annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
task_ids: []
paperswithcode_id: sentence-compression
pretty_name: Google Sentence Compression
tags:
- sentence-compression
dataset_info:
features:
- name: graph
struct:
- name: id
dtype: string
- name: sentence
dtype: string
- name: node
sequence:
- name: form
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: word
sequence:
- name: id
dtype: int32
- name: form
dtype: string
- name: stem
dtype: string
- name: tag
dtype: string
- name: gender
dtype: int32
- name: head_word_index
dtype: int32
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
- name: label
dtype: string
- name: entity_mention
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: head
dtype: int32
- name: name
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: is_proper_name_entity
dtype: bool
- name: gender
dtype: int32
- name: compression
struct:
- name: text
dtype: string
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
- name: headline
dtype: string
- name: compression_ratio
dtype: float32
- name: doc_id
dtype: string
- name: source_tree
struct:
- name: id
dtype: string
- name: sentence
dtype: string
- name: node
sequence:
- name: form
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: word
sequence:
- name: id
dtype: int32
- name: form
dtype: string
- name: stem
dtype: string
- name: tag
dtype: string
- name: gender
dtype: int32
- name: head_word_index
dtype: int32
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
- name: label
dtype: string
- name: entity_mention
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: head
dtype: int32
- name: name
dtype: string
- name: type
dtype: string
- name: mid
dtype: string
- name: is_proper_name_entity
dtype: bool
- name: gender
dtype: int32
- name: compression_untransformed
struct:
- name: text
dtype: string
- name: edge
sequence:
- name: parent_id
dtype: int32
- name: child_id
dtype: int32
splits:
- name: validation
num_bytes: 55823979
num_examples: 10000
- name: train
num_bytes: 1135684803
num_examples: 200000
download_size: 259652560
dataset_size: 1191508782
Dataset Card for Google Sentence Compression
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://github.com/google-research-datasets/sentence-compression
- Repository: https://github.com/google-research-datasets/sentence-compression
- Paper: https://www.aclweb.org/anthology/D13-1155/
- Leaderboard:
- Point of Contact:
Dataset Summary
A major challenge in supervised sentence compression is making use of rich feature representations because of very scarce parallel data. We address this problem and present a method to automatically build a compression corpus with hundreds of thousands of instances on which deletion-based algorithms can be trained. In our corpus, the syntactic trees of the compressions are subtrees of their uncompressed counterparts, and hence supervised systems which require a structural alignment between the input and output can be successfully trained. We also extend an existing unsupervised compression method with a learning module. The new system uses structured prediction to learn from lexical, syntactic and other features. An evaluation with human raters shows that the presented data harvesting method indeed produces a parallel corpus of high quality. Also, the supervised system trained on this corpus gets high scores both from human raters and in an automatic evaluation setting, significantly outperforming a strong baseline.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
English
Dataset Structure
Data Instances
Each data instance should contains the information about the original sentence in instance["graph"]["sentence"]
as well as the compressed sentence in instance["compression"]["text"]
. As this dataset was created by pruning dependency connections, the author also includes the dependency tree and transformed graph of the original sentence and compressed sentence.
Data Fields
Each instance should contains these information:
graph
(Dict
): the transformation graph/tree for extracting compression (a modified version of a dependency tree).- This will have features similar to a dependency tree (listed bellow)
compression
(Dict
)text
(str
)edge
(List
)
headline
(str
): the headline of the original news page.compression_ratio
(float
): the ratio between compressed sentence vs original sentence.doc_id
(str
): url of the original news page.source_tree
(Dict
): the original dependency tree (features listed bellow).compression_untransformed
(Dict
)text
(str
)edge
(List
)
Dependency tree features:
id
(str
)sentence
(str
)node
(List
): list of nodes, each node represent a word/word phrase in the tree.form
(string
)type
(string
): the enity type of a node. Defaults to""
if it's not an entity.mid
(string
)word
(List
): list of words the node contains.id
(int
)form
(str
): the word from the sentence.stem
(str
): the stemmed/lemmatized version of the word.tag
(str
): dependency tag of the word.
gender
(int
)head_word_index
(int
)
edge
: list of the dependency connections between words.parent_id
(int
)child_id
(int
)label
(str
)
entity_mention
list of the entities in the sentence.start
(int
)end
(int
)head
(str
)name
(str
)type
(str
)mid
(str
)is_proper_name_entity
(bool
)gender
(int
)
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
[More Information Needed]
Contributions
Thanks to @mattbui for adding this dataset.