Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

meta_data
dict
model_config
list
hls_config
dict
hls_resource_report
dict
resource_report
dict
latency_report
dict
target_part
string
backend
string
backend_version
string
hls4ml_version
string
{ "artifacts_file": "0004b3a0c53ee714a7ea4e58c069acf3.tar.gz", "model_id": "0004b3a0c53ee714a7ea4e58c069acf3", "model_name": "model_Dense_16in_Dense_64in_Dense_8in_Dense_8in_BatchNormalization_32in_Dense_32in_Dropout_32in_Dense_32in_Dense_32in_Dropout_16in_Dense_16in_34out_ap_fixed<8, 4>_16rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "3.6000 GHz", "brand": "Intel(R) Core(TM) i9-10850K", "logical_count": 20, "physical_count": 10 }, "end_time": "20241129-010147", "start_time": "20241129-004302" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250221-113809", "start_time": "20250221-113319" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 16 ], "name": "input_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 16 ], "name": "dense", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 1088, "reuse_factor": 16, "trainable_parameters": 1088, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 64 ], "name": "activation", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 64 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 520, "reuse_factor": 16, "trainable_parameters": 520, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 288, "reuse_factor": 16, "trainable_parameters": 288, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 32 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 32 ], "name": "batch_normalization", "neurons": null, "output_shape": [ null, 32 ], "parameters": 128, "reuse_factor": 16, "trainable_parameters": 64, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization" ], "input_shape": [ null, 32 ], "name": "dense_4", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 1056, "reuse_factor": 16, "trainable_parameters": 1056, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.173182990226483, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 32 ], "name": "dropout", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 32 ], "name": "dense_5", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 1056, "reuse_factor": 16, "trainable_parameters": 1056, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 32 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 32 ], "name": "dense_6", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 528, "reuse_factor": 16, "trainable_parameters": 528, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 16 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.26132494588875804, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 16 ], "name": "dropout_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_1" ], "input_shape": [ null, 16 ], "name": "dense_7", "neurons": 34, "output_shape": [ null, 34 ], "parameters": 578, "reuse_factor": 16, "trainable_parameters": 578, "use_bias": true } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 4>", "ReuseFactor": 16, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "56.0", "dsp": "0.0", "ff": "1515.0", "lut": "99865.0", "uram": "0.0" }
{ "bram": "28.0", "dsp": "0.0", "ff": "715.0", "lut": "31964.0", "uram": null }
{ "cycles_max": "64.0", "cycles_min": "64.0", "estimated_clock": "8.608", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00087089a73d076c87d8d8164241384a.tar.gz", "model_id": "00087089a73d076c87d8d8164241384a", "model_name": "model_Dense_16in_Dense_8in_Dense_4in_Dense_64in_21out_ap_fixed<16, 6>_8rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241201-190526", "start_time": "20241201-190249" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250307-151845", "start_time": "20250307-151624" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 16 ], "name": "input_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 16 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 128, "reuse_factor": 8, "trainable_parameters": 128, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 32, "reuse_factor": 8, "trainable_parameters": 32, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 256, "reuse_factor": 8, "trainable_parameters": 256, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 64 ], "name": "dense_3", "neurons": 21, "output_shape": [ null, 21 ], "parameters": 1344, "reuse_factor": 8, "trainable_parameters": 1344, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 21 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 21 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<16, 6>", "ReuseFactor": 8, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "114.0", "dsp": "220.0", "ff": "19609.0", "lut": "48436.0", "uram": "0.0" }
{ "bram": "8.5", "dsp": "220.0", "ff": "15015.0", "lut": "11199.0", "uram": null }
{ "cycles_max": "104.0", "cycles_min": "100.0", "estimated_clock": "8.67", "interval_max": "8.0", "interval_min": "8.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "000b60f1ce8dab067cef0a4bb8c82f20.tar.gz", "model_id": "000b60f1ce8dab067cef0a4bb8c82f20", "model_name": "model_Dense_128in_Dense_4in_Dense_64in_Dense_8in_Dense_64in_Dense_16in_Dense_16in_Dense_32in_Dense_4in_Dense_256in_Dense_4in_Dense_1024in_Dense_2in_667out_ap_fixed<2, 1>_32rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241210-051627", "start_time": "20241210-005040" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250402-092323", "start_time": "20250402-092100" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 128 ], "name": "input_1", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 128 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 516, "reuse_factor": 32, "trainable_parameters": 516, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 320, "reuse_factor": 32, "trainable_parameters": 320, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 64 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 64 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 520, "reuse_factor": 32, "trainable_parameters": 520, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 576, "reuse_factor": 32, "trainable_parameters": 576, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 64 ], "name": "dense_4", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 1040, "reuse_factor": 32, "trainable_parameters": 1040, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 16 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 16 ], "name": "dense_5", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 272, "reuse_factor": 32, "trainable_parameters": 272, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 16 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 16 ], "name": "dense_6", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 544, "reuse_factor": 32, "trainable_parameters": 544, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 32 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 32 ], "name": "dense_7", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 32, "trainable_parameters": 132, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 4 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 4 ], "name": "dense_8", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 1024, "reuse_factor": 32, "trainable_parameters": 1024, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 256 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 256 ], "name": "dense_9", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1028, "reuse_factor": 32, "trainable_parameters": 1028, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 4 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 4 ], "name": "dense_10", "neurons": 1024, "output_shape": [ null, 1024 ], "parameters": 4096, "reuse_factor": 32, "trainable_parameters": 4096, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 1024 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 1024 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_9" ], "input_shape": [ null, 1024 ], "name": "dense_11", "neurons": 2, "output_shape": [ null, 2 ], "parameters": 2050, "reuse_factor": 32, "trainable_parameters": 2050, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 2 ], "name": "activation_10", "neurons": null, "output_shape": [ null, 2 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_10" ], "input_shape": [ null, 2 ], "name": "dense_12", "neurons": 667, "output_shape": [ null, 667 ], "parameters": 2001, "reuse_factor": 46, "trainable_parameters": 2001, "use_bias": true } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 32, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "51.0", "dsp": "4.0", "ff": "1242.0", "lut": "56864.0", "uram": "0.0" }
{ "bram": "15.0", "dsp": "4.0", "ff": "31.0", "lut": "1256.0", "uram": null }
{ "cycles_max": "809.0", "cycles_min": "809.0", "estimated_clock": "8.663", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "000c5bdf3a1c49ab4e414158fc97812b.tar.gz", "model_id": "000c5bdf3a1c49ab4e414158fc97812b", "model_name": "model_Dense_16in_Dense_64in_Dense_4in_Dense_16in_Dense_32in_Dense_16in_Dense_128in_Dense_8in_Dropout_8in_Dense_8in_54out_ap_fixed<8, 3>_4rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241125-175530", "start_time": "20241125-173708" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250308-022651", "start_time": "20250308-021930" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 16 ], "name": "input_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 16 ], "name": "dense", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 1088, "reuse_factor": 4, "trainable_parameters": 1088, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 64 ], "name": "activation", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 64 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 260, "reuse_factor": 4, "trainable_parameters": 260, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 80, "reuse_factor": 4, "trainable_parameters": 80, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 16 ], "name": "dense_3", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 544, "reuse_factor": 4, "trainable_parameters": 544, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 32 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 32 ], "name": "dense_4", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 528, "reuse_factor": 4, "trainable_parameters": 528, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 16 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 16 ], "name": "dense_5", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 2176, "reuse_factor": 4, "trainable_parameters": 2176, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 128 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 128 ], "name": "dense_6", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 1032, "reuse_factor": 4, "trainable_parameters": 1032, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "dense_7", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 4, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.725380981938837, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 8 ], "name": "dropout", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 8 ], "name": "dense_8", "neurons": 54, "output_shape": [ null, 54 ], "parameters": 486, "reuse_factor": 4, "trainable_parameters": 486, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 54 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 54 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 4, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "400.0", "dsp": "0.0", "ff": "15417.0", "lut": "409313.0", "uram": "0.0" }
{ "bram": "37.5", "dsp": "0.0", "ff": "23030.0", "lut": "90309.0", "uram": "0.0" }
{ "cycles_max": "138.0", "cycles_min": "129.0", "estimated_clock": "8.033", "interval_max": "4.0", "interval_min": "4.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "000faa1f423130b212f5cd396f101f27.tar.gz", "model_id": "000faa1f423130b212f5cd396f101f27", "model_name": "model_Dense_16in_Dense_32in_Dense_64in_Dense_32in_Dense_8in_Dense_128in_Dense_16in_Dense_4in_Dense_64in_Dense_4in_Dense_64in_Dense_4in_Dense_8in_Dense_128in_Dense_4in_Dense_256in_Dense_8in_Dense_4in_Dense_8in_257out_ap_fixed<8, 3>_1rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "3.6000 GHz", "brand": "Intel(R) Core(TM) i9-10850K", "logical_count": 20, "physical_count": 10 }, "end_time": "20241201-115217", "start_time": "20241201-084236" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250220-072145", "start_time": "20250220-071543" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 16 ], "name": "input_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 16 ], "name": "dense", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 544, "reuse_factor": 1, "trainable_parameters": 544, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 32 ], "name": "activation", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 32 ], "name": "dense_1", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 2112, "reuse_factor": 1, "trainable_parameters": 2112, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 64 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 64 ], "name": "dense_2", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 2048, "reuse_factor": 1, "trainable_parameters": 2048, "use_bias": false }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 32 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 32 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 264, "reuse_factor": 1, "trainable_parameters": 264, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 1152, "reuse_factor": 1, "trainable_parameters": 1152, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 128 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 128 ], "name": "dense_5", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 2064, "reuse_factor": 1, "trainable_parameters": 2064, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 16 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 16 ], "name": "dense_6", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 68, "reuse_factor": 1, "trainable_parameters": 68, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 4 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 4 ], "name": "dense_7", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 320, "reuse_factor": 1, "trainable_parameters": 320, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 64 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 64 ], "name": "dense_8", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 260, "reuse_factor": 1, "trainable_parameters": 260, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 4 ], "name": "dense_9", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 320, "reuse_factor": 1, "trainable_parameters": 320, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 64 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 64 ], "name": "dense_10", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 260, "reuse_factor": 1, "trainable_parameters": 260, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 4 ], "name": "dense_11", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 1, "trainable_parameters": 40, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 8 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_9" ], "input_shape": [ null, 8 ], "name": "dense_12", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 1152, "reuse_factor": 1, "trainable_parameters": 1152, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_12" ], "input_shape": [ null, 128 ], "name": "activation_10", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_10" ], "input_shape": [ null, 128 ], "name": "dense_13", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 516, "reuse_factor": 1, "trainable_parameters": 516, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_13" ], "input_shape": [ null, 4 ], "name": "activation_11", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_11" ], "input_shape": [ null, 4 ], "name": "dense_14", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 1280, "reuse_factor": 1, "trainable_parameters": 1280, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_14" ], "input_shape": [ null, 256 ], "name": "activation_12", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_12" ], "input_shape": [ null, 256 ], "name": "dense_15", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 1, "trainable_parameters": 2056, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_15" ], "input_shape": [ null, 8 ], "name": "activation_13", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_13" ], "input_shape": [ null, 8 ], "name": "dense_16", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 36, "reuse_factor": 1, "trainable_parameters": 36, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_16" ], "input_shape": [ null, 4 ], "name": "dense_17", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 1, "trainable_parameters": 40, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_17" ], "input_shape": [ null, 8 ], "name": "activation_14", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_14" ], "input_shape": [ null, 8 ], "name": "dense_18", "neurons": 257, "output_shape": [ null, 257 ], "parameters": 2313, "reuse_factor": 1, "trainable_parameters": 2313, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_18" ], "input_shape": [ null, 257 ], "name": "activation_15", "neurons": null, "output_shape": [ null, 257 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 1, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "230.0", "dsp": "140.0", "ff": "105716.0", "lut": "607462.0", "uram": "0.0" }
{ "bram": "113.5", "dsp": "140.0", "ff": "86729.0", "lut": "143215.0", "uram": null }
{ "cycles_max": "452.0", "cycles_min": "452.0", "estimated_clock": "8.747", "interval_max": "10.0", "interval_min": "10.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00138b80e0532823010e42029d19da1b.tar.gz", "model_id": "00138b80e0532823010e42029d19da1b", "model_name": "model_Dense_256in_Dense_8in_Dense_64in_Dense_16in_Dense_8in_186out_ap_fixed<2, 1>_32rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241204-094538", "start_time": "20241204-094150" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250324-122926", "start_time": "20250324-122645" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 256 ], "name": "input_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 256 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 32, "trainable_parameters": 2056, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 576, "reuse_factor": 32, "trainable_parameters": 576, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 64 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 64 ], "name": "dense_2", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 1040, "reuse_factor": 32, "trainable_parameters": 1040, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 16 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 16 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 136, "reuse_factor": 32, "trainable_parameters": 136, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 186, "output_shape": [ null, 186 ], "parameters": 1674, "reuse_factor": 24, "trainable_parameters": 1674, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 186 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 186 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 32, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "18.0", "dsp": "0.0", "ff": "11235.0", "lut": "200922.0", "uram": "0.0" }
{ "bram": "6.5", "dsp": "0.0", "ff": "6213.0", "lut": "5899.0", "uram": null }
{ "cycles_max": "621.0", "cycles_min": "616.0", "estimated_clock": "8.621", "interval_max": "32.0", "interval_min": "32.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "0018e21bf524645647e8597f17d310e7.tar.gz", "model_id": "0018e21bf524645647e8597f17d310e7", "model_name": "model_Dense_1024in_Dense_2in_Dense_1024in_Dropout_2in_Dense_2in_Dropout_4in_Dense_4in_Dropout_8in_Dense_8in_Dense_4in_Dropout_8in_Dense_8in_Dense_8in_Dropout_256in_Dense_256in_Dense_8in_Dropout_128in_Dense_128in_Dropout_16in_Dense_16in_60out_ap_fixed<8, 4>_1rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241218-024203", "start_time": "20241217-231843" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250324-103902", "start_time": "20250324-103733" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250406-181156", "start_time": "20250406-180356" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 1024 ], "name": "input_1", "neurons": null, "output_shape": [ null, 1024 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 1024 ], "name": "dense", "neurons": 2, "output_shape": [ null, 2 ], "parameters": 2050, "reuse_factor": 1, "trainable_parameters": 2050, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 2 ], "name": "activation", "neurons": null, "output_shape": [ null, 2 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 2 ], "name": "dense_1", "neurons": 1024, "output_shape": [ null, 1024 ], "parameters": 3072, "reuse_factor": 1, "trainable_parameters": 3072, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 1024 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 1024 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 1024 ], "name": "dense_2", "neurons": 2, "output_shape": [ null, 2 ], "parameters": 2050, "reuse_factor": 1, "trainable_parameters": 2050, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 2 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 2 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.30929267132293004, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 2 ], "name": "dropout", "neurons": null, "output_shape": [ null, 2 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 2 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 12, "reuse_factor": 1, "trainable_parameters": 12, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.5631125233970591, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 4 ], "name": "dropout_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_1" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 1, "trainable_parameters": 40, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.310642214798561, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "dropout_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_2" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 36, "reuse_factor": 1, "trainable_parameters": 36, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 4 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 4 ], "name": "dense_6", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 1, "trainable_parameters": 40, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 8 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.7630298387768011, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 8 ], "name": "dropout_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_3" ], "input_shape": [ null, 8 ], "name": "dense_7", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 1, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 8 ], "name": "dense_8", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2304, "reuse_factor": 1, "trainable_parameters": 2304, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 256 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.44723113721962704, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 256 ], "name": "dropout_4", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_4" ], "input_shape": [ null, 256 ], "name": "dense_9", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 1, "trainable_parameters": 2056, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 8 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 8 ], "name": "dense_10", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 1152, "reuse_factor": 1, "trainable_parameters": 1152, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.476213764843384, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 128 ], "name": "dropout_5", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_5" ], "input_shape": [ null, 128 ], "name": "dense_11", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 2064, "reuse_factor": 1, "trainable_parameters": 2064, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 16 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.799195239762391, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 16 ], "name": "dropout_6", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_6" ], "input_shape": [ null, 16 ], "name": "dense_12", "neurons": 60, "output_shape": [ null, 60 ], "parameters": 1020, "reuse_factor": 1, "trainable_parameters": 1020, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_12" ], "input_shape": [ null, 60 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 60 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 4>", "ReuseFactor": 1, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "1062.0", "dsp": "0.0", "ff": "45380.0", "lut": "256058.0", "uram": "0.0" }
{ "bram": "396.0", "dsp": "0.0", "ff": "60002.0", "lut": "95196.0", "uram": "0.0" }
{ "cycles_max": "1120.0", "cycles_min": "1120.0", "estimated_clock": "8.419", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "002d03e1ce5adc094bbc968387e90b25.tar.gz", "model_id": "002d03e1ce5adc094bbc968387e90b25", "model_name": "model_Dense_512in_Dense_4in_Dense_128in_Dense_4in_Dense_4in_Dense_512in_Dense_4in_Dense_4in_Dense_16in_Dense_8in_112out_ap_fixed<8, 3>_16rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20250120-204825", "start_time": "20250120-203047" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250402-083503", "start_time": "20250402-082454" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 512 ], "name": "input_1", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 512 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 16, "trainable_parameters": 2052, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 16, "trainable_parameters": 640, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 128 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 128 ], "name": "dense_2", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 516, "reuse_factor": 16, "trainable_parameters": 516, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 4 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 4 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 512, "output_shape": [ null, 512 ], "parameters": 2560, "reuse_factor": 16, "trainable_parameters": 2560, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 512 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 512 ], "name": "dense_5", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 16, "trainable_parameters": 2052, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 4 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 4 ], "name": "dense_6", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 4 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 4 ], "name": "dense_7", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 80, "reuse_factor": 16, "trainable_parameters": 80, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 16 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 16 ], "name": "dense_8", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 136, "reuse_factor": 16, "trainable_parameters": 136, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 8 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 8 ], "name": "dense_9", "neurons": 112, "output_shape": [ null, 112 ], "parameters": 1008, "reuse_factor": 16, "trainable_parameters": 1008, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 112 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 112 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 16, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "180.0", "dsp": "0.0", "ff": "49777.0", "lut": "688936.0", "uram": "0.0" }
{ "bram": "33.0", "dsp": "0.0", "ff": "67115.0", "lut": "81789.0", "uram": "0.0" }
{ "cycles_max": "825.0", "cycles_min": "815.0", "estimated_clock": "8.461", "interval_max": "16.0", "interval_min": "16.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00394d6efbde979b54217139a3b8971a.tar.gz", "model_id": "00394d6efbde979b54217139a3b8971a", "model_name": "model_Dense_32in_Dense_4in_Dense_4in_Dense_256in_Dense_4in_Dense_4in_Dense_16in_Dense_32in_Dense_4in_59out_ap_fixed<2, 1>_16rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241129-031615", "start_time": "20241129-030629" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250324-123340", "start_time": "20250324-123155" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250325-030357", "start_time": "20250325-030143" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 32 ], "name": "input_1", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 32 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 16, "trainable_parameters": 132, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 1280, "reuse_factor": 16, "trainable_parameters": 1280, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 256 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1024, "reuse_factor": 16, "trainable_parameters": 1024, "use_bias": false }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 4 ], "name": "dense_5", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 64, "reuse_factor": 16, "trainable_parameters": 64, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 16 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 16 ], "name": "dense_6", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 544, "reuse_factor": 16, "trainable_parameters": 544, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 32 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 32 ], "name": "dense_7", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 16, "trainable_parameters": 132, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 4 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 4 ], "name": "dense_8", "neurons": 59, "output_shape": [ null, 59 ], "parameters": 295, "reuse_factor": 4, "trainable_parameters": 295, "use_bias": true } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 16, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "21.0", "dsp": "4.0", "ff": "528.0", "lut": "13627.0", "uram": "0.0" }
{ "bram": "10.5", "dsp": "4.0", "ff": "17.0", "lut": "458.0", "uram": "0.0" }
{ "cycles_max": "102.0", "cycles_min": "102.0", "estimated_clock": "7.102", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "0039dbf567c47068fb8b3a7b96ac7a06.tar.gz", "model_id": "0039dbf567c47068fb8b3a7b96ac7a06", "model_name": "model_Dense_256in_Dense_8in_Dense_32in_Dense_16in_Dense_8in_294out_ap_fixed<16, 6>_4rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241211-133554", "start_time": "20241211-130651" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250402-164645", "start_time": "20250402-163242" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 256 ], "name": "input_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 256 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 4, "trainable_parameters": 2056, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 288, "reuse_factor": 4, "trainable_parameters": 288, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 32 ], "name": "activation", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 32 ], "name": "dense_2", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 528, "reuse_factor": 4, "trainable_parameters": 528, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 16 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 16 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 136, "reuse_factor": 4, "trainable_parameters": 136, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 294, "output_shape": [ null, 294 ], "parameters": 2646, "reuse_factor": 4, "trainable_parameters": 2646, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 294 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 294 ], "parameters": 0, "reuse_factor": 4, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<16, 6>", "ReuseFactor": 4, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "606.0", "dsp": "1618.0", "ff": "316008.0", "lut": "2770715.0", "uram": "0.0" }
{ "bram": "7.5", "dsp": "1618.0", "ff": "83887.0", "lut": "61710.0", "uram": null }
{ "cycles_max": "913.0", "cycles_min": "908.0", "estimated_clock": "8.714", "interval_max": "194.0", "interval_min": "194.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "003c7a07b4a6551dc6a17a8c0fbd3662.tar.gz", "model_id": "003c7a07b4a6551dc6a17a8c0fbd3662", "model_name": "model_Dense_32in_Dense_64in_Dense_32in_Dense_8in_Dense_32in_Dense_8in_Dropout_256in_Dense_256in_Dropout_4in_Dense_4in_Dropout_8in_Dense_8in_Dropout_256in_Dense_256in_Dropout_4in_Dense_4in_Dropout_512in_Dense_512in_Dense_4in_Dropout_4in_Dense_4in_Dropout_128in_Dense_128in_Dropout_8in_Dense_8in_Dropout_64in_Dense_64in_Dropout_32in_Dense_32in_Dense_64in_Dense_16in_118out_ap_fixed<8, 3>_2rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "3.6000 GHz", "brand": "Intel(R) Core(TM) i9-10850K", "logical_count": 20, "physical_count": 10 }, "end_time": "20241205-085113", "start_time": "20241204-215136" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250220-064904", "start_time": "20250220-063950" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 32 ], "name": "input_1", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 32 ], "name": "dense", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 2112, "reuse_factor": 2, "trainable_parameters": 2112, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 64 ], "name": "activation", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 64 ], "name": "dense_1", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 2080, "reuse_factor": 2, "trainable_parameters": 2080, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 32 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 32 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 264, "reuse_factor": 2, "trainable_parameters": 264, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 288, "reuse_factor": 2, "trainable_parameters": 288, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 32 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 32 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 264, "reuse_factor": 2, "trainable_parameters": 264, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2304, "reuse_factor": 2, "trainable_parameters": 2304, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.44896205294816904, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 256 ], "name": "dropout", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 256 ], "name": "dense_6", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1028, "reuse_factor": 2, "trainable_parameters": 1028, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 4 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.28752343782022804, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 4 ], "name": "dropout_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_1" ], "input_shape": [ null, 4 ], "name": "dense_7", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 2, "trainable_parameters": 40, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 8 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.258093800924315, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 8 ], "name": "dropout_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_2" ], "input_shape": [ null, 8 ], "name": "dense_8", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2304, "reuse_factor": 2, "trainable_parameters": 2304, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 256 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.48991952465652006, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 256 ], "name": "dropout_3", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_3" ], "input_shape": [ null, 256 ], "name": "dense_9", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1028, "reuse_factor": 2, "trainable_parameters": 1028, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.35909672949209204, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 4 ], "name": "dropout_4", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_4" ], "input_shape": [ null, 4 ], "name": "dense_10", "neurons": 512, "output_shape": [ null, 512 ], "parameters": 2560, "reuse_factor": 2, "trainable_parameters": 2560, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 512 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.797884925804997, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 512 ], "name": "dropout_5", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_5" ], "input_shape": [ null, 512 ], "name": "dense_11", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 2, "trainable_parameters": 2052, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 4 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_9" ], "input_shape": [ null, 4 ], "name": "dense_12", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 2, "trainable_parameters": 16, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_12" ], "input_shape": [ null, 4 ], "name": "activation_10", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.152250477085587, "dtype": "float32", "inbound_layers": [ "activation_10" ], "input_shape": [ null, 4 ], "name": "dropout_6", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_6" ], "input_shape": [ null, 4 ], "name": "dense_13", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 2, "trainable_parameters": 640, "use_bias": true }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.121176833088753, "dtype": "float32", "inbound_layers": [ "dense_13" ], "input_shape": [ null, 128 ], "name": "dropout_7", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_7" ], "input_shape": [ null, 128 ], "name": "dense_14", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 1032, "reuse_factor": 2, "trainable_parameters": 1032, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_14" ], "input_shape": [ null, 8 ], "name": "activation_11", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.24263197199859501, "dtype": "float32", "inbound_layers": [ "activation_11" ], "input_shape": [ null, 8 ], "name": "dropout_8", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_8" ], "input_shape": [ null, 8 ], "name": "dense_15", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 576, "reuse_factor": 2, "trainable_parameters": 576, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_15" ], "input_shape": [ null, 64 ], "name": "activation_12", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.458216920753357, "dtype": "float32", "inbound_layers": [ "activation_12" ], "input_shape": [ null, 64 ], "name": "dropout_9", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_9" ], "input_shape": [ null, 64 ], "name": "dense_16", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 2080, "reuse_factor": 2, "trainable_parameters": 2080, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_16" ], "input_shape": [ null, 32 ], "name": "activation_13", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.7604077044438251, "dtype": "float32", "inbound_layers": [ "activation_13" ], "input_shape": [ null, 32 ], "name": "dropout_10", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout_10" ], "input_shape": [ null, 32 ], "name": "dense_17", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 2112, "reuse_factor": 2, "trainable_parameters": 2112, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_17" ], "input_shape": [ null, 64 ], "name": "dense_18", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 1040, "reuse_factor": 2, "trainable_parameters": 1040, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_18" ], "input_shape": [ null, 16 ], "name": "activation_14", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_14" ], "input_shape": [ null, 16 ], "name": "dense_19", "neurons": 118, "output_shape": [ null, 118 ], "parameters": 2006, "reuse_factor": 2, "trainable_parameters": 2006, "use_bias": true } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 2, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "349.0", "dsp": "336.0", "ff": "138435.0", "lut": "667325.0", "uram": "0.0" }
{ "bram": "163.0", "dsp": "336.0", "ff": "46016.0", "lut": "161222.0", "uram": null }
{ "cycles_max": "489.0", "cycles_min": "489.0", "estimated_clock": "8.74", "interval_max": "131.0", "interval_min": "131.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "004c286e7dae32188468f2429bc4d045.tar.gz", "model_id": "004c286e7dae32188468f2429bc4d045", "model_name": "model_Dense_16in_Dense_16in_Dense_8in_Dense_128in_16out_ap_fixed<8, 4>_32rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241209-074754", "start_time": "20241209-074517" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250402-204335", "start_time": "20250402-203858" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 16 ], "name": "input_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 16 ], "name": "dense", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 272, "reuse_factor": 32, "trainable_parameters": 272, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 16 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 136, "reuse_factor": 32, "trainable_parameters": 136, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 1152, "reuse_factor": 32, "trainable_parameters": 1152, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 128 ], "name": "activation", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 128 ], "name": "dense_3", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 2064, "reuse_factor": 32, "trainable_parameters": 2064, "use_bias": true } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 4>", "ReuseFactor": 32, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "24.0", "dsp": "0.0", "ff": "8408.0", "lut": "38759.0", "uram": "0.0" }
{ "bram": "5.0", "dsp": "0.0", "ff": "11763.0", "lut": "18112.0", "uram": null }
{ "cycles_max": "175.0", "cycles_min": "171.0", "estimated_clock": "8.12", "interval_max": "32.0", "interval_min": "32.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "004efbc483f7ef52dd3ebe41cf65d44f.tar.gz", "model_id": "004efbc483f7ef52dd3ebe41cf65d44f", "model_name": "model_Dense_64in_Dense_32in_Dense_4in_Dense_32in_Dense_4in_Dense_4in_Dense_128in_Dense_16in_Dense_64in_Dense_8in_25out_ap_fixed<2, 1>_16rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241125-161559", "start_time": "20241125-160815" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250404-123501", "start_time": "20250404-123043" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 64 ], "name": "input_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 64 ], "name": "dense", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 2080, "reuse_factor": 16, "trainable_parameters": 2080, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 32 ], "name": "activation", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 32 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 16, "trainable_parameters": 132, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 160, "reuse_factor": 16, "trainable_parameters": 160, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 32 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 16, "trainable_parameters": 132, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 16, "trainable_parameters": 16, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 4 ], "name": "dense_5", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 16, "trainable_parameters": 640, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 128 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 128 ], "name": "dense_6", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 2048, "reuse_factor": 16, "trainable_parameters": 2048, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 16 ], "name": "dense_7", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 1024, "reuse_factor": 16, "trainable_parameters": 1024, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 64 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 64 ], "name": "dense_8", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 520, "reuse_factor": 16, "trainable_parameters": 520, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 8 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 8 ], "name": "dense_9", "neurons": 25, "output_shape": [ null, 25 ], "parameters": 225, "reuse_factor": 8, "trainable_parameters": 225, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 25 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 25 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 16, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "132.0", "dsp": "29.0", "ff": "10786.0", "lut": "86292.0", "uram": "0.0" }
{ "bram": "56.0", "dsp": "29.0", "ff": "8536.0", "lut": "8878.0", "uram": null }
{ "cycles_max": "322.0", "cycles_min": "312.0", "estimated_clock": "14.119", "interval_max": "16.0", "interval_min": "16.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "0051eefd159377c1a5c351e9b4dce81d.tar.gz", "model_id": "0051eefd159377c1a5c351e9b4dce81d", "model_name": "model_Dense_512in_Dense_4in_565out_ap_fixed<2, 1>_16rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241130-225320", "start_time": "20241130-221954" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250402-105157", "start_time": "20250402-104850" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 512 ], "name": "input_1", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 512 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 16, "trainable_parameters": 2052, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 565, "output_shape": [ null, 565 ], "parameters": 2825, "reuse_factor": 20, "trainable_parameters": 2825, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 565 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 565 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 16, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "193.0", "dsp": "4.0", "ff": "2494.0", "lut": "44139.0", "uram": "0.0" }
{ "bram": "4.0", "dsp": "4.0", "ff": "3.0", "lut": "865.0", "uram": "0.0" }
{ "cycles_max": "1084.0", "cycles_min": "1084.0", "estimated_clock": "8.44", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "0066ac420b18e40e214f71c43380d0ba.tar.gz", "model_id": "0066ac420b18e40e214f71c43380d0ba", "model_name": "model_Dense_16in_Dense_32in_Dense_8in_Dense_32in_Dense_8in_Dense_8in_Dropout_128in_Dense_128in_BatchNormalization_8in_Dense_8in_Dense_64in_BatchNormalization_4in_Dense_4in_BatchNormalization_4in_Dense_4in_BatchNormalization_4in_Dense_4in_670out_ap_fixed<16, 6>_32rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241127-030154", "start_time": "20241127-005437" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250312-121829", "start_time": "20250312-120943" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 16 ], "name": "input_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 16 ], "name": "dense", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 544, "reuse_factor": 32, "trainable_parameters": 544, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 32 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 264, "reuse_factor": 32, "trainable_parameters": 264, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 288, "reuse_factor": 32, "trainable_parameters": 288, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 32 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 32 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 264, "reuse_factor": 32, "trainable_parameters": 264, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 32, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 1152, "reuse_factor": 32, "trainable_parameters": 1152, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 128 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.547433212957085, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 128 ], "name": "dropout", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 128 ], "name": "dense_6", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 1032, "reuse_factor": 32, "trainable_parameters": 1032, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "batch_normalization", "neurons": null, "output_shape": [ null, 8 ], "parameters": 32, "reuse_factor": 32, "trainable_parameters": 16, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization" ], "input_shape": [ null, 8 ], "name": "dense_7", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 576, "reuse_factor": 32, "trainable_parameters": 576, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 64 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 64 ], "name": "dense_8", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 260, "reuse_factor": 32, "trainable_parameters": 260, "use_bias": true }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 4 ], "name": "batch_normalization_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 32, "trainable_parameters": 8, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization_1" ], "input_shape": [ null, 4 ], "name": "dense_9", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 4 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 4 ], "name": "batch_normalization_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 32, "trainable_parameters": 8, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization_2" ], "input_shape": [ null, 4 ], "name": "dense_10", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 4 ], "name": "batch_normalization_3", "neurons": null, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 32, "trainable_parameters": 8, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization_3" ], "input_shape": [ null, 4 ], "name": "dense_11", "neurons": 670, "output_shape": [ null, 670 ], "parameters": 3350, "reuse_factor": 40, "trainable_parameters": 3350, "use_bias": true } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<16, 6>", "ReuseFactor": 32, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "68.0", "dsp": "360.0", "ff": "97924.0", "lut": "684929.0", "uram": "0.0" }
{ "bram": "33.5", "dsp": "360.0", "ff": "64288.0", "lut": "123293.0", "uram": "0.0" }
{ "cycles_max": "975.0", "cycles_min": "975.0", "estimated_clock": "8.508", "interval_max": "27.0", "interval_min": "27.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00692d1fee6c29cbd399477cff0620ce.tar.gz", "model_id": "00692d1fee6c29cbd399477cff0620ce", "model_name": "model_Dense_128in_Dense_4in_Dense_256in_Dense_4in_Dense_4in_BatchNormalization_128in_Dense_128in_Dense_8in_BatchNormalization_64in_Dense_64in_Dense_16in_BatchNormalization_4in_Dense_4in_796out_ap_fixed<8, 4>_1rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241125-030817", "start_time": "20241125-012531" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250405-091825", "start_time": "20250405-090720" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 128 ], "name": "input_1", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 128 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 516, "reuse_factor": 1, "trainable_parameters": 516, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 1280, "reuse_factor": 1, "trainable_parameters": 1280, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 256 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 256 ], "name": "dense_2", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1028, "reuse_factor": 1, "trainable_parameters": 1028, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 4 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 1, "trainable_parameters": 20, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 1, "trainable_parameters": 640, "use_bias": true }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 128 ], "name": "batch_normalization", "neurons": null, "output_shape": [ null, 128 ], "parameters": 512, "reuse_factor": 1, "trainable_parameters": 256, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization" ], "input_shape": [ null, 128 ], "name": "dense_5", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 1032, "reuse_factor": 1, "trainable_parameters": 1032, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_6", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 512, "reuse_factor": 1, "trainable_parameters": 512, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 64 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 64 ], "name": "batch_normalization_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 256, "reuse_factor": 1, "trainable_parameters": 128, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization_1" ], "input_shape": [ null, 64 ], "name": "dense_7", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 1040, "reuse_factor": 1, "trainable_parameters": 1040, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 16 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 16 ], "name": "dense_8", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 68, "reuse_factor": 1, "trainable_parameters": 68, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 4 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 4 ], "name": "batch_normalization_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 1, "trainable_parameters": 8, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization_2" ], "input_shape": [ null, 4 ], "name": "dense_9", "neurons": 796, "output_shape": [ null, 796 ], "parameters": 3184, "reuse_factor": 1, "trainable_parameters": 3184, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 796 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 796 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 4>", "ReuseFactor": 1, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "507.0", "dsp": "260.0", "ff": "196312.0", "lut": "599641.0", "uram": "0.0" }
{ "bram": "236.0", "dsp": "220.0", "ff": "90881.0", "lut": "90263.0", "uram": null }
{ "cycles_max": "1270.0", "cycles_min": "1270.0", "estimated_clock": "8.657", "interval_max": "156.0", "interval_min": "156.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "0070c640d40deecb16f54383caddec0c.tar.gz", "model_id": "0070c640d40deecb16f54383caddec0c", "model_name": "model_Dense_1024in_Dense_2in_Dense_32in_Dense_16in_Dense_8in_Dense_32in_Dropout_64in_Dense_64in_34out_ap_fixed<8, 3>_1rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "3.6000 GHz", "brand": "Intel(R) Core(TM) i9-10850K", "logical_count": 20, "physical_count": 10 }, "end_time": "20241210-221115", "start_time": "20241210-212240" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250221-155046", "start_time": "20250221-154332" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 1024 ], "name": "input_1", "neurons": null, "output_shape": [ null, 1024 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 1024 ], "name": "dense", "neurons": 2, "output_shape": [ null, 2 ], "parameters": 2050, "reuse_factor": 1, "trainable_parameters": 2050, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 2 ], "name": "activation", "neurons": null, "output_shape": [ null, 2 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 2 ], "name": "dense_1", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 96, "reuse_factor": 1, "trainable_parameters": 96, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 32 ], "name": "dense_2", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 528, "reuse_factor": 1, "trainable_parameters": 528, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 16 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 16 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 136, "reuse_factor": 1, "trainable_parameters": 136, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 288, "reuse_factor": 1, "trainable_parameters": 288, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 32 ], "name": "dense_5", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 2112, "reuse_factor": 1, "trainable_parameters": 2112, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 64 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.22408488452372702, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 64 ], "name": "dropout", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 64 ], "name": "dense_6", "neurons": 34, "output_shape": [ null, 34 ], "parameters": 2210, "reuse_factor": 1, "trainable_parameters": 2210, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 34 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 34 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 1, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "56.0", "dsp": "18.0", "ff": "10669.0", "lut": "193552.0", "uram": "0.0" }
{ "bram": "28.0", "dsp": "18.0", "ff": "1271.0", "lut": "50997.0", "uram": null }
{ "cycles_max": "1080.0", "cycles_min": "1080.0", "estimated_clock": "8.657", "interval_max": "2.0", "interval_min": "2.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00747c2501ab5234026e5b9c91fc66ba.tar.gz", "model_id": "00747c2501ab5234026e5b9c91fc66ba", "model_name": "model_Dense_512in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_512out_ap_fixed<2, 1>_64rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241218-101751", "start_time": "20241218-072121" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250325-122450", "start_time": "20250325-121347" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 512 ], "name": "input_1", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 512 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 4096, "reuse_factor": 64, "trainable_parameters": 4096, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 64, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 64, "trainable_parameters": 72, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 64, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 64, "trainable_parameters": 72, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 64, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 8 ], "name": "dense_6", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 64, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 8 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 8 ], "name": "dense_7", "neurons": 512, "output_shape": [ null, 512 ], "parameters": 4608, "reuse_factor": 64, "trainable_parameters": 4608, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 512 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 64, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "16.0", "dsp": "512.0", "ff": "18599.0", "lut": "4256821.0", "uram": "0.0" }
{ "bram": "8.0", "dsp": "473.0", "ff": "2830.0", "lut": "9780.0", "uram": "0.0" }
{ "cycles_max": "1038.0", "cycles_min": "1038.0", "estimated_clock": "8.635", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "0075fff6ffaa2b2d65c07dd5616de5c5.tar.gz", "model_id": "0075fff6ffaa2b2d65c07dd5616de5c5", "model_name": "model_Dense_256in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_256out_ap_fixed<8, 3>_2rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20250118-005639", "start_time": "20250118-002141" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250405-060951", "start_time": "20250405-060604" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 256 ], "name": "input_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 256 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 2, "trainable_parameters": 2056, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 2, "trainable_parameters": 64, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 8 ], "name": "dense_6", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 8 ], "name": "dense_7", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 8 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 8 ], "name": "dense_8", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 8 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 8 ], "name": "dense_9", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 8 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 8 ], "name": "dense_10", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 2, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 8 ], "name": "dense_11", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2304, "reuse_factor": 2, "trainable_parameters": 2304, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 256 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 2, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "156.0", "dsp": "0.0", "ff": "16801.0", "lut": "92627.0", "uram": "0.0" }
{ "bram": "78.0", "dsp": "0.0", "ff": "10601.0", "lut": "29086.0", "uram": null }
{ "cycles_max": "562.0", "cycles_min": "562.0", "estimated_clock": "8.746", "interval_max": "2.0", "interval_min": "2.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "007c2af506e4ad7b0bc5acf690841c5b.tar.gz", "model_id": "007c2af506e4ad7b0bc5acf690841c5b", "model_name": "model_Dense_512in_Dense_4in_Dense_128in_Dense_16in_Dense_64in_Dense_8in_Dense_4in_Dense_64in_20out_ap_fixed<16, 6>_16rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "3.6000 GHz", "brand": "Intel(R) Core(TM) i9-10850K", "logical_count": 20, "physical_count": 10 }, "end_time": "20241201-231752", "start_time": "20241201-231117" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250220-153107", "start_time": "20250220-152509" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 512 ], "name": "input_1", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 512 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 16, "trainable_parameters": 2052, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 16, "trainable_parameters": 640, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 128 ], "name": "dense_2", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 2064, "reuse_factor": 16, "trainable_parameters": 2064, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 16 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 16 ], "name": "dense_3", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 1088, "reuse_factor": 16, "trainable_parameters": 1088, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 64 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 64 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 520, "reuse_factor": 16, "trainable_parameters": 520, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 36, "reuse_factor": 16, "trainable_parameters": 36, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 4 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 4 ], "name": "dense_6", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 320, "reuse_factor": 16, "trainable_parameters": 320, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 64 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 64 ], "name": "dense_7", "neurons": 20, "output_shape": [ null, 20 ], "parameters": 1280, "reuse_factor": 16, "trainable_parameters": 1280, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 20 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 20 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<16, 6>", "ReuseFactor": 16, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "290.0", "dsp": "482.0", "ff": "49762.0", "lut": "539016.0", "uram": "0.0" }
{ "bram": "37.0", "dsp": "482.0", "ff": "55059.0", "lut": "68734.0", "uram": null }
{ "cycles_max": "693.0", "cycles_min": "685.0", "estimated_clock": "8.084", "interval_max": "16.0", "interval_min": "16.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00816035fa82135f1601856c937c4739.tar.gz", "model_id": "00816035fa82135f1601856c937c4739", "model_name": "model_Dense_1024in_Dense_2in_Dense_4in_Dense_512in_Dense_4in_Dense_128in_BatchNormalization_4in_Dense_4in_Dense_128in_Dropout_4in_Dense_4in_42out_ap_fixed<2, 1>_1rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20250122-202547", "start_time": "20250122-201118" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250325-182808", "start_time": "20250325-182047" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 1024 ], "name": "input_1", "neurons": null, "output_shape": [ null, 1024 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 1024 ], "name": "dense", "neurons": 2, "output_shape": [ null, 2 ], "parameters": 2050, "reuse_factor": 1, "trainable_parameters": 2050, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 2 ], "name": "activation", "neurons": null, "output_shape": [ null, 2 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 2 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 12, "reuse_factor": 1, "trainable_parameters": 12, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 512, "output_shape": [ null, 512 ], "parameters": 2560, "reuse_factor": 1, "trainable_parameters": 2560, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 512 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 512 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 1, "trainable_parameters": 2052, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 1, "trainable_parameters": 640, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 128 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 128 ], "name": "dense_5", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 516, "reuse_factor": 1, "trainable_parameters": 516, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 4 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "BatchNormalization", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 4 ], "name": "batch_normalization", "neurons": null, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 1, "trainable_parameters": 8, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "batch_normalization" ], "input_shape": [ null, 4 ], "name": "dense_6", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 640, "reuse_factor": 1, "trainable_parameters": 640, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 128 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 128 ], "name": "dense_7", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 516, "reuse_factor": 1, "trainable_parameters": 516, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 4 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dropout", "dropout_rate": 0.5273279264734181, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 4 ], "name": "dropout", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dropout" ], "input_shape": [ null, 4 ], "name": "dense_8", "neurons": 42, "output_shape": [ null, 42 ], "parameters": 210, "reuse_factor": 1, "trainable_parameters": 210, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 42 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 42 ], "parameters": 0, "reuse_factor": 1, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 1, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "195.0", "dsp": "0.0", "ff": "12911.0", "lut": "96371.0", "uram": "0.0" }
{ "bram": "69.0", "dsp": "0.0", "ff": "10668.0", "lut": "11849.0", "uram": null }
{ "cycles_max": "1098.0", "cycles_min": "1098.0", "estimated_clock": "8.454", "interval_max": "1.0", "interval_min": "1.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "008b597a433d9c4710af82006c878d5b.tar.gz", "model_id": "008b597a433d9c4710af82006c878d5b", "model_name": "model_Dense_64in_Dense_16in_Dense_16in_Dense_16in_64out_ap_fixed<8, 3>_32rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20250118-000100", "start_time": "20250117-235900" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250404-092857", "start_time": "20250404-092718" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 64 ], "name": "input_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 64 ], "name": "dense", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 1024, "reuse_factor": 32, "trainable_parameters": 1024, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 16 ], "name": "activation", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 16 ], "name": "dense_1", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 256, "reuse_factor": 32, "trainable_parameters": 256, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 16 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 16 ], "name": "dense_2", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 256, "reuse_factor": 32, "trainable_parameters": 256, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 16 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 16 ], "name": "dense_3", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 1024, "reuse_factor": 32, "trainable_parameters": 1024, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 64 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 3>", "ReuseFactor": 32, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "52.0", "dsp": "0.0", "ff": "9235.0", "lut": "41014.0", "uram": "0.0" }
{ "bram": "23.0", "dsp": "0.0", "ff": "8129.0", "lut": "9737.0", "uram": null }
{ "cycles_max": "282.0", "cycles_min": "278.0", "estimated_clock": "8.621", "interval_max": "32.0", "interval_min": "32.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00accb0fb3f05c802947cb608986ad4f.tar.gz", "model_id": "00accb0fb3f05c802947cb608986ad4f", "model_name": "model_Dense_64in_Dense_16in_Dense_8in_Dense_8in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_Dense_8in_Dense_8in_Dense_16in_64out_ap_fixed<2, 1>_8rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20250119-110204", "start_time": "20250119-105846" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250403-061032", "start_time": "20250403-060900" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 64 ], "name": "input_1", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 64 ], "name": "dense", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 1024, "reuse_factor": 8, "trainable_parameters": 1024, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 16 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 128, "reuse_factor": 8, "trainable_parameters": 128, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 8, "trainable_parameters": 64, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 32, "reuse_factor": 8, "trainable_parameters": 32, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 8, "trainable_parameters": 16, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 4 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 4 ], "name": "dense_5", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 8, "trainable_parameters": 16, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 4 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 4 ], "name": "dense_6", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 8, "trainable_parameters": 16, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 4 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 4 ], "name": "dense_7", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 16, "reuse_factor": 8, "trainable_parameters": 16, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 4 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 4 ], "name": "dense_8", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 32, "reuse_factor": 8, "trainable_parameters": 32, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 8 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 8 ], "name": "dense_9", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 8, "trainable_parameters": 64, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 8 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 8 ], "name": "dense_10", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 128, "reuse_factor": 8, "trainable_parameters": 128, "use_bias": false }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 16 ], "name": "dense_11", "neurons": 64, "output_shape": [ null, 64 ], "parameters": 1024, "reuse_factor": 8, "trainable_parameters": 1024, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 64 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 64 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 8, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "60.0", "dsp": "0.0", "ff": "5243.0", "lut": "74165.0", "uram": "0.0" }
{ "bram": "22.0", "dsp": "0.0", "ff": "3543.0", "lut": "3847.0", "uram": null }
{ "cycles_max": "272.0", "cycles_min": "260.0", "estimated_clock": "8.621", "interval_max": "8.0", "interval_min": "8.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00bf14ab4abfe2e7d37163c50616f48f.tar.gz", "model_id": "00bf14ab4abfe2e7d37163c50616f48f", "model_name": "model_Dense_32in_Dense_4in_Dense_4in_Dense_8in_Dense_256in_Dense_4in_Dense_8in_Dense_16in_Dense_128in_Dense_16in_Dense_32in_Dense_8in_Dense_32in_Dense_4in_367out_ap_fixed<8, 4>_2rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "3.6000 GHz", "brand": "Intel(R) Core(TM) i9-10850K", "logical_count": 20, "physical_count": 10 }, "end_time": "20241205-190818", "start_time": "20241205-171009" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250222-075905", "start_time": "20250222-075727" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250224-164720", "start_time": "20250224-163149" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 32 ], "name": "input_1", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 32 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 2, "trainable_parameters": 132, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 2, "trainable_parameters": 20, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 2, "trainable_parameters": 40, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2304, "reuse_factor": 2, "trainable_parameters": 2304, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 256 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 256 ], "name": "dense_4", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1024, "reuse_factor": 2, "trainable_parameters": 1024, "use_bias": false }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 4 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 4 ], "name": "dense_5", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 40, "reuse_factor": 2, "trainable_parameters": 40, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "dense_6", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 128, "reuse_factor": 2, "trainable_parameters": 128, "use_bias": false }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 16 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 16 ], "name": "dense_7", "neurons": 128, "output_shape": [ null, 128 ], "parameters": 2176, "reuse_factor": 2, "trainable_parameters": 2176, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 128 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 128 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 128 ], "name": "dense_8", "neurons": 16, "output_shape": [ null, 16 ], "parameters": 2064, "reuse_factor": 2, "trainable_parameters": 2064, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 16 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 16 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 16 ], "name": "dense_9", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 544, "reuse_factor": 2, "trainable_parameters": 544, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 32 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 32 ], "name": "dense_10", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 264, "reuse_factor": 2, "trainable_parameters": 264, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 8 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_9" ], "input_shape": [ null, 8 ], "name": "dense_11", "neurons": 32, "output_shape": [ null, 32 ], "parameters": 288, "reuse_factor": 2, "trainable_parameters": 288, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 32 ], "name": "activation_10", "neurons": null, "output_shape": [ null, 32 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_10" ], "input_shape": [ null, 32 ], "name": "dense_12", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 132, "reuse_factor": 2, "trainable_parameters": 132, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_12" ], "input_shape": [ null, 4 ], "name": "activation_11", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_11" ], "input_shape": [ null, 4 ], "name": "dense_13", "neurons": 367, "output_shape": [ null, 367 ], "parameters": 1835, "reuse_factor": 2, "trainable_parameters": 1835, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_13" ], "input_shape": [ null, 367 ], "name": "activation_12", "neurons": null, "output_shape": [ null, 367 ], "parameters": 0, "reuse_factor": 2, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 4>", "ReuseFactor": 2, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "1322.0", "dsp": "40.0", "ff": "47150.0", "lut": "526563.0", "uram": "0.0" }
{ "bram": "123.0", "dsp": "40.0", "ff": "73872.0", "lut": "241241.0", "uram": null }
{ "cycles_max": "498.0", "cycles_min": "484.0", "estimated_clock": "8.687", "interval_max": "2.0", "interval_min": "2.0", "target_clock": "10.0" }
xczu9eg-ffvb1156-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00c172e77b585a9d4e70b2fc2307253e.tar.gz", "model_id": "00c172e77b585a9d4e70b2fc2307253e", "model_name": "model_Dense_256in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_256out_ap_fixed<8, 4>_8rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20250118-093559", "start_time": "20250118-085455" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250307-113350", "start_time": "20250307-112746" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 256 ], "name": "input_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 256 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 8, "trainable_parameters": 2056, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 8, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 8, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 8, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 8, "trainable_parameters": 64, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2048, "reuse_factor": 8, "trainable_parameters": 2048, "use_bias": false }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 256 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 8, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<8, 4>", "ReuseFactor": 8, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "19.0", "dsp": "256.0", "ff": "175783.0", "lut": "303359.0", "uram": "0.0" }
{ "bram": "9.5", "dsp": "220.0", "ff": "46388.0", "lut": "39175.0", "uram": null }
{ "cycles_max": "834.0", "cycles_min": "834.0", "estimated_clock": "8.67", "interval_max": "131.0", "interval_min": "131.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00c314933ea6956e5ff04b747c56eeb3.tar.gz", "model_id": "00c314933ea6956e5ff04b747c56eeb3", "model_name": "model_Dense_512in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_512out_ap_fixed<16, 6>_32rf_R", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241217-092619", "start_time": "20241217-083753" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250307-175148", "start_time": "20250307-173046" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 512 ], "name": "input_1", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 512 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2052, "reuse_factor": 32, "trainable_parameters": 2052, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_2", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 4 ], "name": "dense_3", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 4 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 4 ], "name": "dense_4", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 20, "reuse_factor": 16, "trainable_parameters": 20, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 4 ], "name": "dense_5", "neurons": 512, "output_shape": [ null, 512 ], "parameters": 2560, "reuse_factor": 32, "trainable_parameters": 2560, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 512 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 512 ], "parameters": 0, "reuse_factor": 32, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<16, 6>", "ReuseFactor": 32, "Strategy": "Resource", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "100.0", "dsp": "644.0", "ff": "188596.0", "lut": "3199751.0", "uram": "0.0" }
{ "bram": "36.0", "dsp": "644.0", "ff": "74844.0", "lut": "91234.0", "uram": "0.0" }
{ "cycles_max": "1587.0", "cycles_min": "1581.0", "estimated_clock": "8.709", "interval_max": "413.0", "interval_min": "413.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00dc2b8706bf0ba8c228d14ff41d99f9.tar.gz", "model_id": "00dc2b8706bf0ba8c228d14ff41d99f9", "model_name": "model_Dense_256in_Dense_4in_Dense_512in_4out_ap_fixed<2, 1>_64rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241205-134400", "start_time": "20241205-131250" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250405-025940", "start_time": "20250405-025828" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 256 ], "name": "input_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 256 ], "name": "dense", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 1028, "reuse_factor": 64, "trainable_parameters": 1028, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 4 ], "name": "activation", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 4 ], "name": "dense_1", "neurons": 512, "output_shape": [ null, 512 ], "parameters": 2560, "reuse_factor": 64, "trainable_parameters": 2560, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 512 ], "name": "dense_2", "neurons": 4, "output_shape": [ null, 4 ], "parameters": 2048, "reuse_factor": 64, "trainable_parameters": 2048, "use_bias": false }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 4 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 4 ], "parameters": 0, "reuse_factor": 64, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<2, 1>", "ReuseFactor": 64, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "2.0", "dsp": "4.0", "ff": "2972.0", "lut": "24178.0", "uram": "0.0" }
{ "bram": "1.0", "dsp": "4.0", "ff": "309.0", "lut": "865.0", "uram": null }
{ "cycles_max": "280.0", "cycles_min": "280.0", "estimated_clock": "8.621", "interval_max": "3.0", "interval_min": "3.0", "target_clock": "10.0" }
xc7z020clg400-1
VivadoAccelerator
2019.1
0.8.1
{ "artifacts_file": "00dc4052e3335845847ca5aeb94e7518.tar.gz", "model_id": "00dc4052e3335845847ca5aeb94e7518", "model_name": "model_Dense_256in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_256out_ap_fixed<16, 6>_16rf_L", "synthesis_info": [ { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": true, "validation": false, "vsynth": false }, "cpu": { "architecture": "X86_64", "base_frequency": "2.4000 GHz", "brand": "Intel(R) Xeon(R) E5-2680 v4", "logical_count": 24, "physical_count": 24 }, "end_time": "20241218-070725", "start_time": "20241218-053145" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250324-114626", "start_time": "20250324-114450" }, { "build_args": { "bitfile": false, "cosim": false, "csim": false, "export": false, "fifo_opt": false, "reset": false, "synth": false, "validation": false, "vsynth": true }, "cpu": { "architecture": "X86_64", "base_frequency": "3.7928 GHz", "brand": "AMD Ryzen 7 9700X 8-Core Processor", "logical_count": 16, "physical_count": 8 }, "end_time": "20250324-225359", "start_time": "20250324-224437" } ] }
[ { "activation": null, "class_name": "InputLayer", "dropout_rate": null, "dtype": "float32", "inbound_layers": [], "input_shape": [ null, 256 ], "name": "input_1", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "input_1" ], "input_shape": [ null, 256 ], "name": "dense", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 2056, "reuse_factor": 16, "trainable_parameters": 2056, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense" ], "input_shape": [ null, 8 ], "name": "dense_1", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 16, "trainable_parameters": 64, "use_bias": false }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_1" ], "input_shape": [ null, 8 ], "name": "activation", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation" ], "input_shape": [ null, 8 ], "name": "dense_2", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_2" ], "input_shape": [ null, 8 ], "name": "activation_1", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_1" ], "input_shape": [ null, 8 ], "name": "dense_3", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_3" ], "input_shape": [ null, 8 ], "name": "dense_4", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_4" ], "input_shape": [ null, 8 ], "name": "activation_2", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_2" ], "input_shape": [ null, 8 ], "name": "dense_5", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 16, "trainable_parameters": 64, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_5" ], "input_shape": [ null, 8 ], "name": "activation_3", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_3" ], "input_shape": [ null, 8 ], "name": "dense_6", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_6" ], "input_shape": [ null, 8 ], "name": "activation_4", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_4" ], "input_shape": [ null, 8 ], "name": "dense_7", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 64, "reuse_factor": 16, "trainable_parameters": 64, "use_bias": false }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_7" ], "input_shape": [ null, 8 ], "name": "activation_5", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_5" ], "input_shape": [ null, 8 ], "name": "dense_8", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_8" ], "input_shape": [ null, 8 ], "name": "dense_9", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_9" ], "input_shape": [ null, 8 ], "name": "dense_10", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "relu", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_10" ], "input_shape": [ null, 8 ], "name": "activation_6", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_6" ], "input_shape": [ null, 8 ], "name": "dense_11", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_11" ], "input_shape": [ null, 8 ], "name": "activation_7", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_7" ], "input_shape": [ null, 8 ], "name": "dense_12", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_12" ], "input_shape": [ null, 8 ], "name": "activation_8", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_8" ], "input_shape": [ null, 8 ], "name": "dense_13", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_13" ], "input_shape": [ null, 8 ], "name": "activation_9", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_9" ], "input_shape": [ null, 8 ], "name": "dense_14", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_14" ], "input_shape": [ null, 8 ], "name": "activation_10", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_10" ], "input_shape": [ null, 8 ], "name": "dense_15", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "sigmoid", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_15" ], "input_shape": [ null, 8 ], "name": "activation_11", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_11" ], "input_shape": [ null, 8 ], "name": "dense_16", "neurons": 8, "output_shape": [ null, 8 ], "parameters": 72, "reuse_factor": 16, "trainable_parameters": 72, "use_bias": true }, { "activation": "tanh", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_16" ], "input_shape": [ null, 8 ], "name": "activation_12", "neurons": null, "output_shape": [ null, 8 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null }, { "activation": null, "class_name": "Dense", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "activation_12" ], "input_shape": [ null, 8 ], "name": "dense_17", "neurons": 256, "output_shape": [ null, 256 ], "parameters": 2304, "reuse_factor": 16, "trainable_parameters": 2304, "use_bias": true }, { "activation": "softmax", "class_name": "Activation", "dropout_rate": null, "dtype": "float32", "inbound_layers": [ "dense_17" ], "input_shape": [ null, 256 ], "name": "activation_13", "neurons": null, "output_shape": [ null, 256 ], "parameters": 0, "reuse_factor": 16, "trainable_parameters": 0, "use_bias": null } ]
{ "Model": { "BramFactor": 1000000000, "Precision": "ap_fixed<16, 6>", "ReuseFactor": 16, "Strategy": "Latency", "TraceOutput": false }, "clock_period": 10, "io_type": "io_parallel" }
{ "bram": "39.0", "dsp": "576.0", "ff": "92785.0", "lut": "422751.0", "uram": "0.0" }
{ "bram": "19.5", "dsp": "576.0", "ff": "65807.0", "lut": "112830.0", "uram": "0.0" }
{ "cycles_max": "1035.0", "cycles_min": "1035.0", "estimated_clock": "8.738", "interval_max": "156.0", "interval_min": "156.0", "target_clock": "10.0" }
xcu200-fsgd2104-2-e
VivadoAccelerator
2019.1
0.8.1
End of preview.

Dataset Card for wa-hls4ml Benchmark Dataset

The wa-hls4ml resource and latency estimation benchmark dataset

Dataset Details

We introduce wa-hls4ml[^1]: a dataset unprecedented in scale and features and a benchmark for common evaluation

The open dataset is unprecedented in terms of its size, with over 680,000 fully synthesized dataflow models. The goal is to continue to grow and extend the dataset over time. We include all steps of the synthesis chain from ML model to HLS representation to register-transfer level (RTL) and save the full logs. This will enable a much broader set of applications beyond those in this paper.
The benchmark standardizes evaluation of the performance of resource usage and latency estimators across a suite of metrics, such as the coefficient of determination (R^2), symmetric mean absolute percentage error (SMAPE), and root mean square error (RMSE), and provides sample models, both synthetic and from scientific applications, to support and encourage the continued development of better surrogate models.

[^1]: Named after Wario and Waluigi who are doppelgΓ€ngers of Mario and Luigi, respectively, in the Nintendo Super Mario platform game series.

Dataset Description

The dataset has two primary components, each designed to test different aspects of a surrogate model's performance.
The first part is based on synthetic neural networks generated with various layer types, micro-architectures, and precisions.
This synthetic dataset lets us systematically explore the FPGA resources and latencies as we vary different model parameters.
The second part of the benchmark targets models from exemplar realistic scientific applications, requiring real-time processing at the edge, near the data sources.
Models with real-time constraints constitute a primary use case for ML-to-FPGA pipelines like hls4ml.
This part tests the ability of the surrogate model to extrapolate its predictions to new configurations and architectures beyond the training set, assessing the model's robustness and performance for real applications.

Exemplar Model Descriptions

  • Jet: A fully connected neural network that classifies simulated particle jets originating from one of five particle classes in high-energy physics experiments.
  • Top Quarks: A binary classifier for top quark jets, helping probe fundamental particles and their interactions.
  • Anomaly: An autoencoder trained on audio data to reproduce the input spectrogram, whose loss value differentiates between normal and abnormal signals.
  • BiPC: An encoder that transforms high-resolution images, producing sparse codes for further compression.
  • CookieBox: Dedicated to real-time data acquisition for the CookieBox system, designed for advanced experimental setups requiring rapid handling of large data volumes generated by high-speed detectors.
  • AutoMLP: A fully connected network from the AutoMLP framework, focusing on accelerating MLPs on FPGAs, providing significant improvements in computational performance and energy efficiency.
  • Particle Tracking: Tracks charged particles in real-time as they traverse silicon detectors in large-scale particle physics experiments.

Exemplar Model Architectures

Model Size Input Architecture
Jet 2,821 16 β†’[ReLU]32 β†’[ReLU]32 β†’[ReLU]32 β†’[Softmax]5
Top Quarks 385 10 β†’[ReLU]32 β†’[Sigmoid]1
Anomaly 2,864 128 β†’[ReLU]8 β†’[ReLU]4 β†’[ReLU]128 β†’[ReLU]4 β†’[Softmax]128
BiPC 7,776 36 β†’[ReLU]36 β†’[ReLU]36 β†’[ReLU]36 β†’[ReLU]36 β†’[ReLU]36
CookieBox 3,433 512 β†’[ReLU]4 β†’[ReLU]32 β†’[ReLU]32 β†’[Softmax]5
AutoMLP 534 7 β†’[ReLU]12 β†’[ReLU]16 β†’[ReLU]12 β†’[Softmax]2
Particle Tracking 2,691 14 β†’[ReLU]32 β†’[ReLU]32 β†’[ReLU]32 β†’[Softmax]3
  • Curated by: Fast Machine Learning Lab
  • Funded by: See "Acknowledgements" in the paper for full funding details
  • Language(s) (NLP): English
  • License: cc-by-nc-4.0

Dataset Sources

The Dataset was consists of data generated by the authors using the following methods:

Generation of Synthetic Data

The train, validation, and test sets were created by first generating models of varying architectures in the Keras and QKeras Python libraries, varying their hyperparameters.
The updated rule4ml dataset follows the same generation method and hyperparameter ranges described in prior work, while adding II information and logic synthesis results to the reports.

For the remaining subsets of the data, the two-layer and three-layer fully-connected models were generated using a grid search method according to the parameter ranges mentioned below, whereas larger fully-connected models and convolutional models (one- and two-dimensional) were randomly generated, where convolutional models also contain dense, flatten, and pooling layers.
The weight and bias precision was implemented in HLS as datatype ap_fixed<X,1>, where X is the specified precision and the total number of bits allocated to the weight and bias values, with one bit being reserved for the integer portion of the value.
These models were then converted to HLS using hls4ml and synthesized through AMD Vitis version 2023.2 and 2024.2, targeting the AMD Xilinx Alveo U250 FPGA board.
The model sets have the following parameter ranges:

  • Number of layers: 2–7 for fully-connected models; 3–7 for convolutional models.
  • Activation functions: Linear for most 2–3 layer fully-connected models; ReLU, tanh, and sigmoid for all other fully-connected models and convolutional models.
  • Number of features/neurons: 8–128 (step size: 8 for 2–3 layer) for fully-connected models; 32–128 for convolution models with 8–64 filters.
  • Weight and bias bit precision: 2–16 bits (step size: 2) for 2–3 layer fully-connected models, 4–16 bits (step size: powers of 2) for 3–7 layer fully-connected and convolutional models.
  • hls4ml target reuse factor: 1–4093 for fully-connected models; 8192–32795 for convolutional models.
  • hls4ml implementation strategy: Resource strategy, which controls the degree of parallelism by explicitly specifying the number of MAC operations performed in parallel per clock cycle, is used for most fully-connected models and all convolutional models, while Latency strategy, where the computation is unrolled, is used for some 3–7 layer fully-connected models.
  • hls4ml I/O type: The io_parallel setting, which directly wires the output of one layer to the input of the next layer, is used for all fully-connected models, and the io_stream setting, which uses FIFO buffers between layers, is used for all convolutional models.

Exemplar Model Synthesis Parameters

The exemplar models were synthesized with the following parameters:

Hyperparameter Values
Precision ap_fixed<2,1>, ap_fixed<8,3>, ap_fixed<16,6>
Strategy Latency, Resource
Target reuse factor 1, 128, 1024
Target board Alveo U200, Alveo U250
Target clock 5 ns, 10 ns
Vivado version 2019.1, 2020.1

The synthesis was repeated multiple times, varying the hls4ml reuse factor, a tunable setting that proportionally limits the number of multiplication operations used.
The hls4ml conversion, HLS synthesis, and logic synthesis of the train and test sets were all performed in parallel on the National Research Platform Kubernetes Hypercluster and the Texas A&M ACES HPRC Cluster.
On the National Research Platform, synthesis was run inside a container with a guest OS of Ubuntu 20.04.4 LTS, the containers being slightly modified versions of the xilinx-docker v2023.2 "user" images, with 3 virtual CPU cores and 16 GB of RAM per pod, with all AMD tools mounted through a Ceph-based persistent volume.
Jobs run on the Texas A&M ACES HPRC Cluster were run using Vitis 2024.2, each with 2 virtual CPU cores and 32 GB of RAM.

The resulting projects, reports, logs, and a JSON file containing the resource/latency usage and estimates of the C and logic synthesis were collected for each sample in the dataset.
The data, excluding the projects and logs, were then further processed into a collection of JSON files, distributed alongside this paper and described below.


Uses

This dataset is inteded to be used to train surrogate models for the purpose of estimating resource utilization and latency of neural networks that are implemented on hardware (FPGAs).

Direct Use

This dataset is generated using the tool hls4ml, and should be used to train surrogate models and/or other models for use with the hls4ml workflow.

Out-of-Scope Use

As this dataset is generated using the hls4ml tool, it should not be used to train surrogate models for other tools, as results and implementation details may vary across those tools compared to hls4ml.


Dataset Structure

The training, validation, and test sets of the benchmark currently consist of 683,176 synthetic samples, consisting of data about synthesized samples of 608,679 fully-connected neural networks, 31,278 one-dimensional convolutional neural networks, and 43,219 two-dimensional convolutional neural networks.
Each sample contains the model architecture, hls4ml conversion parameters, the latency and resource usage numbers for that network post-logic synthesis, and associated metadata.
In addition to the training, validation, and test sets, the dataset also includes 887 samples representing the successful logic synthesis of the exemplar models with varying conversion parameters.
The dataset as a whole is split, distributed, and intended to be used as follows:

  • Training set: The set of 478,220 samples intended to be used for training a given estimator.
  • Validation set: The set of 102,472 samples intended to be used during training for validation purposes.
  • Test set: The set of 102,484 samples intended to be used for testing and generating results for a given estimator.
  • Exemplar test set: The set of 887 samples, comprising the models described in the benchmark, intended to be used for testing and generating results for a given estimator.

Within each subset, excluding the exemplar test set, the data is further grouped as follows.
These categories explain the composition of our dataset but have no bearing on how a given estimator should be trained.

  • 2_20 (rule4ml): The updated rule4ml dataset, containing fully-connected neural networks that were randomly generated with layer counts between 2 and 20 layers, using hls4ml resource and latency strategies.
  • 2_layer: A subset containing 2-layer deep fully-connected neural networks generated via a grid search using hls4ml resource and io_parallel strategies.
  • 3_layer: A subset containing 3-layer deep fully-connected neural networks generated via a grid search using hls4ml resource and io_parallel strategies.
  • conv1d: A subset containing 3–7 layer deep 1-dimensional convolutional neural networks that were randomly generated and use hls4ml resource and io_stream strategies.
  • conv2d: A subset containing 3–7 layer deep 2-dimensional convolutional neural networks that were randomly generated and use hls4ml resource and io_stream strategies.
  • latency: A subset containing 3–7 layer deep fully-connected neural networks that were randomly generated and use hls4ml latency and io_parallel strategies.
  • resource: A subset containing 3–7 layer deep fully-connected neural networks that were randomly generated and use hls4ml resource and io_parallel strategies.

Structure of JSON Files

The distributed JSON files contain 683,176 total samples. The samples are split into three subsets, as described in the dataset section. The format across the three subsets is the same, where each sample is an object in JSON file, each sample containing 9 fields:

  • meta_data: A unique identifier, model name, and name of the corresponding gzipped tarball of the fully synthesized project, logs, and reports for the sample (contained in an accompanying dataset released alongside the primary dataset).
  • model_config: A JSON representation of the Keras/QKeras model synthesized in the sample, including the actual reuse factor as synthesized per layer.
  • hls_config: The hls4ml configuration dictionary used to convert the model for the sample, including the target reuse factor as synthesized per layer.
  • resource_report: A report of the post-logic synthesis resources used for the sample, reported as the actual number of components used.
  • hls_resource_report: A report of the post-hls synthesis resources estimated for the sample, reported as the actual number of components estimated.
  • latency_report: A report of the post-hls synthesis latency estimates for the sample.
  • target_part: The FPGA part targeted for HLS and logic synthesis for the sample.
  • vivado_version: The version of Vivado used to synthesize the sample.
  • hls4ml_version: The version of hls4ml used to convert the sample.

Curation Rationale

With the introduction of ML into FPGA toolchains, e.g., for resource and latency prediction or code generation, there is a significant need for large datasets to support and train these tools.
We found that existing datasets were insufficient for these needs, and therefore sought to build a dataset and a highly scalable data generation framework that is useful for a wide variety of research surrounding ML on FPGAs.
This dataset serves as one of the few openly accessible, large-scale collections of synthesized neural networks available for ML research.

Exemplar Realistic Models

The exemplar models utilized in this study include several key architectures, each tailored for specific ML tasks and targeting scientific applications with low-latency constraints.

Source Data

The data was generated via randomly generated neural networks and specifically selected exemplar models, converted into HLS Code via hls4ml, with the resulting latency values collected after performing C-Synthesis through Vivado/Vitis HLS on the resulting HLS Code, and resource values collected after performing logic synthesis through Vivado/Vitis on the resulting HDL Code.

Who are the source data producers?

Benjamin Hawks, Fermi National Accelerator Laboratory, USA

Hamza Ezzaoui Rahali, University of Sherbrooke, Canada

Mohammad Mehdi Rahimifar, University of Sherbrooke, Canada

Personal and Sensitive Information

This data contains no personally identifiable or sensitive information except for the names/usernames of the authors in some file paths.

Bias, Risks, and Limitations

In it's inital form, a majority of this dataset is comprised of very small (2-3 layer) dense neural networks without activations. This should be considered when training a model on it, and appropriate measures should be taken to weight the data at training time. We intend to continuously update this dataset, addressing this imbalance over time as more data is generated.

Recommendations

Appropriate measures should be taken to weight the data to account for the dataset imbalance at training time.

Citation [optional]

Paper currently in review.

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Dataset Card Authors

Benjamin Hawks, Fermi National Accelerator Laboratory, USA

Hamza Ezzaoui Rahali, University of Sherbrooke, Canada

Mohammad Mehdi Rahimifar, University of Sherbrooke, Canada

Dataset Card Contact

[email protected]

Downloads last month
313