Dataset Viewer
Auto-converted to Parquet
name
stringlengths
10
31
# Layers
int64
30
35
# Effective Params (B)
float64
1.91
3.98
MMLU PT accuracy
stringlengths
6
6
FFN Hidden Dims
stringlengths
330
385
Layers Skipped
stringclasses
1 value
Main model
35
3.98
62.30%
[2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8]
null
Config for official E2B Model
30
1.91
50.90%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
[20, 21, 22, 23, 24]
Config for E1.96B (layer-level)
30
1.96
53.40%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
[20, 21, 22, 23, 24]
Config for E2.54B (layer-level)
35
2.54
55.40%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E2.69B (layer-level)
35
2.69
57.70%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E2.98B (layer-level)
35
2.98
59.50%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8]
null
Config for E3.18B (layer-level)
35
3.18
61.80%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8]
null
Config for E3.39B (layer-level)
35
3.39
63.00%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8]
null
Config for E3.59B (layer-level)
35
3.59
63.40%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8]
null
Config for E3.79B (layer-level)
35
3.79
63.40%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8]
null
Config for E2.49B (block-level)
35
2.49
54.50%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E2.73B (block-level)
35
2.73
57.10%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E2.98B (block-level)
35
2.98
59.50%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E3.24B (block-level)
35
3.24
60.70%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E3.49B (block-level)
35
3.49
61.40%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4]
null
Config for E3.79B (block-level)
35
3.74
62.00%
[2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 4, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8, 2_048 * 8]
null

This repository contains configurations to slice Gemma 3n E4B, which is enabled thanks to it being a MatFormer. The E4B model can be sliced into small models, trading off quality and latency/compute requirements. We recommend exploring the [MatFormer Lab](TODO: add link) to getting started with slicing Gemma 3n E4B yourself.

For each configuration, we calculate the MMLU accuracy. Although these are not the only configurations possible, they are optimal configurations identified by calculating the accuracy of the pre-trained model

To learn more about MatFormers, please review the and generate your own submodels with the [MatFormer Lab](TODO: add link).

alt text This chart show’s MMLU performance vs model size of Gemma 3n Mix-n-Match (pretrained) capability.

Some additional resources:

Downloads last month
8