Face Space under your account and returns a Client object for the new Space. No duplication is created if the Space already exists in your account (to override this, provide a new name for the new Space using `to_id`). To use this method, you must provide an `hf_token` or be logged in via the Hugging Face Hub CLI. <br> The new Space will be private by default and use the same hardware as the original Space. This can be changed by using the `private` and `hardware` parameters. For hardware upgrades (beyond the basic CPU tier), you may be required to provide billing information on Hugging Face: https://huggingface.co/settings/billing <br> `Client.deploy_discord(fn, ···)` | Deploy
Event Listeners
https://gradio.app/docs/python-client/client
Python Client - Client Docs
dware upgrades (beyond the basic CPU tier), you may be required to provide billing information on Hugging Face: https://huggingface.co/settings/billing <br> `Client.deploy_discord(fn, ···)` | Deploy the upstream app as a discord bot. Currently only supports gr.ChatInterface. Event Parameters Parameters ▼ args: <class 'inspect._empty'> The positional arguments to pass to the remote API endpoint. The order of the arguments must match the order of the inputs in the Gradio app. api_name: str | None default `= None` The name of the API endpoint to call starting with a leading slash, e.g. "/predict". Does not need to be provided if the Gradio app has only one named API endpoint. fn_index: int | None default `= None` As an alternative to api_name, this parameter takes the index of the API endpoint to call, e.g. 0. Both api_name and fn_index can be provided, but if they conflict, api_name will take precedence. headers: dict[str, str] | None default `= None` Additional headers to send to the remote Gradio app on this request. This parameter will overrides the headers provided in the Client constructor if they have the same keys. kwargs: <class 'inspect._empty'> The keyword arguments to pass to the remote API endpoint.
Event Listeners
https://gradio.app/docs/python-client/client
Python Client - Client Docs
**Stream From a Gradio app in 5 lines** Use the `submit` method to get a job you can iterate over. In python: from gradio_client import Client client = Client("gradio/llm_stream") for result in client.submit("What's the best UI framework in Python?"): print(result) In typescript: import { Client } from "@gradio/client"; const client = await Client.connect("gradio/llm_stream") const job = client.submit("/predict", {"text": "What's the best UI framework in Python?"}) for await (const msg of job) console.log(msg.data) **Use the same keyword arguments as the app** In the examples below, the upstream app has a function with parameters called `message`, `system_prompt`, and `tokens`. We can see that the client `predict` call uses the same arguments. In python: from gradio_client import Client client = Client("http://127.0.0.1:7860/") result = client.predict( message="Hello!!", system_prompt="You are helpful AI.", tokens=10, api_name="/chat" ) print(result) In typescript: import { Client } from "@gradio/client"; const client = await Client.connect("http://127.0.0.1:7860/"); const result = await client.predict("/chat", { message: "Hello!!", system_prompt: "Hello!!", tokens: 10, }); console.log(result.data); **Better Error Messages** If something goes wrong in the upstream app, the client will raise the same exception as the app provided that `show_error=True` in the original app's `launch()` function, or it's a `gr.Error` exception.
Ergonomic API 💆
https://gradio.app/docs/python-client/version-1-release
Python Client - Version 1 Release Docs
Anything you can do in the UI, you can do with the client: * 🔐Authentication * 🛑 Job Cancelling * ℹ️ Access Queue Position and API * 📕 View the API information Here's an example showing how to display the queue position of a pending job: from gradio_client import Client client = Client("gradio/diffusion_model") job = client.submit("A cute cat") while not job.done(): status = job.status() print(f"Current in position {status.rank} out of {status.queue_size}")
Transparent Design 🪟
https://gradio.app/docs/python-client/version-1-release
Python Client - Version 1 Release Docs
The client can run from pretty much any python and javascript environment (node, deno, the browser, Service Workers). Here's an example using the client from a Flask server using gevent: from gevent import monkey monkey.patch_all() from gradio_client import Client from flask import Flask, send_file import time app = Flask(__name__) imageclient = Client("gradio/diffusion_model") @app.route("/gen") def gen(): result = imageclient.predict( "A cute cat", api_name="/predict" ) return send_file(result) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000)
Portable Design ⛺️
https://gradio.app/docs/python-client/version-1-release
Python Client - Version 1 Release Docs
Changes **Python** * The `serialize` argument of the `Client` class was removed and has no effect. * The `upload_files` argument of the `Client` was removed. * All filepaths must be wrapped in the `handle_file` method. For example, `caption = client.predict(handle_file('./dog.jpg'))`. * The `output_dir` argument was removed. It is not specified in the `download_files` argument. **Javascript** The client has been redesigned entirely. It was refactored from a function into a class. An instance can now be constructed by awaiting the `connect` method. const app = await Client.connect("gradio/whisper") The app variable has the same methods as the python class (`submit`, `predict`, `view_api`, `duplicate`).
v1.0 Migration Guide and Breaking
https://gradio.app/docs/python-client/version-1-release
Python Client - Version 1 Release Docs
ZeroGPU ZeroGPU spaces are rate-limited to ensure that a single user does not hog all of the available GPUs. The limit is controlled by a special token that the Hugging Face Hub infrastructure adds to all incoming requests to Spaces. This token is a request header called `X-IP-Token` and its value changes depending on the user who makes a request to the ZeroGPU space. Let’s say you want to create a space (Space A) that uses a ZeroGPU space (Space B) programmatically. Simply calling Space B from Space A with the python client will quickly exhaust your rate limit, as all the requests to the ZeroGPU space will have the same token. So in order to avoid this, we need to extract the token of the user using Space A before we call Space B programmatically. How to do this will be explained in the following section.
Explaining Rate Limits for
https://gradio.app/docs/python-client/using-zero-gpu-spaces
Python Client - Using Zero Gpu Spaces Docs
When a user presses enter in the textbox, we will extract their token from the `X-IP-Token` header of the incoming request. We will use this header when constructing the gradio client. The following hypothetical text-to-image application shows how this is done. import gradio as gr from gradio_client import Client def text_to_image(prompt, request: gr.Request): x_ip_token = request.headers['x-ip-token'] client = Client("hysts/SDXL", headers={"x-ip-token": x_ip_token}) img = client.predict(prompt, api_name="/predict") return img with gr.Blocks() as demo: image = gr.Image() prompt = gr.Textbox(max_lines=1) prompt.submit(text_to_image, [prompt], [image]) demo.launch()
Avoiding Rate Limits
https://gradio.app/docs/python-client/using-zero-gpu-spaces
Python Client - Using Zero Gpu Spaces Docs
If you already have a recent version of `gradio`, then the `gradio_client` is included as a dependency. But note that this documentation reflects the latest version of the `gradio_client`, so upgrade if you’re not sure! The lightweight `gradio_client` package can be installed from pip (or pip3) and is tested to work with **Python versions 3.9 or higher** : $ pip install --upgrade gradio_client
Installation
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
Spaces Start by connecting instantiating a `Client` object and connecting it to a Gradio app that is running on Hugging Face Spaces. from gradio_client import Client client = Client("abidlabs/en2fr") a Space that translates from English to French You can also connect to private Spaces by passing in your HF token with the `hf_token` parameter. You can get your HF token here: <https://huggingface.co/settings/tokens> from gradio_client import Client client = Client("abidlabs/my-private-space", hf_token="...")
Connecting to a Gradio App on Hugging Face
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
use While you can use any public Space as an API, you may get rate limited by Hugging Face if you make too many requests. For unlimited usage of a Space, simply duplicate the Space to create a private Space, and then use it to make as many requests as you’d like! The `gradio_client` includes a class method: `Client.duplicate()` to make this process simple (you’ll need to pass in your [Hugging Face token](https://huggingface.co/settings/tokens) or be logged in using the Hugging Face CLI): import os from gradio_client import Client, file HF_TOKEN = os.environ.get("HF_TOKEN") client = Client.duplicate("abidlabs/whisper", hf_token=HF_TOKEN) client.predict(file("audio_sample.wav")) >> "This is a test of the whisper speech recognition model." If you have previously duplicated a Space, re-running `duplicate()` will _not_ create a new Space. Instead, the Client will attach to the previously-created Space. So it is safe to re-run the `Client.duplicate()` method multiple times. **Note:** if the original Space uses GPUs, your private Space will as well, and your Hugging Face account will get billed based on the price of the GPU. To minimize charges, your Space will automatically go to sleep after 1 hour of inactivity. You can also set the hardware using the `hardware` parameter of `duplicate()`.
Duplicating a Space for private
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
app If your app is running somewhere else, just provide the full URL instead, including the “http://” or “https://“. Here’s an example of making predictions to a Gradio app that is running on a share URL: from gradio_client import Client client = Client("https://bec81a83-5b5c-471e.gradio.live")
Connecting a general Gradio
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
Once you have connected to a Gradio app, you can view the APIs that are available to you by calling the `Client.view_api()` method. For the Whisper Space, we see the following: Client.predict() Usage Info --------------------------- Named API endpoints: 1 - predict(audio, api_name="/predict") -> output Parameters: - [Audio] audio: filepath (required) Returns: - [Textbox] output: str We see that we have 1 API endpoint in this space, and shows us how to use the API endpoint to make a prediction: we should call the `.predict()` method (which we will explore below), providing a parameter `input_audio` of type `str`, which is a `filepath or URL`. We should also provide the `api_name='/predict'` argument to the `predict()` method. Although this isn’t necessary if a Gradio app has only 1 named endpoint, it does allow us to call different endpoints in a single app if they are available.
Inspecting the API endpoints
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
As an alternative to running the `.view_api()` method, you can click on the “Use via API” link in the footer of the Gradio app, which shows us the same information, along with example usage. ![](https://huggingface.co/datasets/huggingface/documentation- images/resolve/main/gradio-guides/view-api.png) The View API page also includes an “API Recorder” that lets you interact with the Gradio UI normally and converts your interactions into the corresponding code to run with the Python Client.
The “View API” Page
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
The simplest way to make a prediction is simply to call the `.predict()` function with the appropriate arguments: from gradio_client import Client client = Client("abidlabs/en2fr", api_name='/predict') client.predict("Hello") >> Bonjour If there are multiple parameters, then you should pass them as separate arguments to `.predict()`, like this: from gradio_client import Client client = Client("gradio/calculator") client.predict(4, "add", 5) >> 9.0 It is recommended to provide key-word arguments instead of positional arguments: from gradio_client import Client client = Client("gradio/calculator") client.predict(num1=4, operation="add", num2=5) >> 9.0 This allows you to take advantage of default arguments. For example, this Space includes the default value for the Slider component so you do not need to provide it when accessing it with the client. from gradio_client import Client client = Client("abidlabs/image_generator") client.predict(text="an astronaut riding a camel") The default value is the initial value of the corresponding Gradio component. If the component does not have an initial value, but if the corresponding argument in the predict function has a default value of `None`, then that parameter is also optional in the client. Of course, if you’d like to override it, you can include it as well: from gradio_client import Client client = Client("abidlabs/image_generator") client.predict(text="an astronaut riding a camel", steps=25) For providing files or URLs as inputs, you should pass in the filepath or URL to the file enclosed within `gradio_client.file()`. This takes care of uploading the file to the Gradio server and ensures that the file is preprocessed correctly: from gradio_client import Client, file client = Client("abidlabs/whisper") client.predict(
Making a prediction
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
to the Gradio server and ensures that the file is preprocessed correctly: from gradio_client import Client, file client = Client("abidlabs/whisper") client.predict( audio=file("https://audio-samples.github.io/samples/mp3/blizzard_unconditional/sample-0.mp3") ) >> "My thought I have nobody by a beauty and will as you poured. Mr. Rochester is serve in that so don't find simpus, and devoted abode, to at might in a r—"
Making a prediction
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
Oe should note that `.predict()` is a _blocking_ operation as it waits for the operation to complete before returning the prediction. In many cases, you may be better off letting the job run in the background until you need the results of the prediction. You can do this by creating a `Job` instance using the `.submit()` method, and then later calling `.result()` on the job to get the result. For example: from gradio_client import Client client = Client(space="abidlabs/en2fr") job = client.submit("Hello", api_name="/predict") This is not blocking Do something else job.result() This is blocking >> Bonjour
Running jobs asynchronously
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
Alternatively, one can add one or more callbacks to perform actions after the job has completed running, like this: from gradio_client import Client def print_result(x): print("The translated result is: {x}") client = Client(space="abidlabs/en2fr") job = client.submit("Hello", api_name="/predict", result_callbacks=[print_result]) Do something else >> The translated result is: Bonjour
Adding callbacks
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
The `Job` object also allows you to get the status of the running job by calling the `.status()` method. This returns a `StatusUpdate` object with the following attributes: `code` (the status code, one of a set of defined strings representing the status. See the `utils.Status` class), `rank` (the current position of this job in the queue), `queue_size` (the total queue size), `eta` (estimated time this job will complete), `success` (a boolean representing whether the job completed successfully), and `time` (the time that the status was generated). from gradio_client import Client client = Client(src="gradio/calculator") job = client.submit(5, "add", 4, api_name="/predict") job.status() >> <Status.STARTING: 'STARTING'> _Note_ : The `Job` class also has a `.done()` instance method which returns a boolean indicating whether the job has completed.
Status
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
The `Job` class also has a `.cancel()` instance method that cancels jobs that have been queued but not started. For example, if you run: client = Client("abidlabs/whisper") job1 = client.submit(file("audio_sample1.wav")) job2 = client.submit(file("audio_sample2.wav")) job1.cancel() will return False, assuming the job has started job2.cancel() will return True, indicating that the job has been canceled If the first job has started processing, then it will not be canceled. If the second job has not yet started, it will be successfully canceled and removed from the queue.
Cancelling Jobs
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
Some Gradio API endpoints do not return a single value, rather they return a series of values. You can get the series of values that have been returned at any time from such a generator endpoint by running `job.outputs()`: from gradio_client import Client client = Client(src="gradio/count_generator") job = client.submit(3, api_name="/count") while not job.done(): time.sleep(0.1) job.outputs() >> ['0', '1', '2'] Note that running `job.result()` on a generator endpoint only gives you the _first_ value returned by the endpoint. The `Job` object is also iterable, which means you can use it to display the results of a generator function as they are returned from the endpoint. Here’s the equivalent example using the `Job` as a generator: from gradio_client import Client client = Client(src="gradio/count_generator") job = client.submit(3, api_name="/count") for o in job: print(o) >> 0 >> 1 >> 2 You can also cancel jobs that that have iterative outputs, in which case the job will finish as soon as the current iteration finishes running. from gradio_client import Client import time client = Client("abidlabs/test-yield") job = client.submit("abcdef") time.sleep(3) job.cancel() job cancels after 2 iterations
Generator Endpoints
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
Gradio demos can include [session state](https://www.gradio.app/guides/state- in-blocks), which provides a way for demos to persist information from user interactions within a page session. For example, consider the following demo, which maintains a list of words that a user has submitted in a `gr.State` component. When a user submits a new word, it is added to the state, and the number of previous occurrences of that word is displayed: import gradio as gr def count(word, list_of_words): return list_of_words.count(word), list_of_words + [word] with gr.Blocks() as demo: words = gr.State([]) textbox = gr.Textbox() number = gr.Number() textbox.submit(count, inputs=[textbox, words], outputs=[number, words]) demo.launch() If you were to connect this this Gradio app using the Python Client, you would notice that the API information only shows a single input and output: Client.predict() Usage Info --------------------------- Named API endpoints: 1 - predict(word, api_name="/count") -> value_31 Parameters: - [Textbox] word: str (required) Returns: - [Number] value_31: float That is because the Python client handles state automatically for you — as you make a series of requests, the returned state from one request is stored internally and automatically supplied for the subsequent request. If you’d like to reset the state, you can do that by calling `Client.reset_session()`.
Demos with Session State
https://gradio.app/docs/python-client/introduction
Python Client - Introduction Docs
A Job is a wrapper over the Future class that represents a prediction call that has been submitted by the Gradio client. This class is not meant to be instantiated directly, but rather is created by the Client.submit() method. A Job object includes methods to get the status of the prediction call, as well to get the outputs of the prediction call. Job objects are also iterable, and can be used in a loop to get the outputs of prediction calls as they become available for generator endpoints.
Description
https://gradio.app/docs/python-client/job
Python Client - Job Docs
Parameters ▼ future: Future The future object that represents the prediction call, created by the Client.submit() method communicator: Communicator | None default `= None` The communicator object that is used to communicate between the client and the background thread running the job verbose: bool default `= True` Whether to print any status-related messages to the console space_id: str | None default `= None` The space ID corresponding to the Client object that created this Job object
Initialization
https://gradio.app/docs/python-client/job
Python Client - Job Docs
Description Event listeners allow you to respond to user interactions with the UI components you've defined in a Gradio Blocks app. When a user interacts with an element, such as changing a slider value or uploading an image, a function is called. Supported Event Listeners The Job component supports the following event listeners. Each event listener takes the same parameters, which are listed in the Event Parameters table below. Listener | Description ---|--- `Job.result(fn, ···)` | Return the result of the call that the future represents. Raises CancelledError: If the future was cancelled, TimeoutError: If the future didn't finish executing before the given timeout, and Exception: If the call raised then that exception will be raised. <br> `Job.outputs(fn, ···)` | Returns a list containing the latest outputs from the Job. <br> If the endpoint has multiple output components, the list will contain a tuple of results. Otherwise, it will contain the results without storing them in tuples. <br> For endpoints that are queued, this list will contain the final job output even if that endpoint does not use a generator function. <br> `Job.status(fn, ···)` | Returns the latest status update from the Job in the form of a StatusUpdate object, which contains the following fields: code, rank, queue_size, success, time, eta, and progress_data. <br> progress_data is a list of updates emitted by the gr.Progress() tracker of the event handler. Each element of the list has the following fields: index, length, unit, progress, desc. If the event handler does not have a gr.Progress() tracker, the progress_data field will be None. <br> Event Parameters Parameters ▼ timeout: float | None default `= None` The number of seconds to wait for the result if the future isn't done. If None, then there is no limit on the wait time.
Event Listeners
https://gradio.app/docs/python-client/job
Python Client - Job Docs
A TabbedInterface is created by providing a list of Interfaces or Blocks, each of which gets rendered in a separate tab. Only the components from the Interface/Blocks will be rendered in the tab. Certain high-level attributes of the Blocks (e.g. custom `css`, `js`, and `head` attributes) will not be loaded.
Description
https://gradio.app/docs/gradio/tabbedinterface
Gradio - Tabbedinterface Docs
Parameters ▼ interface_list: list[Blocks] A list of Interfaces (or Blocks) to be rendered in the tabs. tab_names: list[str] | None default `= None` A list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc. title: str | None default `= None` The tab title to display when this demo is opened in a browser window. theme: Theme | str | None default `= None` A Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme. analytics_enabled: bool | None default `= None` Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True. css: str | None default `= None` Custom css as a string or path to a css file. This css will be included in the demo webpage. js: str | Literal[True] | None default `= None` Custom js as a string or path to a js file. The custom js should in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags. head: str | None default `= None` Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page.
Initialization
https://gradio.app/docs/gradio/tabbedinterface
Gradio - Tabbedinterface Docs
tabbed_interface_lite Open in 🎢 ↗ import gradio as gr hello_world = gr.Interface(lambda name: "Hello " + name, "text", "text") bye_world = gr.Interface(lambda name: "Bye " + name, "text", "text") chat = gr.ChatInterface(lambda *args: "Hello " + args[0]) demo = gr.TabbedInterface([hello_world, bye_world, chat], ["Hello World", "Bye World", "Chat"]) if __name__ == "__main__": demo.launch() import gradio as gr hello_world = gr.Interface(lambda name: "Hello " + name, "text", "text") bye_world = gr.Interface(lambda name: "Bye " + name, "text", "text") chat = gr.ChatInterface(lambda *args: "Hello " + args[0]) demo = gr.TabbedInterface([hello_world, bye_world, chat], ["Hello World", "Bye World", "Chat"]) if __name__ == "__main__": demo.launch()
Demos
https://gradio.app/docs/gradio/tabbedinterface
Gradio - Tabbedinterface Docs
A Gradio request object that can be used to access the request headers, cookies, query parameters and other information about the request from within the prediction function. The class is a thin wrapper around the fastapi.Request class. Attributes of this class include: `headers`, `client`, `query_params`, `session_hash`, and `path_params`. If auth is enabled, the `username` attribute can be used to get the logged in user. In some environments, the dict-like attributes (e.g. `requests.headers`, `requests.query_params`) of this class are automatically converted to dictionaries, so we recommend converting them to dictionaries before accessing attributes for consistent behavior in different environments.
Description
https://gradio.app/docs/gradio/request
Gradio - Request Docs
import gradio as gr def echo(text, request: gr.Request): if request: print("Request headers dictionary:", request.headers) print("IP address:", request.client.host) print("Query parameters:", dict(request.query_params)) print("Session hash:", request.session_hash) return text io = gr.Interface(echo, "textbox", "textbox").launch()
Example Usage
https://gradio.app/docs/gradio/request
Gradio - Request Docs
Parameters ▼ request: fastapi.Request | None default `= None` A fastapi.Request username: str | None default `= None` The username of the logged in user (if auth is enabled) session_hash: str | None default `= None` The session hash of the current session. It is unique for each page load.
Initialization
https://gradio.app/docs/gradio/request
Gradio - Request Docs
request_ip_headers Open in 🎢 ↗ import gradio as gr def predict(text, request: gr.Request): headers = request.headers host = request.client.host user_agent = request.headers["user-agent"] return { "ip": host, "user_agent": user_agent, "headers": headers, } gr.Interface(predict, "text", "json").launch() import gradio as gr def predict(text, request: gr.Request): headers = request.headers host = request.client.host user_agent = request.headers["user-agent"] return { "ip": host, "user_agent": user_agent, "headers": headers, } gr.Interface(predict, "text", "json").launch()
Demos
https://gradio.app/docs/gradio/request
Gradio - Request Docs
Creates a file explorer component that allows users to browse files on the machine hosting the Gradio app. As an input component, it also allows users to select files to be used as input to a function, while as an output component, it displays selected files.
Description
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
**As input component** : Passes the selected file or directory as a `str` path (relative to `root`) or `list[str}` depending on `file_count` Your function should accept one of these types: def predict( value: list[str] | str | None ) ... **As output component** : Expects function to return a `str` path to a file, or `list[str]` consisting of paths to files. Your function should return one of these types: def predict(···) -> str | list[str] | None ... return value
Behavior
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
Parameters ▼ glob: str default `= "**/*"` The glob-style pattern used to select which files to display, e.g. "*" to match all files, "*.png" to match all .png files, "**/*.txt" to match any .txt file in any subdirectory, etc. The default value matches all files and folders recursively. See the Python glob documentation at https://docs.python.org/3/library/glob.html for more information. value: str | list[str] | Callable | None default `= None` The file (or list of files, depending on the `file_count` parameter) to show as "selected" when the component is first loaded. If a callable is provided, it will be called when the app loads to set the initial value of the component. If not provided, no files are shown as selected. file_count: Literal['single', 'multiple'] default `= "multiple"` Whether to allow single or multiple files to be selected. If "single", the component will return a single absolute file path as a string. If "multiple", the component will return a list of absolute file paths as a list of strings. root_dir: str | Path default `= "."` Path to root directory to select files from. If not provided, defaults to current working directory. ignore_glob: str | None default `= None` The glob-style, case-sensitive pattern that will be used to exclude files from the list. For example, "*.py" will exclude all .py files from the list. See the Python glob documentation at https://docs.python.org/3/library/glob.html for more information. label: str | I18nData | None default `= None` the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to. every: Timer | float | None default `= None` Continously calls `value` to recalculate it if `value` is a function
Initialization
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
bel will be the name of the parameter this component is assigned to. every: Timer | float | None default `= None` Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer. inputs: Component | list[Component] | set[Component] | None default `= None` Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change. show_label: bool | None default `= None` if True, will display label. container: bool default `= True` If True, will place the component in a container - providing some extra padding around the border. scale: int | None default `= None` relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True. min_width: int default `= 160` minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. height: int | str | None default `= None` The maximum height of the file component, specified in pixels if a number is passed, or in CSS units if a string is passed. If more files are uploaded than can fit in the height, a scrollbar will appear. max_height: int | str | None default `= 500` min_height: int | str | None default `= None` interactive: bool | None default `= None` if True, will allow users to select file(s); if False, will only display files. If not provided, this is inferred based on wheth
Initialization
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
lt `= None` interactive: bool | None default `= None` if True, will allow users to select file(s); if False, will only display files. If not provided, this is inferred based on whether the component is used as an input or output. visible: bool default `= True` If False, component will be hidden. elem_id: str | None default `= None` An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. elem_classes: list[str] | str | None default `= None` An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. render: bool default `= True` If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. key: int | str | tuple[int | str, ...] | None default `= None` in a gr.render, Components with the same key across re-renders are treated as the same component, not a new component. Properties set in 'preserved_by_key' are not reset across a re-render. preserved_by_key: list[str] | str | None default `= "value"` A list of parameters from this component's constructor. Inside a gr.render() function, if a component is re-rendered with the same key, these (and only these) parameters will be preserved in the UI (if they have been changed by the user or an event listener) instead of re-rendered based on the values provided during constructor.
Initialization
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
Class | Interface String Shortcut | Initialization ---|---|--- `gradio.FileExplorer` | "fileexplorer" | Uses default values
Shortcuts
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
Description Event listeners allow you to respond to user interactions with the UI components you've defined in a Gradio Blocks app. When a user interacts with an element, such as changing a slider value or uploading an image, a function is called. Supported Event Listeners The FileExplorer component supports the following event listeners. Each event listener takes the same parameters, which are listed in the Event Parameters table below. Listener | Description ---|--- `FileExplorer.change(fn, ···)` | Event Parameters Parameters ▼ fn: Callable | None | Literal['decorator'] default `= "decorator"` the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. inputs: Component | BlockContext | list[Component | BlockContext] | Set[Component | BlockContext] | None default `= None` List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. outputs: Component | BlockContext | list[Component | BlockContext] | Set[Component | BlockContext] | None default `= None` List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. api_name: str | None | Literal[False] default `= None` defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that `gr.load` this app) will not be able to use this event. api_description: str | None | Literal[False] d
Event Listeners
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
nt will not be exposed in the API docs and downstream apps (including those that `gr.load` this app) will not be able to use this event. api_description: str | None | Literal[False] default `= None` Description of the API endpoint. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given description. If None, the function's docstring will be used as the API endpoint description. If False, then no description will be displayed in the API docs. scroll_to_output: bool default `= False` If True, will scroll to output component on completion show_progress: Literal['full', 'minimal', 'hidden'] default `= "full"` how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all show_progress_on: Component | list[Component] | None default `= None` Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components. queue: bool default `= True` If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. batch: bool default `= False` If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component. max_batch_size: int default `= 4` Maximum number of inputs to batch togeth
Event Listeners
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
en if there is only 1 output component), with each list in the tuple corresponding to one output component. max_batch_size: int default `= 4` Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) preprocess: bool default `= True` If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component). postprocess: bool default `= True` If False, will not run postprocessing of component data before returning 'fn' output to the browser. cancels: dict[str, Any] | list[dict[str, Any]] | None default `= None` A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. trigger_mode: Literal['once', 'multiple', 'always_last'] | None default `= None` If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete. js: str | Literal[True] | None default `= None` Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. concurrency_limit: int | None | Literal['default'] default `= "default"` If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of th
Event Listeners
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
None | Literal['default'] default `= "default"` If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default). concurrency_id: str | None default `= None` If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit. show_api: bool default `= True` whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False. time_limit: int | None default `= None` stream_every: float default `= 0.5` like_user_message: bool default `= False` key: int | str | tuple[int | str, ...] | None default `= None` A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
Event Listeners
https://gradio.app/docs/gradio/fileexplorer
Gradio - Fileexplorer Docs
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = `` for k, v in iterable: d[k] = v dict(__kwargs) - > new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)
Description
https://gradio.app/docs/gradio/dependency
Gradio - Dependency Docs
Blocks is Gradio's low-level API that allows you to create more custom web applications and demos than Interfaces (yet still entirely in Python). Compared to the Interface class, Blocks offers more flexibility and control over: (1) the layout of components (2) the events that trigger the execution of functions (3) data flows (e.g. inputs can trigger outputs, which can trigger the next level of outputs). Blocks also offers ways to group together related demos such as with tabs. The basic usage of Blocks is as follows: create a Blocks object, then use it as a context (with the "with" statement), and then define layouts, components, or events within the Blocks context. Finally, call the launch() method to launch the demo.
Description
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
import gradio as gr def update(name): return f"Welcome to Gradio, {name}!" with gr.Blocks() as demo: gr.Markdown("Start typing below and then click **Run** to see the output.") with gr.Row(): inp = gr.Textbox(placeholder="What is your name?") out = gr.Textbox() btn = gr.Button("Run") btn.click(fn=update, inputs=inp, outputs=out) demo.launch()
Example Usage
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
Parameters ▼ theme: Theme | str | None default `= None` A Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme. analytics_enabled: bool | None default `= None` Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True. mode: str default `= "blocks"` A human-friendly name for the kind of Blocks or Interface being created. Used internally for analytics. title: str | I18nData default `= "Gradio"` The tab title to display when this is opened in a browser window. css: str | None default `= None` Custom css as a code string. This css will be included in the demo webpage. css_paths: str | Path | list[str | Path] | None default `= None` Custom css as a pathlib.Path to a css file or a list of such paths. This css files will be read, concatenated, and included in the demo webpage. If the `css` parameter is also set, the css from `css` will be included first. js: str | Literal[True] | None default `= None` Custom js as a code string. The custom js should be in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags. head: str | None default `= None` Custom html code to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page. head_paths: str | Path | list[str | Path] | None default `= None` Custom html code as a pathlib.Path to a html file or a list of such paths. This html files will be read, concatenated, and included in the head of the demo webpage. If the `head`
Initialization
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
e default `= None` Custom html code as a pathlib.Path to a html file or a list of such paths. This html files will be read, concatenated, and included in the head of the demo webpage. If the `head` parameter is also set, the html from `head` will be included first. fill_height: bool default `= False` Whether to vertically expand top-level child components to the height of the window. If True, expansion occurs when the scale value of the child components >= 1. fill_width: bool default `= False` Whether to horizontally expand to fill container fully. If False, centers and constrains app to a maximum width. Only applies if this is the outermost `Blocks` in your Gradio app. delete_cache: tuple[int, int] | None default `= None` A tuple corresponding [frequency, age] both expressed in number of seconds. Every `frequency` seconds, the temporary files created by this Blocks instance will be deleted if more than `age` seconds have passed since the file was created. For example, setting this to (86400, 86400) will delete temporary files every day. The cache will be deleted entirely when the server restarts. If None, no cache deletion will occur.
Initialization
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
blocks_helloblocks_flipperblocks_kinematics Open in 🎢 ↗ import gradio as gr def welcome(name): return f"Welcome to Gradio, {name}!" with gr.Blocks() as demo: gr.Markdown( """ Hello World! Start typing below to see the output. """) inp = gr.Textbox(placeholder="What is your name?") out = gr.Textbox() inp.change(welcome, inp, out) if __name__ == "__main__": demo.launch() import gradio as gr def welcome(name): return f"Welcome to Gradio, {name}!" with gr.Blocks() as demo: gr.Markdown( """ Hello World! Start typing below to see the output. """) inp = gr.Textbox(placeholder="What is your name?") out = gr.Textbox() inp.change(welcome, inp, out) if __name__ == "__main__": demo.launch() Open in 🎢 ↗ import numpy as np import gradio as gr def flip_text(x): return x[::-1] def flip_image(x): return np.fliplr(x) with gr.Blocks() as demo: gr.Markdown("Flip text or image files using this demo.") with gr.Tab("Flip Text"): text_input = gr.Textbox() text_output = gr.Textbox() text_button = gr.Button("Flip") with gr.Tab("Flip Image"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") with gr.Accordion("Open for More!", open=False): gr.Markdown("Look at me...") temp_slider = gr.Slider( 0, 1, value=0.1, step=0.1, interactive=True, label="Slide me", ) text_button.click(flip_text, inputs=text_input, outputs=text_output) image_button.click(flip_image, inputs=image_input, outputs=image_output) if __name__ == "__main__": demo.launch() import numpy as np import gradio as gr def flip_text(x): return x[::-1] def flip_image(x): return np.fliplr(x) with gr.Blocks() as demo: gr.Markdown("Flip text or image files using this demo.") with gr.Tab("Flip Text"): text_input = gr.Textbox() text_output = gr.Textbox()
Demos
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
gr.Blocks() as demo: gr.Markdown("Flip text or image files using this demo.") with gr.Tab("Flip Text"): text_input = gr.Textbox() text_output = gr.Textbox() text_button = gr.Button("Flip") with gr.Tab("Flip Image"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") with gr.Accordion("Open for More!", open=False): gr.Markdown("Look at me...") temp_slider = gr.Slider( 0, 1, value=0.1, step=0.1, interactive=True, label="Slide me", ) text_button.click(flip_text, inputs=text_input, outputs=text_output) image_button.click(flip_image, inputs=image_input, outputs=image_output) if __name__ == "__main__": demo.launch() Open in 🎢 ↗ import pandas as pd import numpy as np import gradio as gr def plot(v, a): g = 9.81 theta = a / 180 * 3.14 tmax = ((2 * v) * np.sin(theta)) / g timemat = tmax * np.linspace(0, 1, 40) x = (v * timemat) * np.cos(theta) y = ((v * timemat) * np.sin(theta)) - ((0.5 * g) * (timemat**2)) df = pd.DataFrame({"x": x, "y": y}) return df demo = gr.Blocks() with demo: gr.Markdown( r"Let's do some kinematics! Choose the speed and angle to see the trajectory. Remember that the range $R = v_0^2 \cdot \frac{\sin(2\theta)}{g}$" ) with gr.Row(): speed = gr.Slider(1, 30, 25, label="Speed") angle = gr.Slider(0, 90, 45, label="Angle") output = gr.LinePlot( x="x", y="y", overlay_point=True, tooltip=["x", "y"], x_lim=[0, 100], y_lim=[0, 60], width=350, height=300, ) btn = gr.Button(value="Run") btn.click(plot, [speed, angle], output) if __name__ == "__main__": demo.launch() import pandas as pd import numpy as np import gradio as gr def plot(v, a): g = 9.81 theta = a / 180 * 3.14
Demos
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
_name__ == "__main__": demo.launch() import pandas as pd import numpy as np import gradio as gr def plot(v, a): g = 9.81 theta = a / 180 * 3.14 tmax = ((2 * v) * np.sin(theta)) / g timemat = tmax * np.linspace(0, 1, 40) x = (v * timemat) * np.cos(theta) y = ((v * timemat) * np.sin(theta)) - ((0.5 * g) * (timemat**2)) df = pd.DataFrame({"x": x, "y": y}) return df demo = gr.Blocks() with demo: gr.Markdown( r"Let's do some kinematics! Choose the speed and angle to see the trajectory. Remember that the range $R = v_0^2 \cdot \frac{\sin(2\theta)}{g}$" ) with gr.Row(): speed = gr.Slider(1, 30, 25, label="Speed") angle = gr.Slider(0, 90, 45, label="Angle") output = gr.LinePlot( x="x", y="y", overlay_point=True, tooltip=["x", "y"], x_lim=[0, 100], y_lim=[0, 60], width=350, height=300, ) btn = gr.Button(value="Run") btn.click(plot, [speed, angle], output) if __name__ == "__main__": demo.launch()
Demos
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
Methods
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) gradio.Blocks.launch(···) Description ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
-!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) Launches a simple web server that serves the demo. Can also be used to create a public link used by anyone to access the demo from their browser by setting share=True. Example Usage ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) import gradio as gr def reverse(text): return text[::-1] with gr.Blocks() as demo: button = gr.Button(value="Reverse") button.click(reverse, gr.Textbox(), gr.Textbox()) demo.launch(share=True, auth=("username", "password")) Parameters ▼ inline: bool | None default `= None` whether to display in the gradio app inline in an iframe. Defaults to True in python notebooks; False otherwise. inbrowser: bool default
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
inline: bool | None default `= None` whether to display in the gradio app inline in an iframe. Defaults to True in python notebooks; False otherwise. inbrowser: bool default `= False` whether to automatically launch the gradio app in a new tab on the default browser. share: bool | None default `= None` whether to create a publicly shareable link for the gradio app. Creates an SSH tunnel to make your UI accessible from anywhere. If not provided, it is set to False by default every time, except when running in Google Colab. When localhost is not accessible (e.g. Google Colab), setting share=False is not supported. Can be set by environment variable GRADIO_SHARE=True. debug: bool default `= False` if True, blocks the main thread from running. If running in Google Colab, this is needed to print the errors in the cell output. max_threads: int default `= 40` the maximum number of total threads that the Gradio app can generate in parallel. The default is inherited from the starlette library (currently 40). auth: Callable[[str, str], bool] | tuple[str, str] | list[tuple[str, str]] | None default `= None` If provided, username and password (or list of username-password tuples) required to access app. Can also provide function that takes username and password and returns True if valid login. auth_message: str | None default `= None` If provided, HTML message provided on login page. prevent_thread_lock: bool default `= False` By default, the gradio app blocks the main thread while the server is running. If set to True, the gradio app will not block and the gradio server will terminate as soon as the script finishes. show_error: bool default `= False` If True, any errors in the gradio app will be displayed in an alert modal and printed in the browser console log. They will also be displayed in the alert modal of downstream apps
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
default `= False` If True, any errors in the gradio app will be displayed in an alert modal and printed in the browser console log. They will also be displayed in the alert modal of downstream apps that gr.load() this app. server_name: str | None default `= None` to make app accessible on local network, set this to "0.0.0.0". Can be set by environment variable GRADIO_SERVER_NAME. If None, will use "127.0.0.1". server_port: int | None default `= None` will start gradio app on this port (if available). Can be set by environment variable GRADIO_SERVER_PORT. If None, will search for an available port starting at 7860. height: int default `= 500` The height in pixels of the iframe element containing the gradio app (used if inline=True) width: int | str default `= "100%"` The width in pixels of the iframe element containing the gradio app (used if inline=True) favicon_path: str | Path | None default `= None` If a path to a file (.png, .gif, or .ico) is provided, it will be used as the favicon for the web page. ssl_keyfile: str | None default `= None` If a path to a file is provided, will use this as the private key file to create a local server running on https. ssl_certfile: str | None default `= None` If a path to a file is provided, will use this as the signed certificate for https. Needs to be provided if ssl_keyfile is provided. ssl_keyfile_password: str | None default `= None` If a password is provided, will use this with the ssl certificate for https. ssl_verify: bool default `= True` If False, skips certificate validation which allows self-signed certificates to be used. quiet: bool default `= False` If True, suppresses most print statements. show_api: bool default `= True` If True, shows the api docs in the footer of the app. Default True. allowed_pa
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
t `= False` If True, suppresses most print statements. show_api: bool default `= True` If True, shows the api docs in the footer of the app. Default True. allowed_paths: list[str] | None default `= None` List of complete filepaths or parent directories that gradio is allowed to serve. Must be absolute paths. Warning: if you provide directories, any files in these directories or their subdirectories are accessible to all users of your app. Can be set by comma separated environment variable GRADIO_ALLOWED_PATHS. These files are generally assumed to be secure and will be displayed in the browser when possible. blocked_paths: list[str] | None default `= None` List of complete filepaths or parent directories that gradio is not allowed to serve (i.e. users of your app are not allowed to access). Must be absolute paths. Warning: takes precedence over `allowed_paths` and all other directories exposed by Gradio by default. Can be set by comma separated environment variable GRADIO_BLOCKED_PATHS. root_path: str | None default `= None` The root path (or "mount point") of the application, if it's not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application. For example, if the application is served at "https://example.com/myapp", the `root_path` should be set to "/myapp". A full URL beginning with http:// or https:// can be provided, which will be used as the root path in its entirety. Can be set by environment variable GRADIO_ROOT_PATH. Defaults to "". app_kwargs: dict[str, Any] | None default `= None` Additional keyword arguments to pass to the underlying FastAPI app as a dictionary of parameter keys and argument values. For example, `{"docs_url": "/docs"}` state_session_capacity: int default `= 10000` The maximum number of sessions whose information to store in memory. If the number of
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
ument values. For example, `{"docs_url": "/docs"}` state_session_capacity: int default `= 10000` The maximum number of sessions whose information to store in memory. If the number of sessions exceeds this number, the oldest sessions will be removed. Reduce capacity to reduce memory usage when using gradio.State or returning updated components from functions. Defaults to 10000. share_server_address: str | None default `= None` Use this to specify a custom FRP server and port for sharing Gradio apps (only applies if share=True). If not provided, will use the default FRP server at https://gradio.live. See https://github.com/huggingface/frp for more information. share_server_protocol: Literal['http', 'https'] | None default `= None` Use this to specify the protocol to use for the share links. Defaults to "https", unless a custom share_server_address is provided, in which case it defaults to "http". If you are using a custom share_server_address and want to use https, you must set this to "https". share_server_tls_certificate: str | None default `= None` The path to a TLS certificate file to use when connecting to a custom share server. This parameter is not used with the default FRP server at https://gradio.live. Otherwise, you must provide a valid TLS certificate file (e.g. a "cert.pem") relative to the current working directory, or the connection will not use TLS encryption, which is insecure. auth_dependency: Callable[[fastapi.Request], str | None] | None default `= None` A function that takes a FastAPI request and returns a string user ID or None. If the function returns None for a specific request, that user is not authorized to access the app (they will see a 401 Unauthorized response). To be used with external authentication systems like OAuth. Cannot be used with `auth`. max_file_size: str | int | None default `= None` The maximum file size in bytes that c
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
ponse). To be used with external authentication systems like OAuth. Cannot be used with `auth`. max_file_size: str | int | None default `= None` The maximum file size in bytes that can be uploaded. Can be a string of the form "<value><unit>", where value is any positive integer and unit is one of "b", "kb", "mb", "gb", "tb". If None, no limit is set. enable_monitoring: bool | None default `= None` Enables traffic monitoring of the app through the /monitoring endpoint. By default is None, which enables this endpoint. If explicitly True, will also print the monitoring URL to the console. If False, will disable monitoring altogether. strict_cors: bool default `= True` If True, prevents external domains from making requests to a Gradio server running on localhost. If False, allows requests to localhost that originate from localhost but also, crucially, from "null". This parameter should normally be True to prevent CSRF attacks but may need to be False when embedding a *locally-running Gradio app* using web components. node_server_name: str | None default `= None` node_port: int | None default `= None` ssr_mode: bool | None default `= None` If True, the Gradio app will be rendered using server-side rendering mode, which is typically more performant and provides better SEO, but this requires Node 20+ to be installed on the system. If False, the app will be rendered using client-side rendering mode. If None, will use GRADIO_SSR_MODE environment variable or default to False. pwa: bool | None default `= None` If True, the Gradio app will be set up as an installable PWA (Progressive Web App). If set to None (default behavior), then the PWA feature will be enabled if this Gradio app is launched on Spaces, but not otherwise. mcp_server: bool | None default `= None` If True, the Gradio app will be set up as an MCP server and documented fun
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
abled if this Gradio app is launched on Spaces, but not otherwise. mcp_server: bool | None default `= None` If True, the Gradio app will be set up as an MCP server and documented functions will be added as MCP tools. If None (default behavior), then the GRADIO_MCP_SERVER environment variable will be used to determine if the MCP server should be enabled (which is "True" on Hugging Face Spaces). i18n: I18n | None default `= None` An I18n instance containing custom translations, which are used to translate strings in our components (e.g. the labels of components or Markdown strings). This feature can only be used to translate static text in the frontend, not values in the backend.
launch
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) gradio.Blocks.queue(···) Description ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20-
queue
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) By enabling the queue you can control when users know their position in the queue, and set a limit on maximum number of events allowed. Example Usage ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%2
queue
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) with gr.Blocks() as demo: button = gr.Button(label="Generate Image") button.click(fn=image_generator, inputs=gr.Textbox(), outputs=gr.Image()) demo.queue(max_size=10) demo.launch() Parameters ▼ status_update_rate: float | Literal['auto'] default `= "auto"` If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds. api_open:
queue
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds. api_open: bool | None default `= None` If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue. max_size: int | None default `= None` The maximum number of events the queue will store at any given moment. If the queue is full, new events will not be added and a user will receive a message saying that the queue is full. If None, the queue size will be unlimited. default_concurrency_limit: int | None | Literal['not_set'] default `= "not_set"` The default value of `concurrency_limit` to use for event listeners that don't specify a value. Can be set by environment variable GRADIO_DEFAULT_CONCURRENCY_LIMIT. Defaults to 1 if not set otherwise.
queue
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) gradio.Blocks.integrate(···) Description ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.
integrate
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) A catch-all method for integrating with other libraries. This method should be run after launch() Parameters ▼ comet_ml: <class 'inspect._empty'> default `= None` If a comet_ml Experiment object is provided, will integrate with the experiment and appear on Comet dashboard wandb: ModuleType | None default `= None` If the wandb module is provided, will integrate with it and appear on WandB dashboard mlflow: ModuleType | None default `= None` If
integrate
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
wandb: ModuleType | None default `= None` If the wandb module is provided, will integrate with it and appear on WandB dashboard mlflow: ModuleType | None default `= None` If the mlflow module is provided, will integrate with the experiment and appear on ML Flow dashboard
integrate
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) gradio.Blocks.load(block, ···) Description ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20In
load
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) This listener is triggered when the Blocks initially loads in the browser. Parameters ▼ block: Block | None fn: Callable | None | Literal['decorator'] default `= "decorator"` the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to o
load
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
ction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. inputs: Component | BlockContext | list[Component | BlockContext] | Set[Component | BlockContext] | None default `= None` List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. outputs: Component | BlockContext | list[Component | BlockContext] | Set[Component | BlockContext] | None default `= None` List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. api_name: str | None | Literal[False] default `= None` defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that `gr.load` this app) will not be able to use this event. api_description: str | None | Literal[False] default `= None` Description of the API endpoint. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given description. If None, the function's docstring will be used as the API endpoint description. If False, then no description will be displayed in the API docs. scroll_to_output: bool default `= False` If True, will scroll to output component on completion show_progress: Literal['full', 'minimal', 'hidden'] default `= "full"` how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime displa
load
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all show_progress_on: Component | list[Component] | None default `= None` Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components. queue: bool default `= True` If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. batch: bool default `= False` If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component. max_batch_size: int default `= 4` Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) preprocess: bool default `= True` If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component). postprocess: bool default `= True` If False, will not run postprocessing of component data before returning 'fn' output to the browser. cancels: dict[str, Any] | list[dict[str, Any]] | None default `= None` A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. F
load
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
r events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. trigger_mode: Literal['once', 'multiple', 'always_last'] | None default `= None` If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete. js: str | Literal[True] | None default `= None` Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. concurrency_limit: int | None | Literal['default'] default `= "default"` If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default). concurrency_id: str | None default `= None` If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit. show_api: bool default `= True` whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will au
load
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False. time_limit: int | None default `= None` stream_every: float default `= 0.5` like_user_message: bool default `= False` key: int | str | tuple[int | str, ...] | None default `= None` A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
load
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) gradio.Blocks.unload(fn, ···) Description ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc
unload
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) This listener is triggered when the user closes or refreshes the tab, ending the user session. It is useful for cleaning up resources when the app is closed. Example Usage ![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%2
unload
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20\(Commercial%20License\)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e) import gradio as gr with gr.Blocks() as demo: gr.Markdown("When you close the tab, hello will be printed to the console") demo.unload(lambda: print("hello")) demo.launch() Parameters ▼ fn: Callable[..., Any] Callable function to run to clear resources. The function should not take any arguments and the output is not used.
unload
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
ources. The function should not take any arguments and the output is not used.
unload
https://gradio.app/docs/gradio/blocks
Gradio - Blocks Docs
The gr.DeletedFileData class is a subclass of gr.EventData that specifically carries information about the `.delete()` event. When gr.DeletedFileData is added as a type hint to an argument of an event listener method, a gr.DeletedFileData object will automatically be passed as the value of that argument. The attributes of this object contains information about the event that triggered the listener.
Description
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
import gradio as gr def test(delete_data: gr.DeletedFileData): return delete_data.file.path with gr.Blocks() as demo: files = gr.File(file_count="multiple") deleted_file = gr.File() files.delete(test, None, deleted_file) demo.launch()
Example Usage
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
Parameters ▼ file: FileData The file that was deleted, as a FileData object. The str path to the file can be retrieved with the .path attribute.
Attributes
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
file_component_events Open in 🎢 ↗ import gradio as gr def delete_file(n: int, file: gr.DeletedFileData): return [file.file.path, n + 1] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): file_component = gr.File(label="Upload Single File", file_count="single") with gr.Column(): output_file_1 = gr.File( label="Upload Single File Output", file_count="single" ) num_load_btn_1 = gr.Number(label="Load Upload Single File", value=0) file_component.upload( lambda s, n: (s, n + 1), [file_component, num_load_btn_1], [output_file_1, num_load_btn_1], ) with gr.Row(): with gr.Column(): file_component_multiple = gr.File( label="Upload Multiple Files", file_count="multiple" ) with gr.Column(): output_file_2 = gr.File( label="Upload Multiple Files Output", file_count="multiple" ) num_load_btn_2 = gr.Number(label="Load Upload Multiple Files", value=0) file_component_multiple.upload( lambda s, n: (s, n + 1), [file_component_multiple, num_load_btn_2], [output_file_2, num_load_btn_2], ) with gr.Row(): with gr.Column(): file_component_specific = gr.File( label="Upload Multiple Files Image/Video", file_count="multiple", file_types=["image", "video"], ) with gr.Column(): output_file_3 = gr.File( label="Upload Multiple Files Output Image/Video", file_count="multiple" ) num_load_btn_3 = gr.Number( label="Load Upload Multiple Files Image/Video", value=0 ) file_component_specific.upload( lambda s, n: (s, n + 1), [file_component_specific, num_load_btn_3], [output_file_3, num_load_btn_3], ) with gr.Row(): with gr.Column(): file_component_pdf = gr.File(label="Upload PDF File", file_types=[".pdf"]) with gr.Column(): output_file_4 = gr.File(label="Upload PDF File Output") num_load_btn_4 = gr.Number(label=" Load Upload PDF File", value=0) file_component_pdf.upload( lambda s, n: (s, n + 1), [file_component_pdf, num_load_btn_4], [output_file_4, num_load_btn_4], ) with gr.Row(): with gr.Column(): file_component_invalid = gr.File( label="Upload File with Invalid file_types", file_types=
Demos
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
1), [file_component_pdf, num_load_btn_4], [output_file_4, num_load_btn_4], ) with gr.Row(): with gr.Column(): file_component_invalid = gr.File( label="Upload File with Invalid file_types", file_types=["invalid file_type"], ) with gr.Column(): output_file_5 = gr.File(label="Upload File with Invalid file_types Output") num_load_btn_5 = gr.Number( label="Load Upload File with Invalid file_types", value=0 ) file_component_invalid.upload( lambda s, n: (s, n + 1), [file_component_invalid, num_load_btn_5], [output_file_5, num_load_btn_5], ) with gr.Row(): with gr.Column(): del_file_input = gr.File(label="Delete File", file_count="multiple") with gr.Column(): del_file_data = gr.Textbox(label="Delete file data") num_load_btn_6 = gr.Number(label="Deleted File", value=0) del_file_input.delete( delete_file, [num_load_btn_6], [del_file_data, num_load_btn_6], ) f = gr.File(label="Upload many File", file_count="multiple") f.delete(delete_file) f.delete(delete_file, inputs=None, outputs=None) if __name__ == "__main__": demo.launch() import gradio as gr def delete_file(n: int, file: gr.DeletedFileData): return [file.file.path, n + 1] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): file_component = gr.File(label="Upload Single File", file_count="single") with gr.Column(): output_file_1 = gr.File( label="Upload Single File Output", file_count="single" ) num_load_btn_1 = gr.Number(label="Load Upload Single File", value=0) file_component.upload( lambda s, n: (s, n + 1), [file_component, num_load_btn_1], [output_file_1, num_load_btn_1], ) with gr.Row(): with gr.Column(): file_component_multiple = gr.File( label="Upload Multiple Files", file_count="multiple"
Demos
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
1], ) with gr.Row(): with gr.Column(): file_component_multiple = gr.File( label="Upload Multiple Files", file_count="multiple" ) with gr.Column(): output_file_2 = gr.File( label="Upload Multiple Files Output", file_count="multiple" ) num_load_btn_2 = gr.Number(label="Load Upload Multiple Files", value=0) file_component_multiple.upload( lambda s, n: (s, n + 1), [file_component_multiple, num_load_btn_2], [output_file_2, num_load_btn_2], ) with gr.Row(): with gr.Column(): file_component_specific = gr.File( label="Upload Multiple Files Image/Video", file_count="multiple", file_types=["image", "video"], ) with gr.Column(): output_file_3 = gr.File( label="Upload Multiple Files Output Image/Video", file_count="multiple" ) num_load_btn_3 = gr.Number( label="Load Upload Multiple Files Image/Video", value=0 ) file_component_specific.upload( lambda s, n: (s, n + 1), [file_component_specific, num_load_btn_3], [output_file_3, num_load_btn_3], ) with gr.Row(): with gr.Column(): file_component_pdf = gr.File(label="Upload PDF File", file_types=[".pdf"]) with gr.Column(): output_file_4 = gr.File(label="Upload PDF File Output") num_load_btn_4 = gr.Number(label="Load Upload PDF File", value=0) file_component_pdf.upload( lambda s, n: (s, n + 1), [file_component_pdf, num_load_bt
Demos
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
_btn_4 = gr.Number(label="Load Upload PDF File", value=0) file_component_pdf.upload( lambda s, n: (s, n + 1), [file_component_pdf, num_load_btn_4], [output_file_4, num_load_btn_4], ) with gr.Row(): with gr.Column(): file_component_invalid = gr.File( label="Upload File with Invalid file_types", file_types=["invalid file_type"], ) with gr.Column(): output_file_5 = gr.File(label="Upload File with Invalid file_types Output") num_load_btn_5 = gr.Number( label="Load Upload File with Invalid file_types", value=0 ) file_component_invalid.upload( lambda s, n: (s, n + 1), [file_component_invalid, num_load_btn_5], [output_file_5, num_load_btn_5], ) with gr.Row(): with gr.Column(): del_file_input = gr.File(label="Delete File", file_count="multiple") with gr.Column(): del_file_data = gr.Textbox(label="Delete file data") num_load_btn_6 = gr.Number(label="Deleted File", value=0) del_file_input.delete( delete_file, [num_load_btn_6], [del_file_data, num_load_btn_6], ) f = gr.File(label="Upload many File", file_count="multiple") f.delete(delete_file) f.delete(delete_file, inputs=None, outputs=None) if __name__ == "__main__": demo.launch()
Demos
https://gradio.app/docs/gradio/deletedfiledata
Gradio - Deletedfiledata Docs
Creates a line plot component to display data from a pandas DataFrame.
Description
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
**As input component** : The data to display in a line plot. Your function should accept one of these types: def predict( value: AltairPlotData | None ) ... **As output component** : Expects a pandas DataFrame containing the data to display in the line plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`). Your function should return one of these types: def predict(···) -> pd.DataFrame | dict | None ... return value
Behavior
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
Parameters ▼ value: pd.DataFrame | Callable | None default `= None` The pandas dataframe containing the data to display in the plot. x: str | None default `= None` Column corresponding to the x axis. Column can be numeric, datetime, or string/category. y: str | None default `= None` Column corresponding to the y axis. Column must be numeric. color: str | None default `= None` Column corresponding to series, visualized by color. Column must be string/category. title: str | None default `= None` The title to display on top of the chart. x_title: str | None default `= None` The title given to the x axis. By default, uses the value of the x parameter. y_title: str | None default `= None` The title given to the y axis. By default, uses the value of the y parameter. color_title: str | None default `= None` The title given to the color legend. By default, uses the value of color parameter. x_bin: str | float | None default `= None` Grouping used to cluster x values. If x column is numeric, should be number to bin the x values. If x column is datetime, should be string such as "1h", "15m", "10s", using "s", "m", "h", "d" suffixes. y_aggregate: Literal['sum', 'mean', 'median', 'min', 'max', 'count'] | None default `= None` Aggregation function used to aggregate y values, used if x_bin is provided or x is a string/category. Must be one of "sum", "mean", "median", "min", "max". color_map: dict[str, str] | None default `= None` Mapping of series to color names or codes. For example, {"success": "green", "fail": "FF8888"}. x_lim: list[float] | None default `= None` A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. If x column is datetime type, x_lim should be timestamps. y_lim: list[float | None] default `= None` A
Initialization
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
ple or list containing the limits for the x-axis, specified as [x_min, x_max]. If x column is datetime type, x_lim should be timestamps. y_lim: list[float | None] default `= None` A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. To fix only one of these values, set the other to None, e.g. [0, None] to scale from 0 to the maximum to value. x_label_angle: float default `= 0` The angle of the x-axis labels in degrees offset clockwise. y_label_angle: float default `= 0` The angle of the y-axis labels in degrees offset clockwise. x_axis_labels_visible: bool default `= True` Whether the x-axis labels should be visible. Can be hidden when many x-axis labels are present. caption: str | I18nData | None default `= None` The (optional) caption to display below the plot. sort: Literal['x', 'y', '-x', '-y'] | list[str] | None default `= None` The sorting order of the x values, if x column is type string/category. Can be "x", "y", "-x", "-y", or list of strings that represent the order of the categories. tooltip: Literal['axis', 'none', 'all'] | list[str] default `= "axis"` The tooltip to display when hovering on a point. "axis" shows the values for the axis columns, "all" shows all column values, and "none" shows no tooltips. Can also provide a list of strings representing columns to show in the tooltip, which will be displayed along with axis values. height: int | None default `= None` The height of the plot in pixels. label: str | I18nData | None default `= None` The (optional) label to display on the top left corner of the plot. show_label: bool | None default `= None` Whether the label should be displayed. container: bool default `= True` If True, will place the component in a container - providing some extra padding around the border.
Initialization
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
Whether the label should be displayed. container: bool default `= True` If True, will place the component in a container - providing some extra padding around the border. scale: int | None default `= None` relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True. min_width: int default `= 160` minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. every: Timer | float | None default `= None` Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer. inputs: Component | list[Component] | Set[Component] | None default `= None` Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change. visible: bool default `= True` Whether the plot should be visible. elem_id: str | None default `= None` An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. elem_classes: list[str] | str | None default `= None` An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. render: bool default `= True` If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
Initialization
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
default `= True` If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. show_fullscreen_button: bool default `= False` If True, will show a button to make plot visible in fullscreen mode. key: int | str | tuple[int | str, ...] | None default `= None` in a gr.render, Components with the same key across re-renders are treated as the same component, not a new component. Properties set in 'preserved_by_key' are not reset across a re-render. preserved_by_key: list[str] | str | None default `= "value"` A list of parameters from this component's constructor. Inside a gr.render() function, if a component is re-rendered with the same key, these (and only these) parameters will be preserved in the UI (if they have been changed by the user or an event listener) instead of re-rendered based on the values provided during constructor.
Initialization
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
Class | Interface String Shortcut | Initialization ---|---|--- `gradio.LinePlot` | "lineplot" | Uses default values
Shortcuts
https://gradio.app/docs/gradio/lineplot
Gradio - Lineplot Docs
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
727

Models trained or fine-tuned on gradio/docs