Dataset Viewer
hexsha
stringlengths 40
40
| size
int64 2
1.02M
| ext
stringclasses 10
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 4
245
| max_stars_repo_name
stringlengths 6
130
| max_stars_repo_head_hexsha
stringlengths 40
40
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 4
245
| max_issues_repo_name
stringlengths 6
130
| max_issues_repo_head_hexsha
stringlengths 40
40
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
67k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 4
245
| max_forks_repo_name
stringlengths 6
130
| max_forks_repo_head_hexsha
stringlengths 40
40
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 2
1.02M
| avg_line_length
float64 1
958k
| max_line_length
int64 1
987k
| alphanum_fraction
float64 0
1
| content_no_comment
stringlengths 0
1.01M
| is_comment_constant_removed
bool 2
classes | is_sharp_comment_removed
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f70001f658d4dfaa72dd4f0d1b3176492f6658bb | 6,442 | py | Python | spider/openwrt.py | CNDB/CNDB | 2e3a41111f604cf2f4f22a7c9370bb3f753e3e88 | [
"BSD-3-Clause"
] | null | null | null | spider/openwrt.py | CNDB/CNDB | 2e3a41111f604cf2f4f22a7c9370bb3f753e3e88 | [
"BSD-3-Clause"
] | null | null | null | spider/openwrt.py | CNDB/CNDB | 2e3a41111f604cf2f4f22a7c9370bb3f753e3e88 | [
"BSD-3-Clause"
] | null | null | null | #!/usr/bin/python
# -*- coding: utf-8 -*-
# #*** <License> ************************************************************#
# This module is part of the repository CNDB.
#
# This module is licensed under the terms of the BSD 3-Clause License
# <http://www.c-tanzer.at/license/bsd_3c.html>.
# #*** </License> ***********************************************************#
from _TFL.pyk import pyk
from rsclib.HTML_Parse import tag, Page_Tree
from rsclib.autosuper import autosuper
from spider.common import Interface, Inet4, Inet6, unroutable
from spider.common import WLAN_Config
from spider.luci import Version_Mixin
class Status (Page_Tree, Version_Mixin) :
url = 'cgi-bin/luci/freifunk/status/status'
retries = 2
timeout = 10
html_charset = 'utf-8' # force utf-8 encoding
wl_names = dict \
( ssid = 'ssid'
, _bsiid = 'bssid'
, channel = 'channel'
, mode = 'mode'
)
def parse (self) :
root = self.tree.getroot ()
self.wlans = []
self.routes = {}
for div in root.findall (".//%s" % tag ("div")) :
id = div.get ('id')
if id == 'cbi-wireless' :
wlan_div = div
elif id == 'cbi-routes' :
route_div = div
self.try_get_version (div)
for d in self.tbl_iter (wlan_div) :
for k, newkey in pyk.iteritems (self.wl_names) :
if k in d :
d [newkey] = d [k]
wl = WLAN_Config (** d)
self.wlans.append (wl)
for d in self.tbl_iter (route_div) :
iface = d.get ('iface')
gw = d.get ('gateway')
if iface and gw :
self.routes [iface] = gw
self.set_version (root)
# end def parse
def tbl_iter (self, div) :
tbl = div.find (".//%s" % tag ("table"))
assert tbl.get ('class') == 'cbi-section-table'
d = {}
for tr in tbl :
if 'cbi-section-table-row' not in tr.get ('class').split () :
continue
for input in tr.findall (".//%s" % tag ('input')) :
name = input.get ('id').split ('.') [-1]
val = input.get ('value')
d [name] = val
if not d :
continue
yield d
# end def tbl_iter
# end class Status
class Table_Iter (Page_Tree) :
def table_iter (self) :
root = self.tree.getroot ()
for div in root.findall (".//%s" % tag ("div")) :
if div.get ('id') == 'maincontent' :
break
tbl = div.find (".//%s" % tag ("table"))
if tbl is None :
return
for tr in tbl :
if tr [0].tag == tag ('th') :
continue
yield (self.tree.get_text (x) for x in tr)
# end def table_iter
# end class Table_Iter
class OLSR_Connections (Table_Iter) :
url = 'cgi-bin/luci/freifunk/olsr/'
retries = 2
timeout = 10
html_charset = 'utf-8' # force utf-8 encoding
def parse (self) :
self.neighbors = {}
for l in self.table_iter () :
neighbor, ip, lq, nlq, etx = l
lq, nlq, etx = (float (x) for x in (lq, nlq, etx))
self.neighbors [neighbor] = [ip, lq, nlq, etx]
# end def parse
# end class OLSR_Connections
class OLSR_Routes (Table_Iter) :
url = 'cgi-bin/luci/freifunk/olsr/routes'
retries = 2
timeout = 10
html_charset = 'utf-8' # force utf-8 encoding
def parse (self) :
self.iface_by_gw = {}
for l in self.table_iter () :
announced, gw, iface, metric, etx = l
if gw in self.iface_by_gw :
assert iface == self.iface_by_gw [gw]
else :
self.iface_by_gw [gw] = iface
# end def parse
# end class OLSR_Routes
class OpenWRT (autosuper) :
def __init__ (self, site, request) :
self.site = site
self.request = request
if 'interfaces' in self.request or 'ips' in self.request :
st = Status (site = site)
conn = OLSR_Connections (site = site)
route = OLSR_Routes (site = site)
self.version = st.version
assert len (st.wlans) <= 1
interfaces = {}
ips = {}
count = 0
for gw, ifname in pyk.iteritems (route.iface_by_gw) :
ip, lq, nlq, etx = conn.neighbors [gw]
i4 = Inet4 (ip, None, None, iface = ifname)
ips [i4] = 1
is_wlan = True
if lq == nlq == etx == 1.0 :
is_wlan = False
if ifname in interfaces :
iface = interfaces [ifname]
if not iface.is_wlan and is_wlan :
iface.is_wlan = True
iface.wlan_info = st.wlans [0]
else :
iface = Interface (count, ifname, None)
iface.is_wlan = is_wlan
if is_wlan :
iface.wlan_info = st.wlans [0]
count += 1
interfaces [ifname] = iface
if i4 not in iface.inet4 :
iface.append_inet4 (i4)
wl_if = None
for iface in pyk.itervalues (interfaces) :
if iface.is_wlan :
if wl_if :
m = "Duplicate wlan: %s/%s" % (iface.name, wl_if.name)
raise ValueError (m)
wl_if = iface
# check own ip
n = 'unknown'
i4 = Inet4 (self.request ['ip'], None, None, iface = n)
if i4 not in ips :
assert n not in interfaces
iface = interfaces [n] = Interface (count, n, None)
iface.append_inet4 (i4)
iface.is_wlan = False
if not wl_if and st.wlans :
iface.is_wlan = True
iface.wlan_info = st.wlans [0]
ips [i4] = True
self.request ['ips'] = ips
self.request ['interfaces'] = interfaces
self.request ['version'] = st.version
# end def __init__
# end class OpenWRT
| 34.449198 | 78 | 0.472369 |
from _TFL.pyk import pyk
from rsclib.HTML_Parse import tag, Page_Tree
from rsclib.autosuper import autosuper
from spider.common import Interface, Inet4, Inet6, unroutable
from spider.common import WLAN_Config
from spider.luci import Version_Mixin
class Status (Page_Tree, Version_Mixin) :
url = 'cgi-bin/luci/freifunk/status/status'
retries = 2
timeout = 10
html_charset = 'utf-8'
wl_names = dict \
( ssid = 'ssid'
, _bsiid = 'bssid'
, channel = 'channel'
, mode = 'mode'
)
def parse (self) :
root = self.tree.getroot ()
self.wlans = []
self.routes = {}
for div in root.findall (".//%s" % tag ("div")) :
id = div.get ('id')
if id == 'cbi-wireless' :
wlan_div = div
elif id == 'cbi-routes' :
route_div = div
self.try_get_version (div)
for d in self.tbl_iter (wlan_div) :
for k, newkey in pyk.iteritems (self.wl_names) :
if k in d :
d [newkey] = d [k]
wl = WLAN_Config (** d)
self.wlans.append (wl)
for d in self.tbl_iter (route_div) :
iface = d.get ('iface')
gw = d.get ('gateway')
if iface and gw :
self.routes [iface] = gw
self.set_version (root)
def tbl_iter (self, div) :
tbl = div.find (".//%s" % tag ("table"))
assert tbl.get ('class') == 'cbi-section-table'
d = {}
for tr in tbl :
if 'cbi-section-table-row' not in tr.get ('class').split () :
continue
for input in tr.findall (".//%s" % tag ('input')) :
name = input.get ('id').split ('.') [-1]
val = input.get ('value')
d [name] = val
if not d :
continue
yield d
class Table_Iter (Page_Tree) :
def table_iter (self) :
root = self.tree.getroot ()
for div in root.findall (".//%s" % tag ("div")) :
if div.get ('id') == 'maincontent' :
break
tbl = div.find (".//%s" % tag ("table"))
if tbl is None :
return
for tr in tbl :
if tr [0].tag == tag ('th') :
continue
yield (self.tree.get_text (x) for x in tr)
class OLSR_Connections (Table_Iter) :
url = 'cgi-bin/luci/freifunk/olsr/'
retries = 2
timeout = 10
html_charset = 'utf-8'
def parse (self) :
self.neighbors = {}
for l in self.table_iter () :
neighbor, ip, lq, nlq, etx = l
lq, nlq, etx = (float (x) for x in (lq, nlq, etx))
self.neighbors [neighbor] = [ip, lq, nlq, etx]
class OLSR_Routes (Table_Iter) :
url = 'cgi-bin/luci/freifunk/olsr/routes'
retries = 2
timeout = 10
html_charset = 'utf-8'
def parse (self) :
self.iface_by_gw = {}
for l in self.table_iter () :
announced, gw, iface, metric, etx = l
if gw in self.iface_by_gw :
assert iface == self.iface_by_gw [gw]
else :
self.iface_by_gw [gw] = iface
class OpenWRT (autosuper) :
def __init__ (self, site, request) :
self.site = site
self.request = request
if 'interfaces' in self.request or 'ips' in self.request :
st = Status (site = site)
conn = OLSR_Connections (site = site)
route = OLSR_Routes (site = site)
self.version = st.version
assert len (st.wlans) <= 1
interfaces = {}
ips = {}
count = 0
for gw, ifname in pyk.iteritems (route.iface_by_gw) :
ip, lq, nlq, etx = conn.neighbors [gw]
i4 = Inet4 (ip, None, None, iface = ifname)
ips [i4] = 1
is_wlan = True
if lq == nlq == etx == 1.0 :
is_wlan = False
if ifname in interfaces :
iface = interfaces [ifname]
if not iface.is_wlan and is_wlan :
iface.is_wlan = True
iface.wlan_info = st.wlans [0]
else :
iface = Interface (count, ifname, None)
iface.is_wlan = is_wlan
if is_wlan :
iface.wlan_info = st.wlans [0]
count += 1
interfaces [ifname] = iface
if i4 not in iface.inet4 :
iface.append_inet4 (i4)
wl_if = None
for iface in pyk.itervalues (interfaces) :
if iface.is_wlan :
if wl_if :
m = "Duplicate wlan: %s/%s" % (iface.name, wl_if.name)
raise ValueError (m)
wl_if = iface
n = 'unknown'
i4 = Inet4 (self.request ['ip'], None, None, iface = n)
if i4 not in ips :
assert n not in interfaces
iface = interfaces [n] = Interface (count, n, None)
iface.append_inet4 (i4)
iface.is_wlan = False
if not wl_if and st.wlans :
iface.is_wlan = True
iface.wlan_info = st.wlans [0]
ips [i4] = True
self.request ['ips'] = ips
self.request ['interfaces'] = interfaces
self.request ['version'] = st.version
| true | true |
f7000273e22d5a0f2d5b40c38a0ed8511d1b8995 | 2,250 | py | Python | utils/compare.py | adcrn/knest | a274dc9ddb642cc30f837e225f000bf33430eb43 | [
"BSD-3-Clause"
] | 8 | 2018-03-15T23:42:51.000Z | 2020-03-10T06:21:03.000Z | utils/compare.py | deekerno/knest | a274dc9ddb642cc30f837e225f000bf33430eb43 | [
"BSD-3-Clause"
] | 12 | 2018-03-15T19:11:02.000Z | 2018-10-30T10:02:45.000Z | utils/compare.py | adcrn/knest | a274dc9ddb642cc30f837e225f000bf33430eb43 | [
"BSD-3-Clause"
] | null | null | null | # UCF Senior Design 2017-18
# Group 38
from PIL import Image
import cv2
import imagehash
import math
import numpy as np
DIFF_THRES = 20
LIMIT = 2
RESIZE = 1000
def calc_hash(img):
"""
Calculate the wavelet hash of the image
img: (ndarray) image file
"""
# resize image if height > 1000
img = resize(img)
return imagehash.whash(Image.fromarray(img))
def compare(hash1, hash2):
"""
Calculate the difference between two images
hash1: (array) first wavelet hash
hash2: (array) second wavelet hash
"""
return hash1 - hash2
def limit(img, std_hash, count):
"""
Determine whether image should be removed from image dictionary in main.py
img: (ndarray) image file
std_hash: (array) wavelet hash of comparison standard
count: (int) global count of images similar to comparison standard
"""
# calculate hash for given image
cmp_hash = calc_hash(img)
# compare to standard
diff = compare(std_hash, cmp_hash)
# image is similar to standard
if diff <= DIFF_THRES:
# if there are 3 similar images already, remove image
if count >= LIMIT:
return 'remove'
# non-similar image found
else:
# update comparison standard
return 'update_std'
# else continue reading images with same standard
return 'continue'
def resize(img):
"""
Resize an image
img: (ndarray) RGB color image
"""
# get dimensions of image
width = np.shape(img)[1]
height = np.shape(img)[0]
# if height of image is greater than 1000, resize it to 1000
if width > RESIZE:
# keep resize proportional
scale = RESIZE / width
resized_img = cv2.resize(
img, (RESIZE, math.floor(height / scale)), cv2.INTER_AREA)
# return resized image
return resized_img
# if height of image is less than 1000, return image unresized
return img
def set_standard(images, filename):
"""
Set new comparison standard and update information
images: (dictionary) dictionary containing all the image data
filename: (String) name of the image file
"""
return filename, calc_hash(images[filename]), 0
| 24.725275 | 78 | 0.646667 |
from PIL import Image
import cv2
import imagehash
import math
import numpy as np
DIFF_THRES = 20
LIMIT = 2
RESIZE = 1000
def calc_hash(img):
img = resize(img)
return imagehash.whash(Image.fromarray(img))
def compare(hash1, hash2):
return hash1 - hash2
def limit(img, std_hash, count):
cmp_hash = calc_hash(img)
diff = compare(std_hash, cmp_hash)
if diff <= DIFF_THRES:
if count >= LIMIT:
return 'remove'
else:
return 'update_std'
return 'continue'
def resize(img):
width = np.shape(img)[1]
height = np.shape(img)[0]
if width > RESIZE:
scale = RESIZE / width
resized_img = cv2.resize(
img, (RESIZE, math.floor(height / scale)), cv2.INTER_AREA)
return resized_img
return img
def set_standard(images, filename):
return filename, calc_hash(images[filename]), 0
| true | true |
f70002926d1d600b4b068459c9dd40ebf3aef47d | 757 | py | Python | sdk/python/kfp/__main__.py | ConverJens/pipelines | a1d453af214ec9eebad73fb05845dd3499d60d00 | [
"Apache-2.0"
] | 6 | 2020-05-19T02:35:11.000Z | 2020-05-29T17:58:42.000Z | sdk/python/kfp/__main__.py | ConverJens/pipelines | a1d453af214ec9eebad73fb05845dd3499d60d00 | [
"Apache-2.0"
] | 1,932 | 2021-01-25T11:23:37.000Z | 2022-03-31T17:10:18.000Z | sdk/python/kfp/__main__.py | ConverJens/pipelines | a1d453af214ec9eebad73fb05845dd3499d60d00 | [
"Apache-2.0"
] | 11 | 2020-05-19T22:26:41.000Z | 2021-01-25T09:56:21.000Z | # Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .cli.cli import main
# TODO(hongyes): add more commands:
# kfp compile (migrate from dsl-compile)
# kfp experiment (manage experiments)
if __name__ == '__main__':
main()
| 32.913043 | 74 | 0.749009 |
from .cli.cli import main
if __name__ == '__main__':
main()
| true | true |
f7000327daf9ff11a381ce6d5de401ff007d1323 | 1,094 | py | Python | TestProject/app/view/RoomItem.py | ChinSing00/ChatChat | 48654e2e125298c00a558449353e38d0cec06d03 | [
"MIT"
] | null | null | null | TestProject/app/view/RoomItem.py | ChinSing00/ChatChat | 48654e2e125298c00a558449353e38d0cec06d03 | [
"MIT"
] | null | null | null | TestProject/app/view/RoomItem.py | ChinSing00/ChatChat | 48654e2e125298c00a558449353e38d0cec06d03 | [
"MIT"
] | null | null | null | import time
from PyQt5 import QtGui, QtCore
from ui.room_item import Ui_Form
from PyQt5.QtWidgets import QWidget
class Room_Item(QWidget,Ui_Form):
def __init__(self,parent=None,room_data=None):
super(Room_Item,self).__init__(parent)
self.setupUi(self)
self.data = room_data
self.setRoomInfo()
def setRoomInfo(self):
self.room_name.setText('{}({})'.format(self.data['naturalName'], self.data['roomName']))
self.description.setText("<a style='color:#BCBCBC'>{}</a>".format(self.data['description']))
timeStamp = int(self.data['creationDate']) / 1000
timeArray = time.localtime(timeStamp)
otherStyleTime = time.strftime("%Y-%m-%d", timeArray)
self.create_time.setText("<a style='color:#BCBCBC'>{}</a>".format(otherStyleTime))
members = len(self.data['owners']) + len(self.data['admins']) + len(self.data['members'])
memberCounter = "<a style='color:#BCBCBC'>{}/{}</a>".format(members, ('∞' if self.data['maxUsers']==0 else self.data['maxUsers']))
self.member.setText(memberCounter) | 45.583333 | 138 | 0.659049 | import time
from PyQt5 import QtGui, QtCore
from ui.room_item import Ui_Form
from PyQt5.QtWidgets import QWidget
class Room_Item(QWidget,Ui_Form):
def __init__(self,parent=None,room_data=None):
super(Room_Item,self).__init__(parent)
self.setupUi(self)
self.data = room_data
self.setRoomInfo()
def setRoomInfo(self):
self.room_name.setText('{}({})'.format(self.data['naturalName'], self.data['roomName']))
self.description.setText("<a style='color:#BCBCBC'>{}</a>".format(self.data['description']))
timeStamp = int(self.data['creationDate']) / 1000
timeArray = time.localtime(timeStamp)
otherStyleTime = time.strftime("%Y-%m-%d", timeArray)
self.create_time.setText("<a style='color:#BCBCBC'>{}</a>".format(otherStyleTime))
members = len(self.data['owners']) + len(self.data['admins']) + len(self.data['members'])
memberCounter = "<a style='color:#BCBCBC'>{}/{}</a>".format(members, ('∞' if self.data['maxUsers']==0 else self.data['maxUsers']))
self.member.setText(memberCounter) | true | true |
f7000371f0315cd55c0b14b33e7e8e56697cfc2e | 10,498 | py | Python | src/winforms/toga_winforms/app.py | holg/toga | 9dd766e749c6cf29cdb1127c7637150381ac396d | [
"BSD-3-Clause"
] | 1 | 2020-07-16T00:46:24.000Z | 2020-07-16T00:46:24.000Z | src/winforms/toga_winforms/app.py | holg/toga | 9dd766e749c6cf29cdb1127c7637150381ac396d | [
"BSD-3-Clause"
] | null | null | null | src/winforms/toga_winforms/app.py | holg/toga | 9dd766e749c6cf29cdb1127c7637150381ac396d | [
"BSD-3-Clause"
] | null | null | null | import asyncio
import re
import sys
import traceback
import toga
from toga import Key
from .keys import toga_to_winforms_key
from .libs import Threading, WinForms, shcore, user32, win_version
from .libs.proactor import WinformsProactorEventLoop
from .window import Window
class MainWindow(Window):
def winforms_FormClosing(self, sender, event):
if not self.interface.app._impl._is_exiting:
event.Cancel = not self.interface.app.exit()
class App:
_MAIN_WINDOW_CLASS = MainWindow
def __init__(self, interface):
self.interface = interface
self.interface._impl = self
# Winforms app exit is tightly bound to the close of the MainWindow.
# The FormClosing message on MainWindow calls app.exit(), which
# will then trigger the "on_exit" handler (which might abort the
# close). However, if app.exit() succeeds, it will request the
# Main Window to close... which calls app.exit().
# So - we have a flag that is only ever sent once a request has been
# made to exit the native app. This flag can be used to shortcut any
# window-level close handling.
self._is_exiting = False
self.loop = WinformsProactorEventLoop()
asyncio.set_event_loop(self.loop)
def create(self):
self.native = WinForms.Application
self.app_context = WinForms.ApplicationContext()
# Check the version of windows and make sure we are setting the DPI mode
# with the most up to date API
# Windows Versioning Check Sources : https://www.lifewire.com/windows-version-numbers-2625171
# and https://docs.microsoft.com/en-us/windows/release-information/
if win_version.Major >= 6: # Checks for Windows Vista or later
# Represents Windows 8.1 up to Windows 10 before Build 1703 which should use
# SetProcessDpiAwareness(True)
if ((win_version.Major == 6 and win_version.Minor == 3) or
(win_version.Major == 10 and win_version.Build < 15063)):
shcore.SetProcessDpiAwareness(True)
# Represents Windows 10 Build 1703 and beyond which should use
# SetProcessDpiAwarenessContext(-2)
elif win_version.Major == 10 and win_version.Build >= 15063:
user32.SetProcessDpiAwarenessContext(-2)
# Any other version of windows should use SetProcessDPIAware()
else:
user32.SetProcessDPIAware()
self.native.EnableVisualStyles()
self.native.SetCompatibleTextRenderingDefault(False)
self.interface.commands.add(
toga.Command(
lambda _: self.interface.about(),
'About {}'.format(self.interface.name),
group=toga.Group.HELP
),
toga.Command(None, 'Preferences', group=toga.Group.FILE),
# Quit should always be the last item, in a section on it's own
toga.Command(
lambda _: self.interface.exit(),
'Exit ' + self.interface.name,
shortcut=Key.MOD_1 + 'q',
group=toga.Group.FILE,
section=sys.maxsize
),
toga.Command(
lambda _: self.interface.visit_homepage(),
'Visit homepage',
enabled=self.interface.home_page is not None,
group=toga.Group.HELP
)
)
self._create_app_commands()
# Call user code to populate the main window
self.interface.startup()
self.create_menus()
self.interface.icon.bind(self.interface.factory)
self.interface.main_window._impl.set_app(self)
def create_menus(self):
self._menu_items = {}
self._menu_groups = {}
toga.Group.FILE.order = 0
menubar = WinForms.MenuStrip()
submenu = None
for cmd in self.interface.commands:
if cmd == toga.GROUP_BREAK:
submenu = None
elif cmd == toga.SECTION_BREAK:
submenu.DropDownItems.Add('-')
else:
submenu = self._submenu(cmd.group, menubar)
item = WinForms.ToolStripMenuItem(cmd.label)
if cmd.action:
item.Click += cmd._impl.as_handler()
item.Enabled = cmd.enabled
if cmd.shortcut is not None:
shortcut_keys = toga_to_winforms_key(cmd.shortcut)
item.ShortcutKeys = shortcut_keys
item.ShowShortcutKeys = True
cmd._impl.native.append(item)
self._menu_items[item] = cmd
submenu.DropDownItems.Add(item)
self.interface.main_window._impl.native.Controls.Add(menubar)
self.interface.main_window._impl.native.MainMenuStrip = menubar
self.interface.main_window.content.refresh()
def _submenu(self, group, menubar):
try:
return self._menu_groups[group]
except KeyError:
if group is None:
submenu = menubar
else:
parent_menu = self._submenu(group.parent, menubar)
submenu = WinForms.ToolStripMenuItem(group.label)
# Top level menus are added in a different way to submenus
if group.parent is None:
parent_menu.Items.Add(submenu)
else:
parent_menu.DropDownItems.Add(submenu)
self._menu_groups[group] = submenu
return submenu
def _create_app_commands(self):
# No extra menus
pass
def open_document(self, fileURL):
'''Add a new document to this app.'''
print("STUB: If you want to handle opening documents, implement App.open_document(fileURL)")
def winforms_thread_exception(self, sender, winforms_exc):
# The PythonException returned by Winforms doesn't give us
# easy access to the underlying Python stacktrace; so we
# reconstruct it from the string message.
# The Python message is helpfully included in square brackets,
# as the context for the first line in the .net stack trace.
# So, look for the closing bracket and the start of the Python.net
# stack trace. Then, reconstruct the line breaks internal to the
# remaining string.
print("Traceback (most recent call last):")
py_exc = winforms_exc.get_Exception()
full_stack_trace = py_exc.StackTrace
regex = re.compile(
r"^\[(?:'(.*?)', )*(?:'(.*?)')\] (?:.*?) Python\.Runtime",
re.DOTALL | re.UNICODE
)
stacktrace_relevant_lines = regex.findall(full_stack_trace)
if len(stacktrace_relevant_lines) == 0:
self.print_stack_trace(full_stack_trace)
else:
for lines in stacktrace_relevant_lines:
for line in lines:
self.print_stack_trace(line)
print(py_exc.Message)
@classmethod
def print_stack_trace(cls, stack_trace_line):
for level in stack_trace_line.split("', '"):
for line in level.split("\\n"):
if line:
print(line)
def run_app(self):
try:
self.create()
self.native.ThreadException += self.winforms_thread_exception
self.loop.run_forever(self.app_context)
except: # NOQA
traceback.print_exc()
def main_loop(self):
thread = Threading.Thread(Threading.ThreadStart(self.run_app))
thread.SetApartmentState(Threading.ApartmentState.STA)
thread.Start()
thread.Join()
def show_about_dialog(self):
message_parts = []
if self.interface.name is not None:
if self.interface.version is not None:
message_parts.append(
"{name} v{version}".format(
name=self.interface.name,
version=self.interface.version,
)
)
else:
message_parts.append(
"{name}".format(name=self.interface.name)
)
elif self.interface.version is not None:
message_parts.append(
"v{version}".format(version=self.interface.version)
)
if self.interface.author is not None:
message_parts.append(
"Author: {author}".format(author=self.interface.author)
)
if self.interface.description is not None:
message_parts.append(
"\n{description}".format(
description=self.interface.description
)
)
self.interface.main_window.info_dialog(
'About {}'.format(self.interface.name), "\n".join(message_parts)
)
def exit(self):
self._is_exiting = True
self.native.Exit()
def set_main_window(self, window):
self.app_context.MainForm = window._impl.native
def set_on_exit(self, value):
pass
def current_window(self):
self.interface.factory.not_implemented('App.current_window()')
def enter_full_screen(self, windows):
self.interface.factory.not_implemented('App.enter_full_screen()')
def exit_full_screen(self, windows):
self.interface.factory.not_implemented('App.exit_full_screen()')
def set_cursor(self, value):
self.interface.factory.not_implemented('App.set_cursor()')
def show_cursor(self):
self.interface.factory.not_implemented('App.show_cursor()')
def hide_cursor(self):
self.interface.factory.not_implemented('App.hide_cursor()')
def add_background_task(self, handler):
self.loop.call_soon(handler, self)
class DocumentApp(App):
def _create_app_commands(self):
self.interface.commands.add(
toga.Command(
lambda w: self.open_file,
label='Open...',
shortcut=Key.MOD_1 + 'o',
group=toga.Group.FILE,
section=0
),
)
def open_document(self, fileURL):
"""Open a new document in this app.
Args:
fileURL (str): The URL/path to the file to add as a document.
"""
self.interface.factory.not_implemented('DocumentApp.open_document()')
| 35.952055 | 101 | 0.597638 | import asyncio
import re
import sys
import traceback
import toga
from toga import Key
from .keys import toga_to_winforms_key
from .libs import Threading, WinForms, shcore, user32, win_version
from .libs.proactor import WinformsProactorEventLoop
from .window import Window
class MainWindow(Window):
def winforms_FormClosing(self, sender, event):
if not self.interface.app._impl._is_exiting:
event.Cancel = not self.interface.app.exit()
class App:
_MAIN_WINDOW_CLASS = MainWindow
def __init__(self, interface):
self.interface = interface
self.interface._impl = self
self._is_exiting = False
self.loop = WinformsProactorEventLoop()
asyncio.set_event_loop(self.loop)
def create(self):
self.native = WinForms.Application
self.app_context = WinForms.ApplicationContext()
if win_version.Major >= 6: if ((win_version.Major == 6 and win_version.Minor == 3) or
(win_version.Major == 10 and win_version.Build < 15063)):
shcore.SetProcessDpiAwareness(True)
elif win_version.Major == 10 and win_version.Build >= 15063:
user32.SetProcessDpiAwarenessContext(-2)
else:
user32.SetProcessDPIAware()
self.native.EnableVisualStyles()
self.native.SetCompatibleTextRenderingDefault(False)
self.interface.commands.add(
toga.Command(
lambda _: self.interface.about(),
'About {}'.format(self.interface.name),
group=toga.Group.HELP
),
toga.Command(None, 'Preferences', group=toga.Group.FILE),
toga.Command(
lambda _: self.interface.exit(),
'Exit ' + self.interface.name,
shortcut=Key.MOD_1 + 'q',
group=toga.Group.FILE,
section=sys.maxsize
),
toga.Command(
lambda _: self.interface.visit_homepage(),
'Visit homepage',
enabled=self.interface.home_page is not None,
group=toga.Group.HELP
)
)
self._create_app_commands()
# Call user code to populate the main window
self.interface.startup()
self.create_menus()
self.interface.icon.bind(self.interface.factory)
self.interface.main_window._impl.set_app(self)
def create_menus(self):
self._menu_items = {}
self._menu_groups = {}
toga.Group.FILE.order = 0
menubar = WinForms.MenuStrip()
submenu = None
for cmd in self.interface.commands:
if cmd == toga.GROUP_BREAK:
submenu = None
elif cmd == toga.SECTION_BREAK:
submenu.DropDownItems.Add('-')
else:
submenu = self._submenu(cmd.group, menubar)
item = WinForms.ToolStripMenuItem(cmd.label)
if cmd.action:
item.Click += cmd._impl.as_handler()
item.Enabled = cmd.enabled
if cmd.shortcut is not None:
shortcut_keys = toga_to_winforms_key(cmd.shortcut)
item.ShortcutKeys = shortcut_keys
item.ShowShortcutKeys = True
cmd._impl.native.append(item)
self._menu_items[item] = cmd
submenu.DropDownItems.Add(item)
self.interface.main_window._impl.native.Controls.Add(menubar)
self.interface.main_window._impl.native.MainMenuStrip = menubar
self.interface.main_window.content.refresh()
def _submenu(self, group, menubar):
try:
return self._menu_groups[group]
except KeyError:
if group is None:
submenu = menubar
else:
parent_menu = self._submenu(group.parent, menubar)
submenu = WinForms.ToolStripMenuItem(group.label)
# Top level menus are added in a different way to submenus
if group.parent is None:
parent_menu.Items.Add(submenu)
else:
parent_menu.DropDownItems.Add(submenu)
self._menu_groups[group] = submenu
return submenu
def _create_app_commands(self):
# No extra menus
pass
def open_document(self, fileURL):
print("STUB: If you want to handle opening documents, implement App.open_document(fileURL)")
def winforms_thread_exception(self, sender, winforms_exc):
# The PythonException returned by Winforms doesn't give us
print("Traceback (most recent call last):")
py_exc = winforms_exc.get_Exception()
full_stack_trace = py_exc.StackTrace
regex = re.compile(
r"^\[(?:'(.*?)', )*(?:'(.*?)')\] (?:.*?) Python\.Runtime",
re.DOTALL | re.UNICODE
)
stacktrace_relevant_lines = regex.findall(full_stack_trace)
if len(stacktrace_relevant_lines) == 0:
self.print_stack_trace(full_stack_trace)
else:
for lines in stacktrace_relevant_lines:
for line in lines:
self.print_stack_trace(line)
print(py_exc.Message)
@classmethod
def print_stack_trace(cls, stack_trace_line):
for level in stack_trace_line.split("', '"):
for line in level.split("\\n"):
if line:
print(line)
def run_app(self):
try:
self.create()
self.native.ThreadException += self.winforms_thread_exception
self.loop.run_forever(self.app_context)
except: traceback.print_exc()
def main_loop(self):
thread = Threading.Thread(Threading.ThreadStart(self.run_app))
thread.SetApartmentState(Threading.ApartmentState.STA)
thread.Start()
thread.Join()
def show_about_dialog(self):
message_parts = []
if self.interface.name is not None:
if self.interface.version is not None:
message_parts.append(
"{name} v{version}".format(
name=self.interface.name,
version=self.interface.version,
)
)
else:
message_parts.append(
"{name}".format(name=self.interface.name)
)
elif self.interface.version is not None:
message_parts.append(
"v{version}".format(version=self.interface.version)
)
if self.interface.author is not None:
message_parts.append(
"Author: {author}".format(author=self.interface.author)
)
if self.interface.description is not None:
message_parts.append(
"\n{description}".format(
description=self.interface.description
)
)
self.interface.main_window.info_dialog(
'About {}'.format(self.interface.name), "\n".join(message_parts)
)
def exit(self):
self._is_exiting = True
self.native.Exit()
def set_main_window(self, window):
self.app_context.MainForm = window._impl.native
def set_on_exit(self, value):
pass
def current_window(self):
self.interface.factory.not_implemented('App.current_window()')
def enter_full_screen(self, windows):
self.interface.factory.not_implemented('App.enter_full_screen()')
def exit_full_screen(self, windows):
self.interface.factory.not_implemented('App.exit_full_screen()')
def set_cursor(self, value):
self.interface.factory.not_implemented('App.set_cursor()')
def show_cursor(self):
self.interface.factory.not_implemented('App.show_cursor()')
def hide_cursor(self):
self.interface.factory.not_implemented('App.hide_cursor()')
def add_background_task(self, handler):
self.loop.call_soon(handler, self)
class DocumentApp(App):
def _create_app_commands(self):
self.interface.commands.add(
toga.Command(
lambda w: self.open_file,
label='Open...',
shortcut=Key.MOD_1 + 'o',
group=toga.Group.FILE,
section=0
),
)
def open_document(self, fileURL):
self.interface.factory.not_implemented('DocumentApp.open_document()')
| true | true |
f7000456815408e3a0899443a0df077b039855c4 | 1,731 | py | Python | __init__.py | luoxiangyong/qgissprp | 4698462743e11eac486af4b60046b99ae2abc1b0 | [
"BSD-2-Clause"
] | null | null | null | __init__.py | luoxiangyong/qgissprp | 4698462743e11eac486af4b60046b99ae2abc1b0 | [
"BSD-2-Clause"
] | null | null | null | __init__.py | luoxiangyong/qgissprp | 4698462743e11eac486af4b60046b99ae2abc1b0 | [
"BSD-2-Clause"
] | null | null | null | # -*- coding: utf-8 -*-
"""
/***************************************************************************
SimplePhotogrammetryRoutePlanner
A QGIS plugin
A imple photogrammetry route planner.
Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/
-------------------
begin : 2021-04-24
copyright : (C) 2021 by Xiangyong Luo
email : [email protected]
git sha : $Format:%H$
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
This script initializes the plugin, making it known to QGIS.
"""
__version__ = "0.4.0"
# noinspection PyPep8Naming
def classFactory(iface): # pylint: disable=invalid-name
"""Load SimplePhotogrammetryRoutePlanner class from file SimplePhotogrammetryRoutePlanner.
:param iface: A QGIS interface instance.
:type iface: QgsInterface
"""
#
from .SimplePhotogrammetryRoutePlanner import SimplePhotogrammetryRoutePlanner
return SimplePhotogrammetryRoutePlanner(iface)
| 46.783784 | 94 | 0.458117 | __version__ = "0.4.0"
def classFactory(iface): from .SimplePhotogrammetryRoutePlanner import SimplePhotogrammetryRoutePlanner
return SimplePhotogrammetryRoutePlanner(iface)
| true | true |
f70004a44b39e2f1be17fb0ebfe7da0897c5e85d | 671 | py | Python | eslearn/utils/lc_featureSelection_variance.py | dongmengshi/easylearn | df528aaa69c3cf61f5459a04671642eb49421dfb | [
"MIT"
] | 19 | 2020-02-29T06:00:18.000Z | 2022-01-24T01:30:14.000Z | eslearn/utils/lc_featureSelection_variance.py | dongmengshi/easylearn | df528aaa69c3cf61f5459a04671642eb49421dfb | [
"MIT"
] | 7 | 2020-04-02T03:05:21.000Z | 2020-11-11T11:45:05.000Z | eslearn/utils/lc_featureSelection_variance.py | dongmengshi/easylearn | df528aaa69c3cf61f5459a04671642eb49421dfb | [
"MIT"
] | 11 | 2020-03-03T03:02:15.000Z | 2020-11-11T14:09:55.000Z | # -*- coding: utf-8 -*-
"""
Created on Tue Jul 24 14:38:20 2018
dimension reduction with VarianceThreshold using sklearn.
Feature selector that removes all low-variance features.
@author: lenovo
"""
from sklearn.feature_selection import VarianceThreshold
import numpy as np
#
np.random.seed(1)
X = np.random.randn(100, 10)
X = np.hstack([X, np.zeros([100, 5])])
#
def featureSelection_variance(X, thrd):
sel = VarianceThreshold(threshold=thrd)
X_selected = sel.fit_transform(X)
mask = sel.get_support()
return X_selected, mask
X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
selector = VarianceThreshold()
selector.fit_transform(X)
selector.variances_
| 23.964286 | 57 | 0.709389 | from sklearn.feature_selection import VarianceThreshold
import numpy as np
np.random.seed(1)
X = np.random.randn(100, 10)
X = np.hstack([X, np.zeros([100, 5])])
def featureSelection_variance(X, thrd):
sel = VarianceThreshold(threshold=thrd)
X_selected = sel.fit_transform(X)
mask = sel.get_support()
return X_selected, mask
X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
selector = VarianceThreshold()
selector.fit_transform(X)
selector.variances_
| true | true |
f70004bcd049386ad073e2d45bf8fe56d0639a36 | 3,382 | py | Python | mnist/my_multi_tune3.py | silent567/examples | e9de12549125ecd93a4924f6b8e2bbf66d7635d9 | [
"BSD-3-Clause"
] | null | null | null | mnist/my_multi_tune3.py | silent567/examples | e9de12549125ecd93a4924f6b8e2bbf66d7635d9 | [
"BSD-3-Clause"
] | null | null | null | mnist/my_multi_tune3.py | silent567/examples | e9de12549125ecd93a4924f6b8e2bbf66d7635d9 | [
"BSD-3-Clause"
] | null | null | null | #!/usr/bin/env python
# coding=utf-8
from my_multi_main3 import main
import numpy as np
import argparse
import time
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--norm-flag', type=bool, default=False,
help='Triggering the Layer Normalization flag for attention scores')
parser.add_argument('--gamma', type=float, default=None,
help='Controlling the sparisty of gfusedmax/sparsemax, the smaller, the more sparse')
parser.add_argument('--lam', type=float, default=1.0,
help='Lambda: Controlling the smoothness of gfusedmax, the larger, the smoother')
parser.add_argument('--max-type', type=str, default='softmax',choices=['softmax','sparsemax','gfusedmax'],
help='mapping function in attention')
parser.add_argument('--optim-type', type=str, default='SGD',choices=['SGD','Adam'],
help='mapping function in attention')
parser.add_argument('--head-cnt', type=int, default=2, metavar='S', choices=[1,2,4,5,10],
help='Number of heads for attention (default: 1)')
args = parser.parse_args()
hyperparameter_choices = {
'lr':list(10**np.arange(-4,-1,0.5)),
'norm_flag': [True,False],
'gamma':list(10**np.arange(-1,3,0.5))+[None,],
'lam':list(10**np.arange(-2,2,0.5)),
'max_type':['softmax','sparsemax','gfusedmax'],
# 'max_type':['sparsemax'],
'optim_type':['SGD','Adam'],
'head_cnt':[1,2,4,5,10,20]
}
param_num = 25
record = np.zeros([param_num,len(hyperparameter_choices)+1])
record_name = 'record3_multi_%s.csv'%time.strftime('%Y-%m-%d_%H-%M-%S',time.localtime())
for n in range(param_num):
for param_index,(k,v) in enumerate(hyperparameter_choices.items()):
print(param_index,k)
value_index = np.random.choice(len(v))
if isinstance(v[value_index],str) or isinstance(v[value_index],bool) or v[value_index] is None:
record[n,param_index] = value_index
else:
record[n,param_index] = v[value_index]
setattr(args,k,v[value_index])
record[n,-1] = main(args)
np.savetxt(record_name, record, delimiter=',')
| 47.633803 | 106 | 0.642815 |
from my_multi_main3 import main
import numpy as np
import argparse
import time
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--norm-flag', type=bool, default=False,
help='Triggering the Layer Normalization flag for attention scores')
parser.add_argument('--gamma', type=float, default=None,
help='Controlling the sparisty of gfusedmax/sparsemax, the smaller, the more sparse')
parser.add_argument('--lam', type=float, default=1.0,
help='Lambda: Controlling the smoothness of gfusedmax, the larger, the smoother')
parser.add_argument('--max-type', type=str, default='softmax',choices=['softmax','sparsemax','gfusedmax'],
help='mapping function in attention')
parser.add_argument('--optim-type', type=str, default='SGD',choices=['SGD','Adam'],
help='mapping function in attention')
parser.add_argument('--head-cnt', type=int, default=2, metavar='S', choices=[1,2,4,5,10],
help='Number of heads for attention (default: 1)')
args = parser.parse_args()
hyperparameter_choices = {
'lr':list(10**np.arange(-4,-1,0.5)),
'norm_flag': [True,False],
'gamma':list(10**np.arange(-1,3,0.5))+[None,],
'lam':list(10**np.arange(-2,2,0.5)),
'max_type':['softmax','sparsemax','gfusedmax'],
'optim_type':['SGD','Adam'],
'head_cnt':[1,2,4,5,10,20]
}
param_num = 25
record = np.zeros([param_num,len(hyperparameter_choices)+1])
record_name = 'record3_multi_%s.csv'%time.strftime('%Y-%m-%d_%H-%M-%S',time.localtime())
for n in range(param_num):
for param_index,(k,v) in enumerate(hyperparameter_choices.items()):
print(param_index,k)
value_index = np.random.choice(len(v))
if isinstance(v[value_index],str) or isinstance(v[value_index],bool) or v[value_index] is None:
record[n,param_index] = value_index
else:
record[n,param_index] = v[value_index]
setattr(args,k,v[value_index])
record[n,-1] = main(args)
np.savetxt(record_name, record, delimiter=',')
| true | true |
f70004db8d93803fe1fd484a52ec6add2822ccb6 | 1,050 | py | Python | spiker/data/hdf5.py | duguyue100/spiker | 09437be393d7adf132f8ee2682e5b5b009c793a1 | [
"MIT"
] | 1 | 2021-01-13T10:46:44.000Z | 2021-01-13T10:46:44.000Z | spiker/data/hdf5.py | duguyue100/spiker | 09437be393d7adf132f8ee2682e5b5b009c793a1 | [
"MIT"
] | null | null | null | spiker/data/hdf5.py | duguyue100/spiker | 09437be393d7adf132f8ee2682e5b5b009c793a1 | [
"MIT"
] | null | null | null | """HDF5 related files.
This file contains a set of functions that related to read and write
HDF5 files.
Author: Yuhuang Hu
Email : [email protected]
"""
from __future__ import print_function, absolute_import
import h5py
from spiker import log
logger = log.get_logger("data-hdf5", log.DEBUG)
def init_hdf5(file_path, mode="w", cam_type="davis"):
"""Init HDF5 file object.
# Parameters
file_path : str
absolute path for the HDF5 file.
mode : str
w : for writing
r : for reading
cam_type : str
davis : for DAVIS camera
dvs : for DVS camera
# Returns
dataset : h5py.File
The file object of the given dataset
"""
if mode == "w":
dataset = h5py.File(file_path, mode=mode)
dataset.create_group("dvs")
dataset.create_group("extra")
if cam_type == "davis":
dataset.create_group("aps")
dataset.create_group("imu")
elif mode == "r":
dataset = h5py.File(file_path, mode=mode)
return dataset
| 22.826087 | 68 | 0.629524 | from __future__ import print_function, absolute_import
import h5py
from spiker import log
logger = log.get_logger("data-hdf5", log.DEBUG)
def init_hdf5(file_path, mode="w", cam_type="davis"):
if mode == "w":
dataset = h5py.File(file_path, mode=mode)
dataset.create_group("dvs")
dataset.create_group("extra")
if cam_type == "davis":
dataset.create_group("aps")
dataset.create_group("imu")
elif mode == "r":
dataset = h5py.File(file_path, mode=mode)
return dataset
| true | true |
f70006680091e477a9da34fc8c775b99d72def25 | 951 | py | Python | thirdparty/org/apache/arrow/flatbuf/FloatingPoint.py | mrocklin/pygdf | 2de9407427da9497ebdf8951a12857be0fab31bb | [
"Apache-2.0"
] | 5 | 2018-10-17T20:28:42.000Z | 2022-02-15T17:33:01.000Z | thirdparty/org/apache/arrow/flatbuf/FloatingPoint.py | mrocklin/pygdf | 2de9407427da9497ebdf8951a12857be0fab31bb | [
"Apache-2.0"
] | 19 | 2018-07-18T07:15:44.000Z | 2021-02-22T17:00:18.000Z | thirdparty/org/apache/arrow/flatbuf/FloatingPoint.py | mrocklin/pygdf | 2de9407427da9497ebdf8951a12857be0fab31bb | [
"Apache-2.0"
] | 2 | 2020-05-01T09:54:34.000Z | 2021-04-17T10:57:07.000Z | # automatically generated by the FlatBuffers compiler, do not modify
# namespace: flatbuf
import flatbuffers
class FloatingPoint(object):
__slots__ = ['_tab']
@classmethod
def GetRootAsFloatingPoint(cls, buf, offset):
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
x = FloatingPoint()
x.Init(buf, n + offset)
return x
# FloatingPoint
def Init(self, buf, pos):
self._tab = flatbuffers.table.Table(buf, pos)
# FloatingPoint
def Precision(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
if o != 0:
return self._tab.Get(flatbuffers.number_types.Int16Flags, o + self._tab.Pos)
return 0
def FloatingPointStart(builder): builder.StartObject(1)
def FloatingPointAddPrecision(builder, precision): builder.PrependInt16Slot(0, precision, 0)
def FloatingPointEnd(builder): return builder.EndObject()
| 30.677419 | 92 | 0.698212 |
import flatbuffers
class FloatingPoint(object):
__slots__ = ['_tab']
@classmethod
def GetRootAsFloatingPoint(cls, buf, offset):
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
x = FloatingPoint()
x.Init(buf, n + offset)
return x
def Init(self, buf, pos):
self._tab = flatbuffers.table.Table(buf, pos)
def Precision(self):
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
if o != 0:
return self._tab.Get(flatbuffers.number_types.Int16Flags, o + self._tab.Pos)
return 0
def FloatingPointStart(builder): builder.StartObject(1)
def FloatingPointAddPrecision(builder, precision): builder.PrependInt16Slot(0, precision, 0)
def FloatingPointEnd(builder): return builder.EndObject()
| true | true |
f70006c8c5153a3a1bb1f109dc563a53c20f0e43 | 162 | py | Python | .history/Classiles/scynced_lights_20210615191535.py | minefarmer/Coding101-OOP | d5655977559e3bd1acf6a4f185a6121cc3b05ce4 | [
"Unlicense"
] | null | null | null | .history/Classiles/scynced_lights_20210615191535.py | minefarmer/Coding101-OOP | d5655977559e3bd1acf6a4f185a6121cc3b05ce4 | [
"Unlicense"
] | null | null | null | .history/Classiles/scynced_lights_20210615191535.py | minefarmer/Coding101-OOP | d5655977559e3bd1acf6a4f185a6121cc3b05ce4 | [
"Unlicense"
] | null | null | null | """[Scynced Lights]
Class attributes are "shared"
Instance attributes are not shared.
"""
def sub(x, y):
f
class Light:
pass
a = Light()
b = Ligth()
| 10.125 | 35 | 0.62963 | def sub(x, y):
f
class Light:
pass
a = Light()
b = Ligth()
| true | true |
f70006d0df161d84dd7ec30a6d7506b5802d1f0c | 9,378 | py | Python | pyspider/libs/counter.py | willworks/pyspider | 9fc2ffa57324d1a42ef767289faa3a04f4d20f2e | [
"Apache-2.0"
] | 1 | 2015-11-08T07:33:31.000Z | 2015-11-08T07:33:31.000Z | pyspider/libs/counter.py | willworks/pyspider | 9fc2ffa57324d1a42ef767289faa3a04f4d20f2e | [
"Apache-2.0"
] | null | null | null | pyspider/libs/counter.py | willworks/pyspider | 9fc2ffa57324d1a42ef767289faa3a04f4d20f2e | [
"Apache-2.0"
] | null | null | null | #!/usr/bin/env python
# -*- encoding: utf-8 -*-
# vim: set et sw=4 ts=4 sts=4 ff=unix fenc=utf8:
# Author: Binux<[email protected]>
# http://binux.me
# Created on 2012-11-14 17:09:50
from __future__ import unicode_literals, division, absolute_import
import time
import logging
from collections import deque
try:
from UserDict import DictMixin
except ImportError:
from collections import Mapping as DictMixin
import six
from six import iteritems
from six.moves import cPickle
class BaseCounter(object):
def __init__(self):
raise NotImplementedError
def event(self, value=1):
"""Fire a event."""
raise NotImplementedError
def value(self, value):
"""Set counter value."""
raise NotImplementedError
@property
def avg(self):
"""Get average value"""
raise NotImplementedError
@property
def sum(self):
"""Get sum of counter"""
raise NotImplementedError
def empty(self):
"""Clear counter"""
raise NotImplementedError
class TotalCounter(BaseCounter):
"""Total counter"""
def __init__(self):
self.cnt = 0
def event(self, value=1):
self.cnt += value
def value(self, value):
self.cnt = value
@property
def avg(self):
return self.cnt
@property
def sum(self):
return self.cnt
def empty(self):
return self.cnt == 0
class AverageWindowCounter(BaseCounter):
"""
Record last N(window) value
"""
def __init__(self, window_size=300):
self.window_size = window_size
self.values = deque(maxlen=window_size)
def event(self, value=1):
self.values.append(value)
value = event
@property
def avg(self):
return self.sum / len(self.values)
@property
def sum(self):
return sum(self.values)
def empty(self):
if not self.values:
return True
class TimebaseAverageWindowCounter(BaseCounter):
"""
Record last window_size * window_interval seconds values.
records will trim evert window_interval seconds
"""
def __init__(self, window_size=30, window_interval=10):
self.max_window_size = window_size
self.window_size = 0
self.window_interval = window_interval
self.values = deque(maxlen=window_size)
self.times = deque(maxlen=window_size)
self.cache_value = 0
self.cache_start = None
self._first_data_time = None
def event(self, value=1):
now = time.time()
if self._first_data_time is None:
self._first_data_time = now
if self.cache_start is None:
self.cache_value = value
self.cache_start = now
elif now - self.cache_start > self.window_interval:
self.values.append(self.cache_value)
self.times.append(self.cache_start)
self.on_append(self.cache_value, self.cache_start)
self.cache_value = value
self.cache_start = now
else:
self.cache_value += value
return self
def value(self, value):
self.cache_value = value
def _trim_window(self):
now = time.time()
if self.cache_start and now - self.cache_start > self.window_interval:
self.values.append(self.cache_value)
self.times.append(self.cache_start)
self.on_append(self.cache_value, self.cache_start)
self.cache_value = 0
self.cache_start = None
if self.window_size != self.max_window_size and self._first_data_time is not None:
time_passed = now - self._first_data_time
self.window_size = min(self.max_window_size, time_passed / self.window_interval)
window_limit = now - self.window_size * self.window_interval
while self.times and self.times[0] < window_limit:
self.times.popleft()
self.values.popleft()
@property
def avg(self):
sum = float(self.sum)
if not self.window_size:
return 0
return sum / self.window_size / self.window_interval
@property
def sum(self):
self._trim_window()
return sum(self.values) + self.cache_value
def empty(self):
self._trim_window()
if not self.values and not self.cache_start:
return True
def on_append(self, value, time):
pass
class CounterValue(DictMixin):
"""
A dict like value item for CounterManager.
"""
def __init__(self, manager, keys):
self.manager = manager
self._keys = keys
def __getitem__(self, key):
if key == '__value__':
key = self._keys
return self.manager.counters[key]
else:
key = self._keys + (key, )
available_keys = []
for _key in self.manager.counters:
if _key[:len(key)] == key:
available_keys.append(_key)
if len(available_keys) == 0:
raise KeyError
elif len(available_keys) == 1:
if available_keys[0] == key:
return self.manager.counters[key]
else:
return CounterValue(self.manager, key)
else:
return CounterValue(self.manager, key)
def __len__(self):
return len(self.keys())
def __iter__(self):
return iter(self.keys())
def __contains__(self, key):
return key in self.keys()
def keys(self):
result = set()
for key in self.manager.counters:
if key[:len(self._keys)] == self._keys:
key = key[len(self._keys):]
result.add(key[0] if key else '__value__')
return result
def to_dict(self, get_value=None):
"""Dump counters as a dict"""
result = {}
for key, value in iteritems(self):
if isinstance(value, BaseCounter):
if get_value is not None:
value = getattr(value, get_value)
result[key] = value
else:
result[key] = value.to_dict(get_value)
return result
class CounterManager(DictMixin):
"""
A dict like counter manager.
When using a tuple as event key, say: ('foo', 'bar'), You can visite counter
with manager['foo']['bar']. Or get all counters which first element is 'foo'
by manager['foo'].
It's useful for a group of counters.
"""
def __init__(self, cls=TimebaseAverageWindowCounter):
"""init manager with Counter cls"""
self.cls = cls
self.counters = {}
def event(self, key, value=1):
"""Fire a event of a counter by counter key"""
if isinstance(key, six.string_types):
key = (key, )
assert isinstance(key, tuple), "event key type error"
if key not in self.counters:
self.counters[key] = self.cls()
self.counters[key].event(value)
return self
def value(self, key, value=1):
"""Set value of a counter by counter key"""
if isinstance(key, six.string_types):
key = (key, )
assert isinstance(key, tuple), "event key type error"
if key not in self.counters:
self.counters[key] = self.cls()
self.counters[key].value(value)
return self
def trim(self):
"""Clear not used counters"""
for key, value in list(iteritems(self.counters)):
if value.empty():
del self.counters[key]
def __getitem__(self, key):
key = (key, )
available_keys = []
for _key in self.counters:
if _key[:len(key)] == key:
available_keys.append(_key)
if len(available_keys) == 0:
raise KeyError
elif len(available_keys) == 1:
if available_keys[0] == key:
return self.counters[key]
else:
return CounterValue(self, key)
else:
return CounterValue(self, key)
def __iter__(self):
return iter(self.keys())
def __len__(self):
return len(self.keys())
def keys(self):
result = set()
for key in self.counters:
result.add(key[0] if key else ())
return result
def to_dict(self, get_value=None):
"""Dump counters as a dict"""
self.trim()
result = {}
for key, value in iteritems(self):
if isinstance(value, BaseCounter):
if get_value is not None:
value = getattr(value, get_value)
result[key] = value
else:
result[key] = value.to_dict(get_value)
return result
def dump(self, filename):
"""Dump counters to file"""
try:
with open(filename, 'wb') as fp:
cPickle.dump(self.counters, fp)
except:
logging.error("can't dump counter to file: %s" % filename)
return False
return True
def load(self, filename):
"""Load counters to file"""
try:
with open(filename) as fp:
self.counters = cPickle.load(fp)
except:
logging.debug("can't load counter from file: %s" % filename)
return False
return True
| 27.341108 | 92 | 0.579335 |
from __future__ import unicode_literals, division, absolute_import
import time
import logging
from collections import deque
try:
from UserDict import DictMixin
except ImportError:
from collections import Mapping as DictMixin
import six
from six import iteritems
from six.moves import cPickle
class BaseCounter(object):
def __init__(self):
raise NotImplementedError
def event(self, value=1):
raise NotImplementedError
def value(self, value):
raise NotImplementedError
@property
def avg(self):
raise NotImplementedError
@property
def sum(self):
raise NotImplementedError
def empty(self):
raise NotImplementedError
class TotalCounter(BaseCounter):
def __init__(self):
self.cnt = 0
def event(self, value=1):
self.cnt += value
def value(self, value):
self.cnt = value
@property
def avg(self):
return self.cnt
@property
def sum(self):
return self.cnt
def empty(self):
return self.cnt == 0
class AverageWindowCounter(BaseCounter):
def __init__(self, window_size=300):
self.window_size = window_size
self.values = deque(maxlen=window_size)
def event(self, value=1):
self.values.append(value)
value = event
@property
def avg(self):
return self.sum / len(self.values)
@property
def sum(self):
return sum(self.values)
def empty(self):
if not self.values:
return True
class TimebaseAverageWindowCounter(BaseCounter):
def __init__(self, window_size=30, window_interval=10):
self.max_window_size = window_size
self.window_size = 0
self.window_interval = window_interval
self.values = deque(maxlen=window_size)
self.times = deque(maxlen=window_size)
self.cache_value = 0
self.cache_start = None
self._first_data_time = None
def event(self, value=1):
now = time.time()
if self._first_data_time is None:
self._first_data_time = now
if self.cache_start is None:
self.cache_value = value
self.cache_start = now
elif now - self.cache_start > self.window_interval:
self.values.append(self.cache_value)
self.times.append(self.cache_start)
self.on_append(self.cache_value, self.cache_start)
self.cache_value = value
self.cache_start = now
else:
self.cache_value += value
return self
def value(self, value):
self.cache_value = value
def _trim_window(self):
now = time.time()
if self.cache_start and now - self.cache_start > self.window_interval:
self.values.append(self.cache_value)
self.times.append(self.cache_start)
self.on_append(self.cache_value, self.cache_start)
self.cache_value = 0
self.cache_start = None
if self.window_size != self.max_window_size and self._first_data_time is not None:
time_passed = now - self._first_data_time
self.window_size = min(self.max_window_size, time_passed / self.window_interval)
window_limit = now - self.window_size * self.window_interval
while self.times and self.times[0] < window_limit:
self.times.popleft()
self.values.popleft()
@property
def avg(self):
sum = float(self.sum)
if not self.window_size:
return 0
return sum / self.window_size / self.window_interval
@property
def sum(self):
self._trim_window()
return sum(self.values) + self.cache_value
def empty(self):
self._trim_window()
if not self.values and not self.cache_start:
return True
def on_append(self, value, time):
pass
class CounterValue(DictMixin):
def __init__(self, manager, keys):
self.manager = manager
self._keys = keys
def __getitem__(self, key):
if key == '__value__':
key = self._keys
return self.manager.counters[key]
else:
key = self._keys + (key, )
available_keys = []
for _key in self.manager.counters:
if _key[:len(key)] == key:
available_keys.append(_key)
if len(available_keys) == 0:
raise KeyError
elif len(available_keys) == 1:
if available_keys[0] == key:
return self.manager.counters[key]
else:
return CounterValue(self.manager, key)
else:
return CounterValue(self.manager, key)
def __len__(self):
return len(self.keys())
def __iter__(self):
return iter(self.keys())
def __contains__(self, key):
return key in self.keys()
def keys(self):
result = set()
for key in self.manager.counters:
if key[:len(self._keys)] == self._keys:
key = key[len(self._keys):]
result.add(key[0] if key else '__value__')
return result
def to_dict(self, get_value=None):
result = {}
for key, value in iteritems(self):
if isinstance(value, BaseCounter):
if get_value is not None:
value = getattr(value, get_value)
result[key] = value
else:
result[key] = value.to_dict(get_value)
return result
class CounterManager(DictMixin):
def __init__(self, cls=TimebaseAverageWindowCounter):
self.cls = cls
self.counters = {}
def event(self, key, value=1):
if isinstance(key, six.string_types):
key = (key, )
assert isinstance(key, tuple), "event key type error"
if key not in self.counters:
self.counters[key] = self.cls()
self.counters[key].event(value)
return self
def value(self, key, value=1):
if isinstance(key, six.string_types):
key = (key, )
assert isinstance(key, tuple), "event key type error"
if key not in self.counters:
self.counters[key] = self.cls()
self.counters[key].value(value)
return self
def trim(self):
for key, value in list(iteritems(self.counters)):
if value.empty():
del self.counters[key]
def __getitem__(self, key):
key = (key, )
available_keys = []
for _key in self.counters:
if _key[:len(key)] == key:
available_keys.append(_key)
if len(available_keys) == 0:
raise KeyError
elif len(available_keys) == 1:
if available_keys[0] == key:
return self.counters[key]
else:
return CounterValue(self, key)
else:
return CounterValue(self, key)
def __iter__(self):
return iter(self.keys())
def __len__(self):
return len(self.keys())
def keys(self):
result = set()
for key in self.counters:
result.add(key[0] if key else ())
return result
def to_dict(self, get_value=None):
self.trim()
result = {}
for key, value in iteritems(self):
if isinstance(value, BaseCounter):
if get_value is not None:
value = getattr(value, get_value)
result[key] = value
else:
result[key] = value.to_dict(get_value)
return result
def dump(self, filename):
try:
with open(filename, 'wb') as fp:
cPickle.dump(self.counters, fp)
except:
logging.error("can't dump counter to file: %s" % filename)
return False
return True
def load(self, filename):
try:
with open(filename) as fp:
self.counters = cPickle.load(fp)
except:
logging.debug("can't load counter from file: %s" % filename)
return False
return True
| true | true |
f700088372c0eeaff049211c5fe92cdccb5fa804 | 6,706 | py | Python | src/transformers/models/vit/feature_extraction_vit.py | djroxx2000/transformers | 77770ec79883343d32051cfb6a04f64523cd8df1 | [
"Apache-2.0"
] | 723 | 2020-07-16T13:02:25.000Z | 2022-03-31T21:03:55.000Z | src/transformers/models/vit/feature_extraction_vit.py | 4nalog/transformers | 76cadb7943c8492ec481f4f3925e9e8793a32c9d | [
"Apache-2.0"
] | 170 | 2020-07-16T14:39:11.000Z | 2022-03-31T13:02:11.000Z | src/transformers/models/vit/feature_extraction_vit.py | 4nalog/transformers | 76cadb7943c8492ec481f4f3925e9e8793a32c9d | [
"Apache-2.0"
] | 131 | 2020-07-16T14:38:16.000Z | 2022-03-29T19:43:18.000Z | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for ViT."""
from typing import List, Optional, Union
import numpy as np
from PIL import Image
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...file_utils import TensorType
from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import logging
logger = logging.get_logger(__name__)
class ViTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a ViT feature extractor.
This feature extractor inherits from :class:`~transformers.FeatureExtractionMixin` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods.
Args:
do_resize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to resize the input to a certain :obj:`size`.
size (:obj:`int` or :obj:`Tuple(int)`, `optional`, defaults to 224):
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
integer is provided, then the input will be resized to (size, size). Only has an effect if :obj:`do_resize`
is set to :obj:`True`.
resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BILINEAR`):
An optional resampling filter. This can be one of :obj:`PIL.Image.NEAREST`, :obj:`PIL.Image.BOX`,
:obj:`PIL.Image.BILINEAR`, :obj:`PIL.Image.HAMMING`, :obj:`PIL.Image.BICUBIC` or :obj:`PIL.Image.LANCZOS`.
Only has an effect if :obj:`do_resize` is set to :obj:`True`.
do_normalize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to normalize the input with mean and standard deviation.
image_mean (:obj:`List[int]`, defaults to :obj:`[0.5, 0.5, 0.5]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (:obj:`List[int]`, defaults to :obj:`[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=224,
resample=Image.BILINEAR,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __call__(
self,
images: Union[
Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] # noqa
],
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s).
.. warning::
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
Args:
images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`, defaults to :obj:`'np'`):
If set, will return tensors of a particular framework. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return NumPy :obj:`np.ndarray` objects.
* :obj:`'jax'`: Return JAX :obj:`jnp.ndarray` objects.
Returns:
:class:`~transformers.BatchFeature`: A :class:`~transformers.BatchFeature` with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
"""
# Input type checking for clearer error
valid_images = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
# transformations (resizing + normalization)
if self.do_resize and self.size is not None:
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
# return as BatchFeature
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
| 45.310811 | 166 | 0.646287 |
from typing import List, Optional, Union
import numpy as np
from PIL import Image
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...file_utils import TensorType
from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import logging
logger = logging.get_logger(__name__)
class ViTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=224,
resample=Image.BILINEAR,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __call__(
self,
images: Union[
Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"] ],
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchFeature:
valid_images = False
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
if not is_batched:
images = [images]
if self.do_resize and self.size is not None:
images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
if self.do_normalize:
images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
| true | true |
f700096cbce5db1538215892bb1dcc76b6c37987 | 734 | py | Python | hier/project-euler/euler-067-hackerrank/euler067.py | EliahKagan/old-practice-snapshot | 1b53897eac6902f8d867c8f154ce2a489abb8133 | [
"0BSD"
] | null | null | null | hier/project-euler/euler-067-hackerrank/euler067.py | EliahKagan/old-practice-snapshot | 1b53897eac6902f8d867c8f154ce2a489abb8133 | [
"0BSD"
] | null | null | null | hier/project-euler/euler-067-hackerrank/euler067.py | EliahKagan/old-practice-snapshot | 1b53897eac6902f8d867c8f154ce2a489abb8133 | [
"0BSD"
] | null | null | null | #!/usr/bin/env python3
UNKNOWN = -1
def read_val():
return int(input())
def read_row():
return list(map(int, input().split()))
def read_grid():
return [read_row() for _ in range(read_val())]
def make_blank_row(i):
return [UNKNOWN] * i
def make_blank_grid(n):
return [make_blank_row(i) for i in range(1, n + 1)]
def compute_max_path_sum(grid):
memo = make_blank_grid(len(grid))
def dfs(i, j):
if i == len(grid):
return 0
if memo[i][j] == UNKNOWN:
memo[i][j] = grid[i][j] + max(dfs(i + 1, j), dfs(i + 1, j + 1))
return memo[i][j]
return dfs(0, 0)
for t in range(read_val()):
print(compute_max_path_sum(read_grid()))
| 20.388889 | 75 | 0.564033 |
UNKNOWN = -1
def read_val():
return int(input())
def read_row():
return list(map(int, input().split()))
def read_grid():
return [read_row() for _ in range(read_val())]
def make_blank_row(i):
return [UNKNOWN] * i
def make_blank_grid(n):
return [make_blank_row(i) for i in range(1, n + 1)]
def compute_max_path_sum(grid):
memo = make_blank_grid(len(grid))
def dfs(i, j):
if i == len(grid):
return 0
if memo[i][j] == UNKNOWN:
memo[i][j] = grid[i][j] + max(dfs(i + 1, j), dfs(i + 1, j + 1))
return memo[i][j]
return dfs(0, 0)
for t in range(read_val()):
print(compute_max_path_sum(read_grid()))
| true | true |
f7000a85ea7a735edb59575f149fc6ff7ce4b461 | 1,866 | py | Python | tools/apps/find_blender.py | SeijiEmery/unity_tools | cb401e6979b95c081a2ab3f944fc6e4419ccfd0e | [
"MIT"
] | null | null | null | tools/apps/find_blender.py | SeijiEmery/unity_tools | cb401e6979b95c081a2ab3f944fc6e4419ccfd0e | [
"MIT"
] | null | null | null | tools/apps/find_blender.py | SeijiEmery/unity_tools | cb401e6979b95c081a2ab3f944fc6e4419ccfd0e | [
"MIT"
] | null | null | null | import platform
# print(platform.system())
operating_system = platform.system().lower()
if operating_system == 'darwin':
from .blender_utils_macos import get_installed_blender_versions
operating_system_name = 'macos'
elif operating_system == 'linux':
from .blender_utils_linux import get_installed_blender_versions
operating_system_name = 'linux'
elif operating_system == 'windows':
from .blender_utils_windows import get_installed_blender_versions
operating_system_name = 'windows'
else:
raise Exception("Unimplemented for OS {}".format(operating_system))
from .blender_utils_web import get_blender_version_download_links
def find_blender(version):
# TODO: add fuzzy version matching, ie. '>=2.80', '~2.80', '<2.80', etc.
installed_versions = get_installed_blender_versions()
if version in installed_versions:
return installed_versions[version]
else:
print("blender version '{}' not found; found {} version(s):".format(version, len(installed_versions)))
for v, path in installed_versions.items():
print(" {}: {}".format(v, path))
print("searching web archive...")
versions = get_blender_version_download_links(version, operating_system_name)
print("found {} download(s) for blender version '{}', platform '{}':".format(len(versions), version, operating_system_name))
for url in versions:
print(" {}".format(url))
if __name__ == '__main__':
for version, exec_path in get_installed_blender_versions().items():
print("found blender {version}: {path}".format(version=version,
path=exec_path))
blender = find_blender('2.80')
if blender:
print("Found blender: '{}'".format(blender))
else:
print("No matching blender version installed :(")
| 40.565217 | 132 | 0.681136 | import platform
operating_system = platform.system().lower()
if operating_system == 'darwin':
from .blender_utils_macos import get_installed_blender_versions
operating_system_name = 'macos'
elif operating_system == 'linux':
from .blender_utils_linux import get_installed_blender_versions
operating_system_name = 'linux'
elif operating_system == 'windows':
from .blender_utils_windows import get_installed_blender_versions
operating_system_name = 'windows'
else:
raise Exception("Unimplemented for OS {}".format(operating_system))
from .blender_utils_web import get_blender_version_download_links
def find_blender(version):
installed_versions = get_installed_blender_versions()
if version in installed_versions:
return installed_versions[version]
else:
print("blender version '{}' not found; found {} version(s):".format(version, len(installed_versions)))
for v, path in installed_versions.items():
print(" {}: {}".format(v, path))
print("searching web archive...")
versions = get_blender_version_download_links(version, operating_system_name)
print("found {} download(s) for blender version '{}', platform '{}':".format(len(versions), version, operating_system_name))
for url in versions:
print(" {}".format(url))
if __name__ == '__main__':
for version, exec_path in get_installed_blender_versions().items():
print("found blender {version}: {path}".format(version=version,
path=exec_path))
blender = find_blender('2.80')
if blender:
print("Found blender: '{}'".format(blender))
else:
print("No matching blender version installed :(")
| true | true |
f7000b2945cb3703ec7fbc7ccf8cd64d39f12e81 | 8,196 | py | Python | codes/data/image_corruptor.py | neonbjb/DL-Art-School | a6f0f854b987ac724e258af8b042ea4459a571bc | [
"Apache-2.0"
] | 12 | 2020-12-13T12:45:03.000Z | 2022-03-29T09:58:15.000Z | codes/data/image_corruptor.py | neonbjb/DL-Art-School | a6f0f854b987ac724e258af8b042ea4459a571bc | [
"Apache-2.0"
] | 1 | 2020-12-31T01:12:45.000Z | 2021-03-31T11:43:52.000Z | codes/data/image_corruptor.py | neonbjb/DL-Art-School | a6f0f854b987ac724e258af8b042ea4459a571bc | [
"Apache-2.0"
] | 3 | 2020-12-14T06:04:04.000Z | 2020-12-26T19:11:41.000Z | import functools
import random
from math import cos, pi
import cv2
import kornia
import numpy as np
import torch
from kornia.augmentation import ColorJitter
from data.util import read_img
from PIL import Image
from io import BytesIO
# Get a rough visualization of the above distribution. (Y-axis is meaningless, just spreads data)
from utils.util import opt_get
'''
if __name__ == '__main__':
import numpy as np
import matplotlib.pyplot as plt
data = np.asarray([get_rand() for _ in range(5000)])
plt.plot(data, np.random.uniform(size=(5000,)), 'x')
plt.show()
'''
def kornia_color_jitter_numpy(img, setting):
if setting * 255 > 1:
# I'm using Kornia's ColorJitter, which requires pytorch arrays in b,c,h,w format.
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
img = ColorJitter(setting, setting, setting, setting)(img)
img = img.squeeze(0).permute(1,2,0).numpy()
return img
# Performs image corruption on a list of images from a configurable set of corruption
# options.
class ImageCorruptor:
def __init__(self, opt):
self.opt = opt
self.reset_random()
self.blur_scale = opt['corruption_blur_scale'] if 'corruption_blur_scale' in opt.keys() else 1
self.fixed_corruptions = opt['fixed_corruptions'] if 'fixed_corruptions' in opt.keys() else []
self.num_corrupts = opt['num_corrupts_per_image'] if 'num_corrupts_per_image' in opt.keys() else 0
self.cosine_bias = opt_get(opt, ['cosine_bias'], True)
if self.num_corrupts == 0:
return
else:
self.random_corruptions = opt['random_corruptions'] if 'random_corruptions' in opt.keys() else []
def reset_random(self):
if 'random_seed' in self.opt.keys():
self.rand = random.Random(self.opt['random_seed'])
else:
self.rand = random.Random()
# Feeds a random uniform through a cosine distribution to slightly bias corruptions towards "uncorrupted".
# Return is on [0,1] with a bias towards 0.
def get_rand(self):
r = self.rand.random()
if self.cosine_bias:
return 1 - cos(r * pi / 2)
else:
return r
def corrupt_images(self, imgs, return_entropy=False):
if self.num_corrupts == 0 and not self.fixed_corruptions:
if return_entropy:
return imgs, []
else:
return imgs
if self.num_corrupts == 0:
augmentations = []
else:
augmentations = random.choices(self.random_corruptions, k=self.num_corrupts)
# Sources of entropy
corrupted_imgs = []
entropy = []
undo_fns = []
applied_augs = augmentations + self.fixed_corruptions
for img in imgs:
for aug in augmentations:
r = self.get_rand()
img, undo_fn = self.apply_corruption(img, aug, r, applied_augs)
if undo_fn is not None:
undo_fns.append(undo_fn)
for aug in self.fixed_corruptions:
r = self.get_rand()
img, undo_fn = self.apply_corruption(img, aug, r, applied_augs)
entropy.append(r)
if undo_fn is not None:
undo_fns.append(undo_fn)
# Apply undo_fns after all corruptions are finished, in same order.
for ufn in undo_fns:
img = ufn(img)
corrupted_imgs.append(img)
if return_entropy:
return corrupted_imgs, entropy
else:
return corrupted_imgs
def apply_corruption(self, img, aug, rand_val, applied_augmentations):
undo_fn = None
if 'color_quantization' in aug:
# Color quantization
quant_div = 2 ** (int(rand_val * 10 / 3) + 2)
img = img * 255
img = (img // quant_div) * quant_div
img = img / 255
elif 'color_jitter' in aug:
lo_end = 0
hi_end = .2
setting = rand_val * (hi_end - lo_end) + lo_end
img = kornia_color_jitter_numpy(img, setting)
elif 'gaussian_blur' in aug:
img = cv2.GaussianBlur(img, (0,0), self.blur_scale*rand_val*1.5)
elif 'motion_blur' in aug:
# Motion blur
intensity = self.blur_scale*rand_val * 3 + 1
angle = random.randint(0,360)
k = np.zeros((intensity, intensity), dtype=np.float32)
k[(intensity - 1) // 2, :] = np.ones(intensity, dtype=np.float32)
k = cv2.warpAffine(k, cv2.getRotationMatrix2D((intensity / 2 - 0.5, intensity / 2 - 0.5), angle, 1.0),
(intensity, intensity))
k = k * (1.0 / np.sum(k))
img = cv2.filter2D(img, -1, k)
elif 'block_noise' in aug:
# Large distortion blocks in part of an img, such as is used to mask out a face.
pass
elif 'lq_resampling' in aug:
# Random mode interpolation HR->LR->HR
if 'lq_resampling4x' == aug:
scale = 4
else:
if rand_val < .3:
scale = 1
elif rand_val < .7:
scale = 2
else:
scale = 4
if scale > 1:
interpolation_modes = [cv2.INTER_NEAREST, cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_LANCZOS4]
mode = random.randint(0,4) % len(interpolation_modes)
# Downsample first, then upsample using the random mode.
img = cv2.resize(img, dsize=(img.shape[1]//scale, img.shape[0]//scale), interpolation=mode)
def lq_resampling_undo_fn(scale, img):
return cv2.resize(img, dsize=(img.shape[1]*scale, img.shape[0]*scale), interpolation=cv2.INTER_LINEAR)
undo_fn = functools.partial(lq_resampling_undo_fn, scale)
elif 'color_shift' in aug:
# Color shift
pass
elif 'interlacing' in aug:
# Interlacing distortion
pass
elif 'chromatic_aberration' in aug:
# Chromatic aberration
pass
elif 'noise' in aug:
# Random noise
if 'noise-5' == aug:
noise_intensity = 5 / 255.0
else:
noise_intensity = (rand_val*6) / 255.0
img += np.random.rand(*img.shape) * noise_intensity
elif 'jpeg' in aug:
if 'noise' not in applied_augmentations and 'noise-5' not in applied_augmentations:
if aug == 'jpeg':
lo=10
range=20
elif aug == 'jpeg-low':
lo=15
range=10
elif aug == 'jpeg-medium':
lo=23
range=25
elif aug == 'jpeg-broad':
lo=15
range=60
elif aug == 'jpeg-normal':
lo=47
range=35
else:
raise NotImplementedError("specified jpeg corruption doesn't exist")
# JPEG compression
qf = (int((1-rand_val)*range) + lo)
# Use PIL to perform a mock compression to a data buffer, then swap back to cv2.
img = (img * 255).astype(np.uint8)
img = Image.fromarray(img)
buffer = BytesIO()
img.save(buffer, "JPEG", quality=qf, optimize=True)
buffer.seek(0)
jpeg_img_bytes = np.asarray(bytearray(buffer.read()), dtype="uint8")
img = read_img("buffer", jpeg_img_bytes, rgb=True)
elif 'saturation' in aug:
# Lightening / saturation
saturation = rand_val * .3
img = np.clip(img + saturation, a_max=1, a_min=0)
elif 'greyscale' in aug:
img = np.tile(np.mean(img, axis=2, keepdims=True), [1,1,3])
elif 'none' not in aug:
raise NotImplementedError("Augmentation doesn't exist")
return img, undo_fn
| 39.028571 | 122 | 0.554173 | import functools
import random
from math import cos, pi
import cv2
import kornia
import numpy as np
import torch
from kornia.augmentation import ColorJitter
from data.util import read_img
from PIL import Image
from io import BytesIO
from utils.util import opt_get
def kornia_color_jitter_numpy(img, setting):
if setting * 255 > 1:
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
img = ColorJitter(setting, setting, setting, setting)(img)
img = img.squeeze(0).permute(1,2,0).numpy()
return img
class ImageCorruptor:
def __init__(self, opt):
self.opt = opt
self.reset_random()
self.blur_scale = opt['corruption_blur_scale'] if 'corruption_blur_scale' in opt.keys() else 1
self.fixed_corruptions = opt['fixed_corruptions'] if 'fixed_corruptions' in opt.keys() else []
self.num_corrupts = opt['num_corrupts_per_image'] if 'num_corrupts_per_image' in opt.keys() else 0
self.cosine_bias = opt_get(opt, ['cosine_bias'], True)
if self.num_corrupts == 0:
return
else:
self.random_corruptions = opt['random_corruptions'] if 'random_corruptions' in opt.keys() else []
def reset_random(self):
if 'random_seed' in self.opt.keys():
self.rand = random.Random(self.opt['random_seed'])
else:
self.rand = random.Random()
def get_rand(self):
r = self.rand.random()
if self.cosine_bias:
return 1 - cos(r * pi / 2)
else:
return r
def corrupt_images(self, imgs, return_entropy=False):
if self.num_corrupts == 0 and not self.fixed_corruptions:
if return_entropy:
return imgs, []
else:
return imgs
if self.num_corrupts == 0:
augmentations = []
else:
augmentations = random.choices(self.random_corruptions, k=self.num_corrupts)
corrupted_imgs = []
entropy = []
undo_fns = []
applied_augs = augmentations + self.fixed_corruptions
for img in imgs:
for aug in augmentations:
r = self.get_rand()
img, undo_fn = self.apply_corruption(img, aug, r, applied_augs)
if undo_fn is not None:
undo_fns.append(undo_fn)
for aug in self.fixed_corruptions:
r = self.get_rand()
img, undo_fn = self.apply_corruption(img, aug, r, applied_augs)
entropy.append(r)
if undo_fn is not None:
undo_fns.append(undo_fn)
for ufn in undo_fns:
img = ufn(img)
corrupted_imgs.append(img)
if return_entropy:
return corrupted_imgs, entropy
else:
return corrupted_imgs
def apply_corruption(self, img, aug, rand_val, applied_augmentations):
undo_fn = None
if 'color_quantization' in aug:
quant_div = 2 ** (int(rand_val * 10 / 3) + 2)
img = img * 255
img = (img // quant_div) * quant_div
img = img / 255
elif 'color_jitter' in aug:
lo_end = 0
hi_end = .2
setting = rand_val * (hi_end - lo_end) + lo_end
img = kornia_color_jitter_numpy(img, setting)
elif 'gaussian_blur' in aug:
img = cv2.GaussianBlur(img, (0,0), self.blur_scale*rand_val*1.5)
elif 'motion_blur' in aug:
intensity = self.blur_scale*rand_val * 3 + 1
angle = random.randint(0,360)
k = np.zeros((intensity, intensity), dtype=np.float32)
k[(intensity - 1) // 2, :] = np.ones(intensity, dtype=np.float32)
k = cv2.warpAffine(k, cv2.getRotationMatrix2D((intensity / 2 - 0.5, intensity / 2 - 0.5), angle, 1.0),
(intensity, intensity))
k = k * (1.0 / np.sum(k))
img = cv2.filter2D(img, -1, k)
elif 'block_noise' in aug:
pass
elif 'lq_resampling' in aug:
if 'lq_resampling4x' == aug:
scale = 4
else:
if rand_val < .3:
scale = 1
elif rand_val < .7:
scale = 2
else:
scale = 4
if scale > 1:
interpolation_modes = [cv2.INTER_NEAREST, cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_LANCZOS4]
mode = random.randint(0,4) % len(interpolation_modes)
img = cv2.resize(img, dsize=(img.shape[1]//scale, img.shape[0]//scale), interpolation=mode)
def lq_resampling_undo_fn(scale, img):
return cv2.resize(img, dsize=(img.shape[1]*scale, img.shape[0]*scale), interpolation=cv2.INTER_LINEAR)
undo_fn = functools.partial(lq_resampling_undo_fn, scale)
elif 'color_shift' in aug:
pass
elif 'interlacing' in aug:
pass
elif 'chromatic_aberration' in aug:
pass
elif 'noise' in aug:
if 'noise-5' == aug:
noise_intensity = 5 / 255.0
else:
noise_intensity = (rand_val*6) / 255.0
img += np.random.rand(*img.shape) * noise_intensity
elif 'jpeg' in aug:
if 'noise' not in applied_augmentations and 'noise-5' not in applied_augmentations:
if aug == 'jpeg':
lo=10
range=20
elif aug == 'jpeg-low':
lo=15
range=10
elif aug == 'jpeg-medium':
lo=23
range=25
elif aug == 'jpeg-broad':
lo=15
range=60
elif aug == 'jpeg-normal':
lo=47
range=35
else:
raise NotImplementedError("specified jpeg corruption doesn't exist")
# JPEG compression
qf = (int((1-rand_val)*range) + lo)
# Use PIL to perform a mock compression to a data buffer, then swap back to cv2.
img = (img * 255).astype(np.uint8)
img = Image.fromarray(img)
buffer = BytesIO()
img.save(buffer, "JPEG", quality=qf, optimize=True)
buffer.seek(0)
jpeg_img_bytes = np.asarray(bytearray(buffer.read()), dtype="uint8")
img = read_img("buffer", jpeg_img_bytes, rgb=True)
elif 'saturation' in aug:
# Lightening / saturation
saturation = rand_val * .3
img = np.clip(img + saturation, a_max=1, a_min=0)
elif 'greyscale' in aug:
img = np.tile(np.mean(img, axis=2, keepdims=True), [1,1,3])
elif 'none' not in aug:
raise NotImplementedError("Augmentation doesn't exist")
return img, undo_fn
| true | true |
f7000b6751e6ca87c8cdd1ca6b7921d866ec80c7 | 159 | py | Python | tests/basics/bytes_format_modulo.py | geowor01/micropython | 7fb13eeef4a85f21cae36f1d502bcc53880e1815 | [
"MIT"
] | 7 | 2019-10-18T13:41:39.000Z | 2022-03-15T17:27:57.000Z | tests/basics/bytes_format_modulo.py | geowor01/micropython | 7fb13eeef4a85f21cae36f1d502bcc53880e1815 | [
"MIT"
] | null | null | null | tests/basics/bytes_format_modulo.py | geowor01/micropython | 7fb13eeef4a85f21cae36f1d502bcc53880e1815 | [
"MIT"
] | 2 | 2020-06-23T09:10:15.000Z | 2020-12-22T06:42:14.000Z | # This test requires CPython3.5
print(b"%%" % ())
print(b"=%d=" % 1)
print(b"=%d=%d=" % (1, 2))
print(b"=%s=" % b"str")
print(b"=%r=" % b"str")
print("PASS") | 17.666667 | 31 | 0.503145 | print(b"%%" % ())
print(b"=%d=" % 1)
print(b"=%d=%d=" % (1, 2))
print(b"=%s=" % b"str")
print(b"=%r=" % b"str")
print("PASS") | true | true |
f7000bbc055be36dc38b5ab214bad87b6d24f064 | 2,102 | py | Python | tests/test_JpegCompression.py | tt195361/TfDataAugmentation | 0deb987ae5a37816d88eec302bc42db7479ea8df | [
"MIT"
] | null | null | null | tests/test_JpegCompression.py | tt195361/TfDataAugmentation | 0deb987ae5a37816d88eec302bc42db7479ea8df | [
"MIT"
] | null | null | null | tests/test_JpegCompression.py | tt195361/TfDataAugmentation | 0deb987ae5a37816d88eec302bc42db7479ea8df | [
"MIT"
] | null | null | null | #
# test_JpegCompression.py
#
import pytest
import albumentations as A
from .context import TfDataAugmentation as Tfda
from . import test_utils
from .test_utils import TestResult
@pytest.mark.parametrize(
"quality_lower, quality_upper, expected, message", [
# quality_lower
(-1, 100, TestResult.Error,
"quality_lower < min => Error"),
(0, 100, TestResult.OK,
"quality_lower == min => OK"),
(100, 100, TestResult.OK,
"quality_lower == max => OK"),
(101, 100, TestResult.Error,
"quality_lower >= max => Error"),
# quality_upper
(0, -1, TestResult.Error,
"quality_upper < min => Error"),
(0, 0, TestResult.OK,
"quality_upper == min => OK"),
(0, 100, TestResult.OK,
"quality_upper == max => OK"),
(0, 101, TestResult.Error,
"quality_upper > max => Error"),
# Relation
(50, 50, TestResult.OK,
"quality_lower == quality_upper => OK"),
(51, 50, TestResult.Error,
"quality_lower > quality_upper => Error"),
])
def test_hue_shift_limit_value(
quality_lower, quality_upper, expected, message):
try:
Tfda.JpegCompression(
quality_lower=quality_lower,
quality_upper=quality_upper)
actual = TestResult.OK
except ValueError:
actual = TestResult.Error
assert expected == actual, message
def test_call():
quality_lower = 50
quality_upper = 100
tgt_jpeg = Tfda.JpegCompression(
quality_lower=quality_lower,
quality_upper=quality_upper,
p=1.0)
tgt_transform = \
test_utils.make_tgt_transform(tgt_jpeg)
image = test_utils.make_test_image()
tgt_result = tgt_transform(image=image)
actual_image = tgt_result['image']
image_np = image.numpy()
quality = float(tgt_jpeg.get_param('quality'))
expected_image = A.image_compression(
image_np, quality, image_type='.jpg')
test_utils.partial_assert_array(
expected_image, actual_image, 0.6, "image", eps=0.1)
| 28.794521 | 60 | 0.621313 |
import pytest
import albumentations as A
from .context import TfDataAugmentation as Tfda
from . import test_utils
from .test_utils import TestResult
@pytest.mark.parametrize(
"quality_lower, quality_upper, expected, message", [
(-1, 100, TestResult.Error,
"quality_lower < min => Error"),
(0, 100, TestResult.OK,
"quality_lower == min => OK"),
(100, 100, TestResult.OK,
"quality_lower == max => OK"),
(101, 100, TestResult.Error,
"quality_lower >= max => Error"),
(0, -1, TestResult.Error,
"quality_upper < min => Error"),
(0, 0, TestResult.OK,
"quality_upper == min => OK"),
(0, 100, TestResult.OK,
"quality_upper == max => OK"),
(0, 101, TestResult.Error,
"quality_upper > max => Error"),
(50, 50, TestResult.OK,
"quality_lower == quality_upper => OK"),
(51, 50, TestResult.Error,
"quality_lower > quality_upper => Error"),
])
def test_hue_shift_limit_value(
quality_lower, quality_upper, expected, message):
try:
Tfda.JpegCompression(
quality_lower=quality_lower,
quality_upper=quality_upper)
actual = TestResult.OK
except ValueError:
actual = TestResult.Error
assert expected == actual, message
def test_call():
quality_lower = 50
quality_upper = 100
tgt_jpeg = Tfda.JpegCompression(
quality_lower=quality_lower,
quality_upper=quality_upper,
p=1.0)
tgt_transform = \
test_utils.make_tgt_transform(tgt_jpeg)
image = test_utils.make_test_image()
tgt_result = tgt_transform(image=image)
actual_image = tgt_result['image']
image_np = image.numpy()
quality = float(tgt_jpeg.get_param('quality'))
expected_image = A.image_compression(
image_np, quality, image_type='.jpg')
test_utils.partial_assert_array(
expected_image, actual_image, 0.6, "image", eps=0.1)
| true | true |
f7000bc963cc817a5a5dca6aba86f5ea6dde667e | 3,008 | py | Python | tests/test_background_swap.py | pclucas14/continuum | 3b9b0fc3c2f21dcaeafbccfa29987cefe55f37a0 | [
"MIT"
] | 4 | 2020-04-15T14:31:42.000Z | 2020-04-24T17:07:34.000Z | tests/test_background_swap.py | pclucas14/continuum | 3b9b0fc3c2f21dcaeafbccfa29987cefe55f37a0 | [
"MIT"
] | 18 | 2020-04-15T14:57:27.000Z | 2020-05-02T14:05:36.000Z | tests/test_background_swap.py | arthurdouillard/continual_loader | 09034db1371e9646ca660fd4d4df73e61bf77067 | [
"MIT"
] | 1 | 2020-04-15T15:50:28.000Z | 2020-04-15T15:50:28.000Z | import os
from torch.utils.data import DataLoader
from continuum.datasets import CIFAR10, InMemoryDataset
from continuum.datasets import MNIST
import torchvision
from continuum.scenarios import TransformationIncremental
import pytest
import numpy as np
from continuum.transforms.bg_swap import BackgroundSwap
DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH")
# Uncomment for debugging via image output
# import matplotlib.pyplot as plt
def test_bg_swap_fast():
"""
Fast test for background swap.
"""
bg_x = np.ones(shape=[2, 5, 5, 3]) * -1
bg_y = np.random.rand(2)
fg = np.random.normal(loc=.5, scale=.1, size=[5, 5])
bg = InMemoryDataset(bg_x, bg_y)
bg_swap = BackgroundSwap(bg, input_dim=(5, 5), normalize_bg=None)
spliced_1_channel = bg_swap(fg)[:, :, 0]
assert np.array_equal((spliced_1_channel <= -1), (fg <= .5))
@pytest.mark.slow
def test_background_swap_numpy():
"""
Test background swap on a single ndarray input.
"""
mnist = MNIST(DATA_PATH, download=True, train=True)
cifar = CIFAR10(DATA_PATH, download=True, train=True)
bg_swap = BackgroundSwap(cifar, input_dim=(28, 28))
im = mnist.get_data()[0][0]
im = bg_swap(im)
# Uncomment for debugging
# plt.imshow(im, interpolation='nearest')
# plt.show()
@pytest.mark.slow
def test_background_swap_torch():
"""
Test background swap on a single tensor input.
"""
cifar = CIFAR10(DATA_PATH, download=True, train=True)
mnist = torchvision.datasets.MNIST(DATA_PATH, train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
]))
bg_swap = BackgroundSwap(cifar, input_dim=(28, 28))
im = mnist[0][0]
im = bg_swap(im)
# Uncomment for debugging
# plt.imshow(im.permute(1, 2, 0), interpolation='nearest')
# plt.show()
@pytest.mark.slow
def test_background_tranformation():
"""
Example code using TransformationIncremental to create a setting with 3 tasks.
"""
cifar = CIFAR10(DATA_PATH, train=True)
mnist = MNIST(DATA_PATH, download=False, train=True)
nb_task = 3
list_trsf = []
for i in range(nb_task):
list_trsf.append([torchvision.transforms.ToTensor(), BackgroundSwap(cifar, bg_label=i, input_dim=(28, 28)),
torchvision.transforms.ToPILImage()])
scenario = TransformationIncremental(mnist, base_transformations=[torchvision.transforms.ToTensor()],
incremental_transformations=list_trsf)
folder = "tests/samples/background_trsf/"
if not os.path.exists(folder):
os.makedirs(folder)
for task_id, task_data in enumerate(scenario):
task_data.plot(path=folder, title=f"background_{task_id}.jpg", nb_samples=100, shape=[28, 28, 3])
loader = DataLoader(task_data)
_, _, _ = next(iter(loader))
| 31.010309 | 115 | 0.657247 | import os
from torch.utils.data import DataLoader
from continuum.datasets import CIFAR10, InMemoryDataset
from continuum.datasets import MNIST
import torchvision
from continuum.scenarios import TransformationIncremental
import pytest
import numpy as np
from continuum.transforms.bg_swap import BackgroundSwap
DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH")
def test_bg_swap_fast():
bg_x = np.ones(shape=[2, 5, 5, 3]) * -1
bg_y = np.random.rand(2)
fg = np.random.normal(loc=.5, scale=.1, size=[5, 5])
bg = InMemoryDataset(bg_x, bg_y)
bg_swap = BackgroundSwap(bg, input_dim=(5, 5), normalize_bg=None)
spliced_1_channel = bg_swap(fg)[:, :, 0]
assert np.array_equal((spliced_1_channel <= -1), (fg <= .5))
@pytest.mark.slow
def test_background_swap_numpy():
mnist = MNIST(DATA_PATH, download=True, train=True)
cifar = CIFAR10(DATA_PATH, download=True, train=True)
bg_swap = BackgroundSwap(cifar, input_dim=(28, 28))
im = mnist.get_data()[0][0]
im = bg_swap(im)
@pytest.mark.slow
def test_background_swap_torch():
cifar = CIFAR10(DATA_PATH, download=True, train=True)
mnist = torchvision.datasets.MNIST(DATA_PATH, train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
]))
bg_swap = BackgroundSwap(cifar, input_dim=(28, 28))
im = mnist[0][0]
im = bg_swap(im)
@pytest.mark.slow
def test_background_tranformation():
cifar = CIFAR10(DATA_PATH, train=True)
mnist = MNIST(DATA_PATH, download=False, train=True)
nb_task = 3
list_trsf = []
for i in range(nb_task):
list_trsf.append([torchvision.transforms.ToTensor(), BackgroundSwap(cifar, bg_label=i, input_dim=(28, 28)),
torchvision.transforms.ToPILImage()])
scenario = TransformationIncremental(mnist, base_transformations=[torchvision.transforms.ToTensor()],
incremental_transformations=list_trsf)
folder = "tests/samples/background_trsf/"
if not os.path.exists(folder):
os.makedirs(folder)
for task_id, task_data in enumerate(scenario):
task_data.plot(path=folder, title=f"background_{task_id}.jpg", nb_samples=100, shape=[28, 28, 3])
loader = DataLoader(task_data)
_, _, _ = next(iter(loader))
| true | true |
f7000c3468a0624d54db99fbbde0ac002173b532 | 2,025 | py | Python | python/communitymanager/lib/const.py | OpenCIOC/communityrepo | 63199a7b620f5c08624e534faf771e5dd2243adb | [
"Apache-2.0"
] | 2 | 2016-01-25T14:40:44.000Z | 2018-01-31T04:30:23.000Z | python/communitymanager/lib/const.py | OpenCIOC/communityrepo | 63199a7b620f5c08624e534faf771e5dd2243adb | [
"Apache-2.0"
] | 5 | 2018-02-07T20:16:49.000Z | 2021-12-13T19:41:43.000Z | python/communitymanager/lib/const.py | OpenCIOC/communityrepo | 63199a7b620f5c08624e534faf771e5dd2243adb | [
"Apache-2.0"
] | 1 | 2018-02-07T20:37:52.000Z | 2018-02-07T20:37:52.000Z | # =========================================================================================
# Copyright 2015 Community Information Online Consortium (CIOC) and KCL Software Solutions
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================================
# std lib
import os
# jQuery and jQueryUI versions
JQUERY_VERSION = "1.6.2"
JQUERY_UI_VERSION = "1.8.16"
# formatting constants
DATE_TEXT_SIZE = 25
TEXT_SIZE = 85
TEXTAREA_COLS = 85
TEXTAREA_ROWS_SHORT = 2
TEXTAREA_ROWS_LONG = 4
TEXTAREA_ROWS_XLONG = 10
MAX_LENGTH_CHECKLIST_NOTES = 255
EMAIL_LENGTH = 60
# application running constants
_app_path = None
_config_file = None
_app_name = None
session_lock_dir = None
publish_dir = None
def update_cache_values():
# called from application init at startup
global _app_path, _config_file, _app_name, session_lock_dir, publish_dir
if _app_path is None:
_app_path = os.path.normpath(os.path.join(os.path.dirname(__file__), '..', '..', '..'))
_app_name = os.path.split(_app_path)[1]
_config_file = os.path.join(_app_path, '..', '..', 'config', _app_name + '.ini')
session_lock_dir = os.path.join(_app_path, 'python', 'session_lock')
publish_dir = os.path.join(_app_path, 'python', 'published_files')
try:
os.makedirs(session_lock_dir)
except os.error:
pass
try:
os.makedirs(publish_dir)
except os.error:
pass
| 32.142857 | 95 | 0.640494 |
import os
JQUERY_VERSION = "1.6.2"
JQUERY_UI_VERSION = "1.8.16"
DATE_TEXT_SIZE = 25
TEXT_SIZE = 85
TEXTAREA_COLS = 85
TEXTAREA_ROWS_SHORT = 2
TEXTAREA_ROWS_LONG = 4
TEXTAREA_ROWS_XLONG = 10
MAX_LENGTH_CHECKLIST_NOTES = 255
EMAIL_LENGTH = 60
_app_path = None
_config_file = None
_app_name = None
session_lock_dir = None
publish_dir = None
def update_cache_values():
global _app_path, _config_file, _app_name, session_lock_dir, publish_dir
if _app_path is None:
_app_path = os.path.normpath(os.path.join(os.path.dirname(__file__), '..', '..', '..'))
_app_name = os.path.split(_app_path)[1]
_config_file = os.path.join(_app_path, '..', '..', 'config', _app_name + '.ini')
session_lock_dir = os.path.join(_app_path, 'python', 'session_lock')
publish_dir = os.path.join(_app_path, 'python', 'published_files')
try:
os.makedirs(session_lock_dir)
except os.error:
pass
try:
os.makedirs(publish_dir)
except os.error:
pass
| true | true |
f7000d37df1b082b8f943334e45282014877347e | 3,280 | py | Python | sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2015_08_01/aio/_configuration.py | rsdoherty/azure-sdk-for-python | 6bba5326677468e6660845a703686327178bb7b1 | [
"MIT"
] | 2,728 | 2015-01-09T10:19:32.000Z | 2022-03-31T14:50:33.000Z | sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2015_08_01/aio/_configuration.py | rsdoherty/azure-sdk-for-python | 6bba5326677468e6660845a703686327178bb7b1 | [
"MIT"
] | 17,773 | 2015-01-05T15:57:17.000Z | 2022-03-31T23:50:25.000Z | sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2015_08_01/aio/_configuration.py | rsdoherty/azure-sdk-for-python | 6bba5326677468e6660845a703686327178bb7b1 | [
"MIT"
] | 1,916 | 2015-01-19T05:05:41.000Z | 2022-03-31T19:36:44.000Z | # coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from typing import Any, TYPE_CHECKING
from azure.core.configuration import Configuration
from azure.core.pipeline import policies
from azure.mgmt.core.policies import ARMHttpLoggingPolicy
from .._version import VERSION
if TYPE_CHECKING:
# pylint: disable=unused-import,ungrouped-imports
from azure.core.credentials_async import AsyncTokenCredential
class WebSiteManagementClientConfiguration(Configuration):
"""Configuration for WebSiteManagementClient.
Note that all parameters used to create this instance are saved as instance
attributes.
:param credential: Credential needed for the client to connect to Azure.
:type credential: ~azure.core.credentials_async.AsyncTokenCredential
:param subscription_id: Your Azure subscription ID. This is a GUID-formatted string (e.g. 00000000-0000-0000-0000-000000000000).
:type subscription_id: str
"""
def __init__(
self,
credential: "AsyncTokenCredential",
subscription_id: str,
**kwargs: Any
) -> None:
if credential is None:
raise ValueError("Parameter 'credential' must not be None.")
if subscription_id is None:
raise ValueError("Parameter 'subscription_id' must not be None.")
super(WebSiteManagementClientConfiguration, self).__init__(**kwargs)
self.credential = credential
self.subscription_id = subscription_id
self.api_version = "2015-08-01"
self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
kwargs.setdefault('sdk_moniker', 'mgmt-web/{}'.format(VERSION))
self._configure(**kwargs)
def _configure(
self,
**kwargs: Any
) -> None:
self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
self.authentication_policy = kwargs.get('authentication_policy')
if self.credential and not self.authentication_policy:
self.authentication_policy = policies.AsyncBearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
| 48.235294 | 134 | 0.699695 |
from typing import Any, TYPE_CHECKING
from azure.core.configuration import Configuration
from azure.core.pipeline import policies
from azure.mgmt.core.policies import ARMHttpLoggingPolicy
from .._version import VERSION
if TYPE_CHECKING:
from azure.core.credentials_async import AsyncTokenCredential
class WebSiteManagementClientConfiguration(Configuration):
def __init__(
self,
credential: "AsyncTokenCredential",
subscription_id: str,
**kwargs: Any
) -> None:
if credential is None:
raise ValueError("Parameter 'credential' must not be None.")
if subscription_id is None:
raise ValueError("Parameter 'subscription_id' must not be None.")
super(WebSiteManagementClientConfiguration, self).__init__(**kwargs)
self.credential = credential
self.subscription_id = subscription_id
self.api_version = "2015-08-01"
self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
kwargs.setdefault('sdk_moniker', 'mgmt-web/{}'.format(VERSION))
self._configure(**kwargs)
def _configure(
self,
**kwargs: Any
) -> None:
self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
self.authentication_policy = kwargs.get('authentication_policy')
if self.credential and not self.authentication_policy:
self.authentication_policy = policies.AsyncBearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
| true | true |
f7000e80dc69165127d93dc9b2a8e5454d07d8ca | 852 | py | Python | spongeauth/core/tests/test_x_real_ip_middleware.py | felixoi/SpongeAuth | d44ee52d0b35b2e1909c7bf6bad29aa7b4835b26 | [
"MIT"
] | 10 | 2016-11-18T12:37:24.000Z | 2022-03-04T09:25:25.000Z | spongeauth/core/tests/test_x_real_ip_middleware.py | felixoi/SpongeAuth | d44ee52d0b35b2e1909c7bf6bad29aa7b4835b26 | [
"MIT"
] | 794 | 2016-11-19T18:34:37.000Z | 2022-03-31T16:49:11.000Z | spongeauth/core/tests/test_x_real_ip_middleware.py | PowerNukkit/OreAuth | 96a2926c9601fce6fac471bdb997077f07e8bf9a | [
"MIT"
] | 11 | 2016-11-26T22:30:17.000Z | 2022-03-16T17:20:14.000Z | import django.http
import unittest.mock
from .. import middleware
def get_response(req):
# dummy get_response, just return an empty response
return django.http.HttpResponse()
def test_leaves_remote_addr_alone_if_no_real_ip():
remote_addr = object()
request = unittest.mock.MagicMock()
request.META = {"REMOTE_ADDR": remote_addr}
middleware.XRealIPMiddleware(get_response)(request)
assert request.META["REMOTE_ADDR"] is remote_addr
def test_switches_out_x_real_ip_if_available():
remote_addr = object()
x_real_ip = object()
request = unittest.mock.MagicMock()
request.META = {"REMOTE_ADDR": remote_addr, "HTTP_X_REAL_IP": x_real_ip}
middleware.XRealIPMiddleware(get_response)(request)
assert request.META["REMOTE_ADDR"] is x_real_ip
assert request.META["HTTP_X_REAL_IP"] is x_real_ip
| 25.058824 | 76 | 0.75 | import django.http
import unittest.mock
from .. import middleware
def get_response(req):
return django.http.HttpResponse()
def test_leaves_remote_addr_alone_if_no_real_ip():
remote_addr = object()
request = unittest.mock.MagicMock()
request.META = {"REMOTE_ADDR": remote_addr}
middleware.XRealIPMiddleware(get_response)(request)
assert request.META["REMOTE_ADDR"] is remote_addr
def test_switches_out_x_real_ip_if_available():
remote_addr = object()
x_real_ip = object()
request = unittest.mock.MagicMock()
request.META = {"REMOTE_ADDR": remote_addr, "HTTP_X_REAL_IP": x_real_ip}
middleware.XRealIPMiddleware(get_response)(request)
assert request.META["REMOTE_ADDR"] is x_real_ip
assert request.META["HTTP_X_REAL_IP"] is x_real_ip
| true | true |
f7000f03c62e8b3dcc7083fb8b218b5a6f499aa8 | 198 | py | Python | test-relay.py | rn-santos227/medsys | d72ef3b419bdb84cc21022af7ce43813090ef211 | [
"MIT"
] | null | null | null | test-relay.py | rn-santos227/medsys | d72ef3b419bdb84cc21022af7ce43813090ef211 | [
"MIT"
] | null | null | null | test-relay.py | rn-santos227/medsys | d72ef3b419bdb84cc21022af7ce43813090ef211 | [
"MIT"
] | null | null | null | #!/usr/bin/env python
import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setup(21, GPIO.OUT)
GPIO.output(21, GPIO.LOW)
time.sleep(3.00)
GPIO.output(21, GPIO.HIGH)
GPIO.cleanup()
| 11.647059 | 26 | 0.717172 |
import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setup(21, GPIO.OUT)
GPIO.output(21, GPIO.LOW)
time.sleep(3.00)
GPIO.output(21, GPIO.HIGH)
GPIO.cleanup()
| true | true |
f7000f942ae83e6e025768748f579184365a76d4 | 305 | py | Python | server/objects/notifier.py | jaxsenh/the-devil-that-lurks | 89fa85c461a8da55a0b7d28e32dd8144d6cac8ca | [
"MIT"
] | 1 | 2020-05-28T03:21:44.000Z | 2020-05-28T03:21:44.000Z | server/objects/notifier.py | jaxsenh/the-devil-that-lurks | 89fa85c461a8da55a0b7d28e32dd8144d6cac8ca | [
"MIT"
] | null | null | null | server/objects/notifier.py | jaxsenh/the-devil-that-lurks | 89fa85c461a8da55a0b7d28e32dd8144d6cac8ca | [
"MIT"
] | null | null | null | from direct.directnotify.DirectNotifyGlobal import directNotify
class Notifier:
def __init__(self, name):
"""
@param name: The name of the notifier. Be sure to add it to your config/Config.prc!
@type name: str
"""
self.notify = directNotify.newCategory(name)
| 27.727273 | 91 | 0.659016 | from direct.directnotify.DirectNotifyGlobal import directNotify
class Notifier:
def __init__(self, name):
self.notify = directNotify.newCategory(name)
| true | true |
f70011c6182da69473e565cf0d8aee9ee61da27a | 221 | py | Python | packaging/squarer/ml_squarer.py | g-nightingale/tox_examples | d7714375c764580b4b8af9db61332ced4e851def | [
"BSD-3-Clause"
] | 10 | 2020-05-23T15:40:43.000Z | 2022-02-06T22:34:10.000Z | packaging/squarer/ml_squarer.py | g-nightingale/tox_examples | d7714375c764580b4b8af9db61332ced4e851def | [
"BSD-3-Clause"
] | null | null | null | packaging/squarer/ml_squarer.py | g-nightingale/tox_examples | d7714375c764580b4b8af9db61332ced4e851def | [
"BSD-3-Clause"
] | 12 | 2020-08-04T11:37:56.000Z | 2022-03-31T23:21:13.000Z | import numpy as np
def train_ml_squarer() -> None:
print("Training!")
def square() -> int:
"""Square a number...maybe"""
return np.random.randint(1, 100)
if __name__ == '__main__':
train_ml_squarer() | 15.785714 | 36 | 0.633484 | import numpy as np
def train_ml_squarer() -> None:
print("Training!")
def square() -> int:
return np.random.randint(1, 100)
if __name__ == '__main__':
train_ml_squarer() | true | true |
f70012b80af6d540ea4880f63579ca63dcbdd2f2 | 6,034 | py | Python | arcade/examples/platform_tutorial/09_load_map.py | yegarti/arcade | 1862e61aab9a7dc646265005b0e808d953a9dfe3 | [
"MIT"
] | null | null | null | arcade/examples/platform_tutorial/09_load_map.py | yegarti/arcade | 1862e61aab9a7dc646265005b0e808d953a9dfe3 | [
"MIT"
] | null | null | null | arcade/examples/platform_tutorial/09_load_map.py | yegarti/arcade | 1862e61aab9a7dc646265005b0e808d953a9dfe3 | [
"MIT"
] | null | null | null | """
Platformer Game
"""
import arcade
# Constants
SCREEN_WIDTH = 1000
SCREEN_HEIGHT = 650
SCREEN_TITLE = "Platformer"
# Constants used to scale our sprites from their original size
CHARACTER_SCALING = 1
TILE_SCALING = 0.5
COIN_SCALING = 0.5
SPRITE_PIXEL_SIZE = 128
GRID_PIXEL_SIZE = SPRITE_PIXEL_SIZE * TILE_SCALING
# Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 10
GRAVITY = 1
PLAYER_JUMP_SPEED = 20
class MyGame(arcade.Window):
"""
Main application class.
"""
def __init__(self):
# Call the parent class and set up the window
super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
# Our TileMap Object
self.tile_map = None
# Our Scene Object
self.scene = None
# Separate variable that holds the player sprite
self.player_sprite = None
# Our physics engine
self.physics_engine = None
# A Camera that can be used for scrolling the screen
self.camera = None
# A Camera that can be used to draw GUI elements
self.gui_camera = None
# Keep track of the score
self.score = 0
# Load sounds
self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
arcade.set_background_color(arcade.csscolor.CORNFLOWER_BLUE)
def setup(self):
"""Set up the game here. Call this function to restart the game."""
# Setup the Cameras
self.camera = arcade.Camera(self.width, self.height)
self.gui_camera = arcade.Camera(self.width, self.height)
# Name of map file to load
map_name = ":resources:tiled_maps/map.json"
# Layer specific options are defined based on Layer names in a dictionary
# Doing this will make the SpriteList for the platforms layer
# use spatial hashing for detection.
layer_options = {
"Platforms": {
"use_spatial_hash": True,
},
}
# Read in the tiled map
self.tile_map = arcade.load_tilemap(map_name, TILE_SCALING, layer_options)
# Initialize Scene with our TileMap, this will automatically add all layers
# from the map as SpriteLists in the scene in the proper order.
self.scene = arcade.Scene.from_tilemap(self.tile_map)
# Keep track of the score
self.score = 0
# Set up the player, specifically placing it at these coordinates.
image_source = ":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png"
self.player_sprite = arcade.Sprite(image_source, CHARACTER_SCALING)
self.player_sprite.center_x = 128
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)
# --- Other stuff
# Set the background color
if self.tile_map.background_color:
arcade.set_background_color(self.tile_map.background_color)
# Create the 'physics engine'
self.physics_engine = arcade.PhysicsEnginePlatformer(
self.player_sprite, gravity_constant=GRAVITY, walls=self.scene["Platforms"]
)
def on_draw(self):
"""Render the screen."""
# Clear the screen to the background color
arcade.start_render()
# Activate the game camera
self.camera.use()
# Draw our Scene
self.scene.draw()
# Activate the GUI camera before drawing GUI elements
self.gui_camera.use()
# Draw our score on the screen, scrolling it with the viewport
score_text = f"Score: {self.score}"
arcade.draw_text(
score_text,
10,
10,
arcade.csscolor.WHITE,
18,
)
def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""
if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self.jump_sound)
elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
def on_key_release(self, key, modifiers):
"""Called when the user releases a key."""
if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0
elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0
def center_camera_to_player(self):
screen_center_x = self.player_sprite.center_x - (self.camera.viewport_width / 2)
screen_center_y = self.player_sprite.center_y - (
self.camera.viewport_height / 2
)
if screen_center_x < 0:
screen_center_x = 0
if screen_center_y < 0:
screen_center_y = 0
player_centered = screen_center_x, screen_center_y
self.camera.move_to(player_centered)
def on_update(self, delta_time):
"""Movement and game logic"""
# Move the player with the physics engine
self.physics_engine.update()
# See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]
)
# Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
# Remove the coin
coin.remove_from_sprite_lists()
# Play a sound
arcade.play_sound(self.collect_coin_sound)
# Add one to the score
self.score += 1
# Position the camera
self.center_camera_to_player()
def main():
"""Main function"""
window = MyGame()
window.setup()
arcade.run()
if __name__ == "__main__":
main()
| 30.474747 | 106 | 0.632748 | import arcade
SCREEN_WIDTH = 1000
SCREEN_HEIGHT = 650
SCREEN_TITLE = "Platformer"
CHARACTER_SCALING = 1
TILE_SCALING = 0.5
COIN_SCALING = 0.5
SPRITE_PIXEL_SIZE = 128
GRID_PIXEL_SIZE = SPRITE_PIXEL_SIZE * TILE_SCALING
PLAYER_MOVEMENT_SPEED = 10
GRAVITY = 1
PLAYER_JUMP_SPEED = 20
class MyGame(arcade.Window):
def __init__(self):
super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.tile_map = None
self.scene = None
self.player_sprite = None
self.physics_engine = None
self.camera = None
self.gui_camera = None
self.score = 0
self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
arcade.set_background_color(arcade.csscolor.CORNFLOWER_BLUE)
def setup(self):
self.camera = arcade.Camera(self.width, self.height)
self.gui_camera = arcade.Camera(self.width, self.height)
map_name = ":resources:tiled_maps/map.json"
layer_options = {
"Platforms": {
"use_spatial_hash": True,
},
}
self.tile_map = arcade.load_tilemap(map_name, TILE_SCALING, layer_options)
self.scene = arcade.Scene.from_tilemap(self.tile_map)
self.score = 0
image_source = ":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png"
self.player_sprite = arcade.Sprite(image_source, CHARACTER_SCALING)
self.player_sprite.center_x = 128
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)
if self.tile_map.background_color:
arcade.set_background_color(self.tile_map.background_color)
self.physics_engine = arcade.PhysicsEnginePlatformer(
self.player_sprite, gravity_constant=GRAVITY, walls=self.scene["Platforms"]
)
def on_draw(self):
arcade.start_render()
self.camera.use()
self.scene.draw()
self.gui_camera.use()
score_text = f"Score: {self.score}"
arcade.draw_text(
score_text,
10,
10,
arcade.csscolor.WHITE,
18,
)
def on_key_press(self, key, modifiers):
if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self.jump_sound)
elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
def on_key_release(self, key, modifiers):
if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0
elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0
def center_camera_to_player(self):
screen_center_x = self.player_sprite.center_x - (self.camera.viewport_width / 2)
screen_center_y = self.player_sprite.center_y - (
self.camera.viewport_height / 2
)
if screen_center_x < 0:
screen_center_x = 0
if screen_center_y < 0:
screen_center_y = 0
player_centered = screen_center_x, screen_center_y
self.camera.move_to(player_centered)
def on_update(self, delta_time):
self.physics_engine.update()
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]
)
for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 1
self.center_camera_to_player()
def main():
window = MyGame()
window.setup()
arcade.run()
if __name__ == "__main__":
main()
| true | true |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 14