|
--- |
|
language: |
|
- de |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 181332936237.3536 |
|
num_examples: 32159157 |
|
download_size: 109975849250 |
|
dataset_size: 181332936237.3536 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
```python |
|
|
|
import os |
|
|
|
import datasets |
|
import torch |
|
from transformers import ModernBertForSequenceClassification, pipeline |
|
|
|
_GPU_ID = os.getenv("CUDA_VISIBLE_DEVICES", "0") |
|
|
|
|
|
def load_model(gpu_index=0): |
|
model = ModernBertForSequenceClassification.from_pretrained( |
|
"flozi00/GermanEduScorer-ModernBERT-base", |
|
reference_compile=False, |
|
attn_implementation="sdpa", |
|
).to(torch.bfloat16) |
|
|
|
model = torch.compile(model, dynamic=True, mode="max-autotune") |
|
|
|
pipe = pipeline( |
|
"text-classification", |
|
model=model, |
|
tokenizer="flozi00/GermanEduScorer-ModernBERT-base", |
|
device=gpu_index, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
return pipe |
|
|
|
pipe0 = load_model(0) |
|
tokenizer_kwargs = {"truncation": True} |
|
|
|
BAD_WORDS = [ |
|
"Sofort lieferbar", |
|
] |
|
|
|
|
|
def process_chunk(pipe, texts): |
|
if not texts: |
|
return [] |
|
return [ |
|
int(x["label"]) |
|
for x in pipe( |
|
texts, |
|
batch_size=256, |
|
truncation=True, |
|
max_length=1024, |
|
) |
|
] |
|
|
|
def classification_wrapper(text_list: list): |
|
return process_chunk(pipe0, text_list) |
|
|
|
def map_edu(example): |
|
example["content"] = example["text"] |
|
example["label"] = classification_wrapper(example["text"]) |
|
return example |
|
|
|
for SET_ID in ["0", "1", "2", "3"]: |
|
base_url = "https://huggingface.co/datasets/HuggingFaceFW/fineweb-2/resolve/main/data/deu_Latn/train/" |
|
data_files = { |
|
"train": [base_url + f"00{SET_ID}_0000{i}.parquet" for i in range(10)] |
|
+ [base_url + f"00{SET_ID}_000{i}.parquet" for i in range(10, 38)] |
|
} |
|
|
|
fineweb = datasets.load_dataset( |
|
"parquet", |
|
data_files=data_files, |
|
split="train", |
|
num_proc=4, |
|
cache_dir=f"./cache_fineweb_{SET_ID}", |
|
) |
|
|
|
chunk_size = 100_000 |
|
part_size = len(fineweb) // 4 |
|
total_samples = part_size * (int(_GPU_ID) + 1) |
|
output_path = f"fineweb2_edu_4up_german_split_{int(SET_ID)+1}-of-4" |
|
|
|
for i in range(part_size * int(_GPU_ID), total_samples, chunk_size): |
|
end_idx = min(i + chunk_size, total_samples) |
|
checkpoint_path = f"chunks/{output_path}_chunk_{i}" |
|
|
|
# Try to load existing chunk |
|
try: |
|
dset = datasets.load_from_disk(checkpoint_path) |
|
print(f"Chunk {i} to {end_idx} already processed, skipping...") |
|
continue |
|
except Exception: |
|
print(f"Processing chunk {i} to {end_idx} of {total_samples}") |
|
|
|
chunk = fineweb.select(range(i, end_idx)) |
|
processed_chunk = chunk.map( |
|
map_edu, |
|
remove_columns=chunk.column_names, |
|
batch_size=1024, |
|
batched=True, |
|
).filter(lambda x: x["label"] >= 4, num_proc=8) |
|
processed_chunk = processed_chunk.rename_column("content", "text") |
|
|
|
processed_chunk.save_to_disk(checkpoint_path) |
|
print(f"Saved checkpoint to {checkpoint_path}") |
|
|
|
if i % 1_000_000 == 0 and _GPU_ID == "0" and i > 0: |
|
sets_to_push = [] |
|
# list all folders in the chunks directory |
|
for folder in os.listdir("chunks"): |
|
# load the dataset |
|
sets_to_push.append(datasets.load_from_disk(f"chunks/{folder}")) |
|
state_ds = datasets.concatenate_datasets(sets_to_push) |
|
for bad_word in BAD_WORDS: |
|
state_ds = state_ds.filter( |
|
lambda x: bad_word not in x["text"], num_proc=8 |
|
) |
|
state_ds = state_ds.filter( |
|
lambda x: len(x["text"]) > 1024 and len(x["text"]) <= 100_000, |
|
num_proc=8, |
|
) |
|
state_ds.push_to_hub("Fineweb2-German-Eduscore-4andMore") |
|
|
|
``` |
|
|