The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
meta_data
dict | model_config
list | hls_config
dict | hls_resource_report
dict | resource_report
dict | latency_report
dict | target_part
string | backend
string | backend_version
string | hls4ml_version
string |
---|---|---|---|---|---|---|---|---|---|
{
"artifacts_file": "0004b3a0c53ee714a7ea4e58c069acf3.tar.gz",
"model_id": "0004b3a0c53ee714a7ea4e58c069acf3",
"model_name": "model_Dense_16in_Dense_64in_Dense_8in_Dense_8in_BatchNormalization_32in_Dense_32in_Dropout_32in_Dense_32in_Dense_32in_Dropout_16in_Dense_16in_34out_ap_fixed<8, 4>_16rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.6000 GHz",
"brand": "Intel(R) Core(TM) i9-10850K",
"logical_count": 20,
"physical_count": 10
},
"end_time": "20241129-010147",
"start_time": "20241129-004302"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250221-113809",
"start_time": "20250221-113319"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
16
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
16
],
"name": "dense",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 1088,
"reuse_factor": 16,
"trainable_parameters": 1088,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
64
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
64
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 520,
"reuse_factor": 16,
"trainable_parameters": 520,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 288,
"reuse_factor": 16,
"trainable_parameters": 288,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
32
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
32
],
"name": "batch_normalization",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 128,
"reuse_factor": 16,
"trainable_parameters": 64,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization"
],
"input_shape": [
null,
32
],
"name": "dense_4",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 1056,
"reuse_factor": 16,
"trainable_parameters": 1056,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.173182990226483,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
32
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
32
],
"name": "dense_5",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 1056,
"reuse_factor": 16,
"trainable_parameters": 1056,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
32
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
32
],
"name": "dense_6",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 528,
"reuse_factor": 16,
"trainable_parameters": 528,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
16
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.26132494588875804,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
16
],
"name": "dropout_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_1"
],
"input_shape": [
null,
16
],
"name": "dense_7",
"neurons": 34,
"output_shape": [
null,
34
],
"parameters": 578,
"reuse_factor": 16,
"trainable_parameters": 578,
"use_bias": true
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 4>",
"ReuseFactor": 16,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "56.0",
"dsp": "0.0",
"ff": "1515.0",
"lut": "99865.0",
"uram": "0.0"
} | {
"bram": "28.0",
"dsp": "0.0",
"ff": "715.0",
"lut": "31964.0",
"uram": null
} | {
"cycles_max": "64.0",
"cycles_min": "64.0",
"estimated_clock": "8.608",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00087089a73d076c87d8d8164241384a.tar.gz",
"model_id": "00087089a73d076c87d8d8164241384a",
"model_name": "model_Dense_16in_Dense_8in_Dense_4in_Dense_64in_21out_ap_fixed<16, 6>_8rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241201-190526",
"start_time": "20241201-190249"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250307-151845",
"start_time": "20250307-151624"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
16
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
16
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 128,
"reuse_factor": 8,
"trainable_parameters": 128,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 32,
"reuse_factor": 8,
"trainable_parameters": 32,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 256,
"reuse_factor": 8,
"trainable_parameters": 256,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
64
],
"name": "dense_3",
"neurons": 21,
"output_shape": [
null,
21
],
"parameters": 1344,
"reuse_factor": 8,
"trainable_parameters": 1344,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
21
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
21
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<16, 6>",
"ReuseFactor": 8,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "114.0",
"dsp": "220.0",
"ff": "19609.0",
"lut": "48436.0",
"uram": "0.0"
} | {
"bram": "8.5",
"dsp": "220.0",
"ff": "15015.0",
"lut": "11199.0",
"uram": null
} | {
"cycles_max": "104.0",
"cycles_min": "100.0",
"estimated_clock": "8.67",
"interval_max": "8.0",
"interval_min": "8.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "000b60f1ce8dab067cef0a4bb8c82f20.tar.gz",
"model_id": "000b60f1ce8dab067cef0a4bb8c82f20",
"model_name": "model_Dense_128in_Dense_4in_Dense_64in_Dense_8in_Dense_64in_Dense_16in_Dense_16in_Dense_32in_Dense_4in_Dense_256in_Dense_4in_Dense_1024in_Dense_2in_667out_ap_fixed<2, 1>_32rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241210-051627",
"start_time": "20241210-005040"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250402-092323",
"start_time": "20250402-092100"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
128
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
128
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 516,
"reuse_factor": 32,
"trainable_parameters": 516,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 320,
"reuse_factor": 32,
"trainable_parameters": 320,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
64
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
64
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 520,
"reuse_factor": 32,
"trainable_parameters": 520,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 576,
"reuse_factor": 32,
"trainable_parameters": 576,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
64
],
"name": "dense_4",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 1040,
"reuse_factor": 32,
"trainable_parameters": 1040,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
16
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
16
],
"name": "dense_5",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 272,
"reuse_factor": 32,
"trainable_parameters": 272,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
16
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
16
],
"name": "dense_6",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 544,
"reuse_factor": 32,
"trainable_parameters": 544,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
32
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
32
],
"name": "dense_7",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 32,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
4
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
4
],
"name": "dense_8",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 1024,
"reuse_factor": 32,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
256
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
256
],
"name": "dense_9",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1028,
"reuse_factor": 32,
"trainable_parameters": 1028,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
4
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
4
],
"name": "dense_10",
"neurons": 1024,
"output_shape": [
null,
1024
],
"parameters": 4096,
"reuse_factor": 32,
"trainable_parameters": 4096,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
1024
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
1024
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_9"
],
"input_shape": [
null,
1024
],
"name": "dense_11",
"neurons": 2,
"output_shape": [
null,
2
],
"parameters": 2050,
"reuse_factor": 32,
"trainable_parameters": 2050,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
2
],
"name": "activation_10",
"neurons": null,
"output_shape": [
null,
2
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_10"
],
"input_shape": [
null,
2
],
"name": "dense_12",
"neurons": 667,
"output_shape": [
null,
667
],
"parameters": 2001,
"reuse_factor": 46,
"trainable_parameters": 2001,
"use_bias": true
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 32,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "51.0",
"dsp": "4.0",
"ff": "1242.0",
"lut": "56864.0",
"uram": "0.0"
} | {
"bram": "15.0",
"dsp": "4.0",
"ff": "31.0",
"lut": "1256.0",
"uram": null
} | {
"cycles_max": "809.0",
"cycles_min": "809.0",
"estimated_clock": "8.663",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "000c5bdf3a1c49ab4e414158fc97812b.tar.gz",
"model_id": "000c5bdf3a1c49ab4e414158fc97812b",
"model_name": "model_Dense_16in_Dense_64in_Dense_4in_Dense_16in_Dense_32in_Dense_16in_Dense_128in_Dense_8in_Dropout_8in_Dense_8in_54out_ap_fixed<8, 3>_4rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241125-175530",
"start_time": "20241125-173708"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250308-022651",
"start_time": "20250308-021930"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
16
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
16
],
"name": "dense",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 1088,
"reuse_factor": 4,
"trainable_parameters": 1088,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
64
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
64
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 260,
"reuse_factor": 4,
"trainable_parameters": 260,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 80,
"reuse_factor": 4,
"trainable_parameters": 80,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
16
],
"name": "dense_3",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 544,
"reuse_factor": 4,
"trainable_parameters": 544,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
32
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
32
],
"name": "dense_4",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 528,
"reuse_factor": 4,
"trainable_parameters": 528,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
16
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
16
],
"name": "dense_5",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 2176,
"reuse_factor": 4,
"trainable_parameters": 2176,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
128
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
128
],
"name": "dense_6",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 1032,
"reuse_factor": 4,
"trainable_parameters": 1032,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "dense_7",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 4,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.725380981938837,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
8
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
8
],
"name": "dense_8",
"neurons": 54,
"output_shape": [
null,
54
],
"parameters": 486,
"reuse_factor": 4,
"trainable_parameters": 486,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
54
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
54
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 4,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "400.0",
"dsp": "0.0",
"ff": "15417.0",
"lut": "409313.0",
"uram": "0.0"
} | {
"bram": "37.5",
"dsp": "0.0",
"ff": "23030.0",
"lut": "90309.0",
"uram": "0.0"
} | {
"cycles_max": "138.0",
"cycles_min": "129.0",
"estimated_clock": "8.033",
"interval_max": "4.0",
"interval_min": "4.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "000faa1f423130b212f5cd396f101f27.tar.gz",
"model_id": "000faa1f423130b212f5cd396f101f27",
"model_name": "model_Dense_16in_Dense_32in_Dense_64in_Dense_32in_Dense_8in_Dense_128in_Dense_16in_Dense_4in_Dense_64in_Dense_4in_Dense_64in_Dense_4in_Dense_8in_Dense_128in_Dense_4in_Dense_256in_Dense_8in_Dense_4in_Dense_8in_257out_ap_fixed<8, 3>_1rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.6000 GHz",
"brand": "Intel(R) Core(TM) i9-10850K",
"logical_count": 20,
"physical_count": 10
},
"end_time": "20241201-115217",
"start_time": "20241201-084236"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250220-072145",
"start_time": "20250220-071543"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
16
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
16
],
"name": "dense",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 544,
"reuse_factor": 1,
"trainable_parameters": 544,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
32
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
32
],
"name": "dense_1",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 2112,
"reuse_factor": 1,
"trainable_parameters": 2112,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
64
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
64
],
"name": "dense_2",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 2048,
"reuse_factor": 1,
"trainable_parameters": 2048,
"use_bias": false
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
32
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
32
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 264,
"reuse_factor": 1,
"trainable_parameters": 264,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 1152,
"reuse_factor": 1,
"trainable_parameters": 1152,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
128
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
128
],
"name": "dense_5",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 2064,
"reuse_factor": 1,
"trainable_parameters": 2064,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
16
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
16
],
"name": "dense_6",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 68,
"reuse_factor": 1,
"trainable_parameters": 68,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
4
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
4
],
"name": "dense_7",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 320,
"reuse_factor": 1,
"trainable_parameters": 320,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
64
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
64
],
"name": "dense_8",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 260,
"reuse_factor": 1,
"trainable_parameters": 260,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
4
],
"name": "dense_9",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 320,
"reuse_factor": 1,
"trainable_parameters": 320,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
64
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
64
],
"name": "dense_10",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 260,
"reuse_factor": 1,
"trainable_parameters": 260,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
4
],
"name": "dense_11",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 1,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
8
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_9"
],
"input_shape": [
null,
8
],
"name": "dense_12",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 1152,
"reuse_factor": 1,
"trainable_parameters": 1152,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_12"
],
"input_shape": [
null,
128
],
"name": "activation_10",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_10"
],
"input_shape": [
null,
128
],
"name": "dense_13",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 516,
"reuse_factor": 1,
"trainable_parameters": 516,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_13"
],
"input_shape": [
null,
4
],
"name": "activation_11",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_11"
],
"input_shape": [
null,
4
],
"name": "dense_14",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 1280,
"reuse_factor": 1,
"trainable_parameters": 1280,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_14"
],
"input_shape": [
null,
256
],
"name": "activation_12",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_12"
],
"input_shape": [
null,
256
],
"name": "dense_15",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 1,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_15"
],
"input_shape": [
null,
8
],
"name": "activation_13",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_13"
],
"input_shape": [
null,
8
],
"name": "dense_16",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 36,
"reuse_factor": 1,
"trainable_parameters": 36,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_16"
],
"input_shape": [
null,
4
],
"name": "dense_17",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 1,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_17"
],
"input_shape": [
null,
8
],
"name": "activation_14",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_14"
],
"input_shape": [
null,
8
],
"name": "dense_18",
"neurons": 257,
"output_shape": [
null,
257
],
"parameters": 2313,
"reuse_factor": 1,
"trainable_parameters": 2313,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_18"
],
"input_shape": [
null,
257
],
"name": "activation_15",
"neurons": null,
"output_shape": [
null,
257
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 1,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "230.0",
"dsp": "140.0",
"ff": "105716.0",
"lut": "607462.0",
"uram": "0.0"
} | {
"bram": "113.5",
"dsp": "140.0",
"ff": "86729.0",
"lut": "143215.0",
"uram": null
} | {
"cycles_max": "452.0",
"cycles_min": "452.0",
"estimated_clock": "8.747",
"interval_max": "10.0",
"interval_min": "10.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00138b80e0532823010e42029d19da1b.tar.gz",
"model_id": "00138b80e0532823010e42029d19da1b",
"model_name": "model_Dense_256in_Dense_8in_Dense_64in_Dense_16in_Dense_8in_186out_ap_fixed<2, 1>_32rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241204-094538",
"start_time": "20241204-094150"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250324-122926",
"start_time": "20250324-122645"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
256
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
256
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 32,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 576,
"reuse_factor": 32,
"trainable_parameters": 576,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
64
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
64
],
"name": "dense_2",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 1040,
"reuse_factor": 32,
"trainable_parameters": 1040,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
16
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
16
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 136,
"reuse_factor": 32,
"trainable_parameters": 136,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 186,
"output_shape": [
null,
186
],
"parameters": 1674,
"reuse_factor": 24,
"trainable_parameters": 1674,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
186
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
186
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 32,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "18.0",
"dsp": "0.0",
"ff": "11235.0",
"lut": "200922.0",
"uram": "0.0"
} | {
"bram": "6.5",
"dsp": "0.0",
"ff": "6213.0",
"lut": "5899.0",
"uram": null
} | {
"cycles_max": "621.0",
"cycles_min": "616.0",
"estimated_clock": "8.621",
"interval_max": "32.0",
"interval_min": "32.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "0018e21bf524645647e8597f17d310e7.tar.gz",
"model_id": "0018e21bf524645647e8597f17d310e7",
"model_name": "model_Dense_1024in_Dense_2in_Dense_1024in_Dropout_2in_Dense_2in_Dropout_4in_Dense_4in_Dropout_8in_Dense_8in_Dense_4in_Dropout_8in_Dense_8in_Dense_8in_Dropout_256in_Dense_256in_Dense_8in_Dropout_128in_Dense_128in_Dropout_16in_Dense_16in_60out_ap_fixed<8, 4>_1rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241218-024203",
"start_time": "20241217-231843"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250324-103902",
"start_time": "20250324-103733"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250406-181156",
"start_time": "20250406-180356"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
1024
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
1024
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
1024
],
"name": "dense",
"neurons": 2,
"output_shape": [
null,
2
],
"parameters": 2050,
"reuse_factor": 1,
"trainable_parameters": 2050,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
2
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
2
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
2
],
"name": "dense_1",
"neurons": 1024,
"output_shape": [
null,
1024
],
"parameters": 3072,
"reuse_factor": 1,
"trainable_parameters": 3072,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
1024
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
1024
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
1024
],
"name": "dense_2",
"neurons": 2,
"output_shape": [
null,
2
],
"parameters": 2050,
"reuse_factor": 1,
"trainable_parameters": 2050,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
2
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
2
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.30929267132293004,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
2
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
2
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
2
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 12,
"reuse_factor": 1,
"trainable_parameters": 12,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.5631125233970591,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
4
],
"name": "dropout_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_1"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 1,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.310642214798561,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "dropout_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_2"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 36,
"reuse_factor": 1,
"trainable_parameters": 36,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
4
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
4
],
"name": "dense_6",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 1,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
8
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.7630298387768011,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
8
],
"name": "dropout_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_3"
],
"input_shape": [
null,
8
],
"name": "dense_7",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 1,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
8
],
"name": "dense_8",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2304,
"reuse_factor": 1,
"trainable_parameters": 2304,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
256
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.44723113721962704,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
256
],
"name": "dropout_4",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_4"
],
"input_shape": [
null,
256
],
"name": "dense_9",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 1,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
8
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
8
],
"name": "dense_10",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 1152,
"reuse_factor": 1,
"trainable_parameters": 1152,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.476213764843384,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
128
],
"name": "dropout_5",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_5"
],
"input_shape": [
null,
128
],
"name": "dense_11",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 2064,
"reuse_factor": 1,
"trainable_parameters": 2064,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
16
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.799195239762391,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
16
],
"name": "dropout_6",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_6"
],
"input_shape": [
null,
16
],
"name": "dense_12",
"neurons": 60,
"output_shape": [
null,
60
],
"parameters": 1020,
"reuse_factor": 1,
"trainable_parameters": 1020,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_12"
],
"input_shape": [
null,
60
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
60
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 4>",
"ReuseFactor": 1,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "1062.0",
"dsp": "0.0",
"ff": "45380.0",
"lut": "256058.0",
"uram": "0.0"
} | {
"bram": "396.0",
"dsp": "0.0",
"ff": "60002.0",
"lut": "95196.0",
"uram": "0.0"
} | {
"cycles_max": "1120.0",
"cycles_min": "1120.0",
"estimated_clock": "8.419",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "002d03e1ce5adc094bbc968387e90b25.tar.gz",
"model_id": "002d03e1ce5adc094bbc968387e90b25",
"model_name": "model_Dense_512in_Dense_4in_Dense_128in_Dense_4in_Dense_4in_Dense_512in_Dense_4in_Dense_4in_Dense_16in_Dense_8in_112out_ap_fixed<8, 3>_16rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20250120-204825",
"start_time": "20250120-203047"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250402-083503",
"start_time": "20250402-082454"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
512
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
512
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 16,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 16,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
128
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
128
],
"name": "dense_2",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 516,
"reuse_factor": 16,
"trainable_parameters": 516,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
4
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
4
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 512,
"output_shape": [
null,
512
],
"parameters": 2560,
"reuse_factor": 16,
"trainable_parameters": 2560,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
512
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
512
],
"name": "dense_5",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 16,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
4
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
4
],
"name": "dense_6",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
4
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
4
],
"name": "dense_7",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 80,
"reuse_factor": 16,
"trainable_parameters": 80,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
16
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
16
],
"name": "dense_8",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 136,
"reuse_factor": 16,
"trainable_parameters": 136,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
8
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
8
],
"name": "dense_9",
"neurons": 112,
"output_shape": [
null,
112
],
"parameters": 1008,
"reuse_factor": 16,
"trainable_parameters": 1008,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
112
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
112
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 16,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "180.0",
"dsp": "0.0",
"ff": "49777.0",
"lut": "688936.0",
"uram": "0.0"
} | {
"bram": "33.0",
"dsp": "0.0",
"ff": "67115.0",
"lut": "81789.0",
"uram": "0.0"
} | {
"cycles_max": "825.0",
"cycles_min": "815.0",
"estimated_clock": "8.461",
"interval_max": "16.0",
"interval_min": "16.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00394d6efbde979b54217139a3b8971a.tar.gz",
"model_id": "00394d6efbde979b54217139a3b8971a",
"model_name": "model_Dense_32in_Dense_4in_Dense_4in_Dense_256in_Dense_4in_Dense_4in_Dense_16in_Dense_32in_Dense_4in_59out_ap_fixed<2, 1>_16rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241129-031615",
"start_time": "20241129-030629"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250324-123340",
"start_time": "20250324-123155"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250325-030357",
"start_time": "20250325-030143"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
32
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
32
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 16,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 1280,
"reuse_factor": 16,
"trainable_parameters": 1280,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
256
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1024,
"reuse_factor": 16,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
4
],
"name": "dense_5",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 64,
"reuse_factor": 16,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
16
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
16
],
"name": "dense_6",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 544,
"reuse_factor": 16,
"trainable_parameters": 544,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
32
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
32
],
"name": "dense_7",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 16,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
4
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
4
],
"name": "dense_8",
"neurons": 59,
"output_shape": [
null,
59
],
"parameters": 295,
"reuse_factor": 4,
"trainable_parameters": 295,
"use_bias": true
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 16,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "21.0",
"dsp": "4.0",
"ff": "528.0",
"lut": "13627.0",
"uram": "0.0"
} | {
"bram": "10.5",
"dsp": "4.0",
"ff": "17.0",
"lut": "458.0",
"uram": "0.0"
} | {
"cycles_max": "102.0",
"cycles_min": "102.0",
"estimated_clock": "7.102",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "0039dbf567c47068fb8b3a7b96ac7a06.tar.gz",
"model_id": "0039dbf567c47068fb8b3a7b96ac7a06",
"model_name": "model_Dense_256in_Dense_8in_Dense_32in_Dense_16in_Dense_8in_294out_ap_fixed<16, 6>_4rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241211-133554",
"start_time": "20241211-130651"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250402-164645",
"start_time": "20250402-163242"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
256
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
256
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 4,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 288,
"reuse_factor": 4,
"trainable_parameters": 288,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
32
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
32
],
"name": "dense_2",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 528,
"reuse_factor": 4,
"trainable_parameters": 528,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
16
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
16
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 136,
"reuse_factor": 4,
"trainable_parameters": 136,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 294,
"output_shape": [
null,
294
],
"parameters": 2646,
"reuse_factor": 4,
"trainable_parameters": 2646,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
294
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
294
],
"parameters": 0,
"reuse_factor": 4,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<16, 6>",
"ReuseFactor": 4,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "606.0",
"dsp": "1618.0",
"ff": "316008.0",
"lut": "2770715.0",
"uram": "0.0"
} | {
"bram": "7.5",
"dsp": "1618.0",
"ff": "83887.0",
"lut": "61710.0",
"uram": null
} | {
"cycles_max": "913.0",
"cycles_min": "908.0",
"estimated_clock": "8.714",
"interval_max": "194.0",
"interval_min": "194.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "003c7a07b4a6551dc6a17a8c0fbd3662.tar.gz",
"model_id": "003c7a07b4a6551dc6a17a8c0fbd3662",
"model_name": "model_Dense_32in_Dense_64in_Dense_32in_Dense_8in_Dense_32in_Dense_8in_Dropout_256in_Dense_256in_Dropout_4in_Dense_4in_Dropout_8in_Dense_8in_Dropout_256in_Dense_256in_Dropout_4in_Dense_4in_Dropout_512in_Dense_512in_Dense_4in_Dropout_4in_Dense_4in_Dropout_128in_Dense_128in_Dropout_8in_Dense_8in_Dropout_64in_Dense_64in_Dropout_32in_Dense_32in_Dense_64in_Dense_16in_118out_ap_fixed<8, 3>_2rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.6000 GHz",
"brand": "Intel(R) Core(TM) i9-10850K",
"logical_count": 20,
"physical_count": 10
},
"end_time": "20241205-085113",
"start_time": "20241204-215136"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250220-064904",
"start_time": "20250220-063950"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
32
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
32
],
"name": "dense",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 2112,
"reuse_factor": 2,
"trainable_parameters": 2112,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
64
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
64
],
"name": "dense_1",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 2080,
"reuse_factor": 2,
"trainable_parameters": 2080,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
32
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
32
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 264,
"reuse_factor": 2,
"trainable_parameters": 264,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 288,
"reuse_factor": 2,
"trainable_parameters": 288,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
32
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
32
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 264,
"reuse_factor": 2,
"trainable_parameters": 264,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2304,
"reuse_factor": 2,
"trainable_parameters": 2304,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.44896205294816904,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
256
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
256
],
"name": "dense_6",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1028,
"reuse_factor": 2,
"trainable_parameters": 1028,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
4
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.28752343782022804,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
4
],
"name": "dropout_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_1"
],
"input_shape": [
null,
4
],
"name": "dense_7",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 2,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
8
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.258093800924315,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
8
],
"name": "dropout_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_2"
],
"input_shape": [
null,
8
],
"name": "dense_8",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2304,
"reuse_factor": 2,
"trainable_parameters": 2304,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
256
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.48991952465652006,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
256
],
"name": "dropout_3",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_3"
],
"input_shape": [
null,
256
],
"name": "dense_9",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1028,
"reuse_factor": 2,
"trainable_parameters": 1028,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.35909672949209204,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
4
],
"name": "dropout_4",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_4"
],
"input_shape": [
null,
4
],
"name": "dense_10",
"neurons": 512,
"output_shape": [
null,
512
],
"parameters": 2560,
"reuse_factor": 2,
"trainable_parameters": 2560,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
512
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.797884925804997,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
512
],
"name": "dropout_5",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_5"
],
"input_shape": [
null,
512
],
"name": "dense_11",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 2,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
4
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_9"
],
"input_shape": [
null,
4
],
"name": "dense_12",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 2,
"trainable_parameters": 16,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_12"
],
"input_shape": [
null,
4
],
"name": "activation_10",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.152250477085587,
"dtype": "float32",
"inbound_layers": [
"activation_10"
],
"input_shape": [
null,
4
],
"name": "dropout_6",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_6"
],
"input_shape": [
null,
4
],
"name": "dense_13",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 2,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.121176833088753,
"dtype": "float32",
"inbound_layers": [
"dense_13"
],
"input_shape": [
null,
128
],
"name": "dropout_7",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_7"
],
"input_shape": [
null,
128
],
"name": "dense_14",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 1032,
"reuse_factor": 2,
"trainable_parameters": 1032,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_14"
],
"input_shape": [
null,
8
],
"name": "activation_11",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.24263197199859501,
"dtype": "float32",
"inbound_layers": [
"activation_11"
],
"input_shape": [
null,
8
],
"name": "dropout_8",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_8"
],
"input_shape": [
null,
8
],
"name": "dense_15",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 576,
"reuse_factor": 2,
"trainable_parameters": 576,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_15"
],
"input_shape": [
null,
64
],
"name": "activation_12",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.458216920753357,
"dtype": "float32",
"inbound_layers": [
"activation_12"
],
"input_shape": [
null,
64
],
"name": "dropout_9",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_9"
],
"input_shape": [
null,
64
],
"name": "dense_16",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 2080,
"reuse_factor": 2,
"trainable_parameters": 2080,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_16"
],
"input_shape": [
null,
32
],
"name": "activation_13",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.7604077044438251,
"dtype": "float32",
"inbound_layers": [
"activation_13"
],
"input_shape": [
null,
32
],
"name": "dropout_10",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout_10"
],
"input_shape": [
null,
32
],
"name": "dense_17",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 2112,
"reuse_factor": 2,
"trainable_parameters": 2112,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_17"
],
"input_shape": [
null,
64
],
"name": "dense_18",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 1040,
"reuse_factor": 2,
"trainable_parameters": 1040,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_18"
],
"input_shape": [
null,
16
],
"name": "activation_14",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_14"
],
"input_shape": [
null,
16
],
"name": "dense_19",
"neurons": 118,
"output_shape": [
null,
118
],
"parameters": 2006,
"reuse_factor": 2,
"trainable_parameters": 2006,
"use_bias": true
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 2,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "349.0",
"dsp": "336.0",
"ff": "138435.0",
"lut": "667325.0",
"uram": "0.0"
} | {
"bram": "163.0",
"dsp": "336.0",
"ff": "46016.0",
"lut": "161222.0",
"uram": null
} | {
"cycles_max": "489.0",
"cycles_min": "489.0",
"estimated_clock": "8.74",
"interval_max": "131.0",
"interval_min": "131.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "004c286e7dae32188468f2429bc4d045.tar.gz",
"model_id": "004c286e7dae32188468f2429bc4d045",
"model_name": "model_Dense_16in_Dense_16in_Dense_8in_Dense_128in_16out_ap_fixed<8, 4>_32rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241209-074754",
"start_time": "20241209-074517"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250402-204335",
"start_time": "20250402-203858"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
16
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
16
],
"name": "dense",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 272,
"reuse_factor": 32,
"trainable_parameters": 272,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
16
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 136,
"reuse_factor": 32,
"trainable_parameters": 136,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 1152,
"reuse_factor": 32,
"trainable_parameters": 1152,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
128
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
128
],
"name": "dense_3",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 2064,
"reuse_factor": 32,
"trainable_parameters": 2064,
"use_bias": true
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 4>",
"ReuseFactor": 32,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "24.0",
"dsp": "0.0",
"ff": "8408.0",
"lut": "38759.0",
"uram": "0.0"
} | {
"bram": "5.0",
"dsp": "0.0",
"ff": "11763.0",
"lut": "18112.0",
"uram": null
} | {
"cycles_max": "175.0",
"cycles_min": "171.0",
"estimated_clock": "8.12",
"interval_max": "32.0",
"interval_min": "32.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "004efbc483f7ef52dd3ebe41cf65d44f.tar.gz",
"model_id": "004efbc483f7ef52dd3ebe41cf65d44f",
"model_name": "model_Dense_64in_Dense_32in_Dense_4in_Dense_32in_Dense_4in_Dense_4in_Dense_128in_Dense_16in_Dense_64in_Dense_8in_25out_ap_fixed<2, 1>_16rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241125-161559",
"start_time": "20241125-160815"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250404-123501",
"start_time": "20250404-123043"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
64
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
64
],
"name": "dense",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 2080,
"reuse_factor": 16,
"trainable_parameters": 2080,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
32
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
32
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 16,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 160,
"reuse_factor": 16,
"trainable_parameters": 160,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
32
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 16,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 16,
"trainable_parameters": 16,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
4
],
"name": "dense_5",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 16,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
128
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
128
],
"name": "dense_6",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 2048,
"reuse_factor": 16,
"trainable_parameters": 2048,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
16
],
"name": "dense_7",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 1024,
"reuse_factor": 16,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
64
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
64
],
"name": "dense_8",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 520,
"reuse_factor": 16,
"trainable_parameters": 520,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
8
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
8
],
"name": "dense_9",
"neurons": 25,
"output_shape": [
null,
25
],
"parameters": 225,
"reuse_factor": 8,
"trainable_parameters": 225,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
25
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
25
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 16,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "132.0",
"dsp": "29.0",
"ff": "10786.0",
"lut": "86292.0",
"uram": "0.0"
} | {
"bram": "56.0",
"dsp": "29.0",
"ff": "8536.0",
"lut": "8878.0",
"uram": null
} | {
"cycles_max": "322.0",
"cycles_min": "312.0",
"estimated_clock": "14.119",
"interval_max": "16.0",
"interval_min": "16.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "0051eefd159377c1a5c351e9b4dce81d.tar.gz",
"model_id": "0051eefd159377c1a5c351e9b4dce81d",
"model_name": "model_Dense_512in_Dense_4in_565out_ap_fixed<2, 1>_16rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241130-225320",
"start_time": "20241130-221954"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250402-105157",
"start_time": "20250402-104850"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
512
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
512
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 16,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 565,
"output_shape": [
null,
565
],
"parameters": 2825,
"reuse_factor": 20,
"trainable_parameters": 2825,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
565
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
565
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 16,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "193.0",
"dsp": "4.0",
"ff": "2494.0",
"lut": "44139.0",
"uram": "0.0"
} | {
"bram": "4.0",
"dsp": "4.0",
"ff": "3.0",
"lut": "865.0",
"uram": "0.0"
} | {
"cycles_max": "1084.0",
"cycles_min": "1084.0",
"estimated_clock": "8.44",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "0066ac420b18e40e214f71c43380d0ba.tar.gz",
"model_id": "0066ac420b18e40e214f71c43380d0ba",
"model_name": "model_Dense_16in_Dense_32in_Dense_8in_Dense_32in_Dense_8in_Dense_8in_Dropout_128in_Dense_128in_BatchNormalization_8in_Dense_8in_Dense_64in_BatchNormalization_4in_Dense_4in_BatchNormalization_4in_Dense_4in_BatchNormalization_4in_Dense_4in_670out_ap_fixed<16, 6>_32rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241127-030154",
"start_time": "20241127-005437"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250312-121829",
"start_time": "20250312-120943"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
16
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
16
],
"name": "dense",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 544,
"reuse_factor": 32,
"trainable_parameters": 544,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
32
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 264,
"reuse_factor": 32,
"trainable_parameters": 264,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 288,
"reuse_factor": 32,
"trainable_parameters": 288,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
32
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
32
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 264,
"reuse_factor": 32,
"trainable_parameters": 264,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 32,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 1152,
"reuse_factor": 32,
"trainable_parameters": 1152,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
128
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.547433212957085,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
128
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
128
],
"name": "dense_6",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 1032,
"reuse_factor": 32,
"trainable_parameters": 1032,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "batch_normalization",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 32,
"reuse_factor": 32,
"trainable_parameters": 16,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization"
],
"input_shape": [
null,
8
],
"name": "dense_7",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 576,
"reuse_factor": 32,
"trainable_parameters": 576,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
64
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
64
],
"name": "dense_8",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 260,
"reuse_factor": 32,
"trainable_parameters": 260,
"use_bias": true
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
4
],
"name": "batch_normalization_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 32,
"trainable_parameters": 8,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization_1"
],
"input_shape": [
null,
4
],
"name": "dense_9",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
4
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
4
],
"name": "batch_normalization_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 32,
"trainable_parameters": 8,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization_2"
],
"input_shape": [
null,
4
],
"name": "dense_10",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
4
],
"name": "batch_normalization_3",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 32,
"trainable_parameters": 8,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization_3"
],
"input_shape": [
null,
4
],
"name": "dense_11",
"neurons": 670,
"output_shape": [
null,
670
],
"parameters": 3350,
"reuse_factor": 40,
"trainable_parameters": 3350,
"use_bias": true
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<16, 6>",
"ReuseFactor": 32,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "68.0",
"dsp": "360.0",
"ff": "97924.0",
"lut": "684929.0",
"uram": "0.0"
} | {
"bram": "33.5",
"dsp": "360.0",
"ff": "64288.0",
"lut": "123293.0",
"uram": "0.0"
} | {
"cycles_max": "975.0",
"cycles_min": "975.0",
"estimated_clock": "8.508",
"interval_max": "27.0",
"interval_min": "27.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00692d1fee6c29cbd399477cff0620ce.tar.gz",
"model_id": "00692d1fee6c29cbd399477cff0620ce",
"model_name": "model_Dense_128in_Dense_4in_Dense_256in_Dense_4in_Dense_4in_BatchNormalization_128in_Dense_128in_Dense_8in_BatchNormalization_64in_Dense_64in_Dense_16in_BatchNormalization_4in_Dense_4in_796out_ap_fixed<8, 4>_1rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241125-030817",
"start_time": "20241125-012531"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250405-091825",
"start_time": "20250405-090720"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
128
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
128
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 516,
"reuse_factor": 1,
"trainable_parameters": 516,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 1280,
"reuse_factor": 1,
"trainable_parameters": 1280,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
256
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
256
],
"name": "dense_2",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1028,
"reuse_factor": 1,
"trainable_parameters": 1028,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
4
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 1,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 1,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
128
],
"name": "batch_normalization",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 512,
"reuse_factor": 1,
"trainable_parameters": 256,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization"
],
"input_shape": [
null,
128
],
"name": "dense_5",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 1032,
"reuse_factor": 1,
"trainable_parameters": 1032,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_6",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 512,
"reuse_factor": 1,
"trainable_parameters": 512,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
64
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
64
],
"name": "batch_normalization_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 256,
"reuse_factor": 1,
"trainable_parameters": 128,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization_1"
],
"input_shape": [
null,
64
],
"name": "dense_7",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 1040,
"reuse_factor": 1,
"trainable_parameters": 1040,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
16
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
16
],
"name": "dense_8",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 68,
"reuse_factor": 1,
"trainable_parameters": 68,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
4
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
4
],
"name": "batch_normalization_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 1,
"trainable_parameters": 8,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization_2"
],
"input_shape": [
null,
4
],
"name": "dense_9",
"neurons": 796,
"output_shape": [
null,
796
],
"parameters": 3184,
"reuse_factor": 1,
"trainable_parameters": 3184,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
796
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
796
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 4>",
"ReuseFactor": 1,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "507.0",
"dsp": "260.0",
"ff": "196312.0",
"lut": "599641.0",
"uram": "0.0"
} | {
"bram": "236.0",
"dsp": "220.0",
"ff": "90881.0",
"lut": "90263.0",
"uram": null
} | {
"cycles_max": "1270.0",
"cycles_min": "1270.0",
"estimated_clock": "8.657",
"interval_max": "156.0",
"interval_min": "156.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "0070c640d40deecb16f54383caddec0c.tar.gz",
"model_id": "0070c640d40deecb16f54383caddec0c",
"model_name": "model_Dense_1024in_Dense_2in_Dense_32in_Dense_16in_Dense_8in_Dense_32in_Dropout_64in_Dense_64in_34out_ap_fixed<8, 3>_1rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.6000 GHz",
"brand": "Intel(R) Core(TM) i9-10850K",
"logical_count": 20,
"physical_count": 10
},
"end_time": "20241210-221115",
"start_time": "20241210-212240"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250221-155046",
"start_time": "20250221-154332"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
1024
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
1024
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
1024
],
"name": "dense",
"neurons": 2,
"output_shape": [
null,
2
],
"parameters": 2050,
"reuse_factor": 1,
"trainable_parameters": 2050,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
2
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
2
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
2
],
"name": "dense_1",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 96,
"reuse_factor": 1,
"trainable_parameters": 96,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
32
],
"name": "dense_2",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 528,
"reuse_factor": 1,
"trainable_parameters": 528,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
16
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
16
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 136,
"reuse_factor": 1,
"trainable_parameters": 136,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 288,
"reuse_factor": 1,
"trainable_parameters": 288,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
32
],
"name": "dense_5",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 2112,
"reuse_factor": 1,
"trainable_parameters": 2112,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
64
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.22408488452372702,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
64
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
64
],
"name": "dense_6",
"neurons": 34,
"output_shape": [
null,
34
],
"parameters": 2210,
"reuse_factor": 1,
"trainable_parameters": 2210,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
34
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
34
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 1,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "56.0",
"dsp": "18.0",
"ff": "10669.0",
"lut": "193552.0",
"uram": "0.0"
} | {
"bram": "28.0",
"dsp": "18.0",
"ff": "1271.0",
"lut": "50997.0",
"uram": null
} | {
"cycles_max": "1080.0",
"cycles_min": "1080.0",
"estimated_clock": "8.657",
"interval_max": "2.0",
"interval_min": "2.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00747c2501ab5234026e5b9c91fc66ba.tar.gz",
"model_id": "00747c2501ab5234026e5b9c91fc66ba",
"model_name": "model_Dense_512in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_512out_ap_fixed<2, 1>_64rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241218-101751",
"start_time": "20241218-072121"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250325-122450",
"start_time": "20250325-121347"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
512
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
512
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 4096,
"reuse_factor": 64,
"trainable_parameters": 4096,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 64,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 64,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 64,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 64,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 64,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
8
],
"name": "dense_6",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 64,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
8
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
8
],
"name": "dense_7",
"neurons": 512,
"output_shape": [
null,
512
],
"parameters": 4608,
"reuse_factor": 64,
"trainable_parameters": 4608,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
512
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 64,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "16.0",
"dsp": "512.0",
"ff": "18599.0",
"lut": "4256821.0",
"uram": "0.0"
} | {
"bram": "8.0",
"dsp": "473.0",
"ff": "2830.0",
"lut": "9780.0",
"uram": "0.0"
} | {
"cycles_max": "1038.0",
"cycles_min": "1038.0",
"estimated_clock": "8.635",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "0075fff6ffaa2b2d65c07dd5616de5c5.tar.gz",
"model_id": "0075fff6ffaa2b2d65c07dd5616de5c5",
"model_name": "model_Dense_256in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_256out_ap_fixed<8, 3>_2rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20250118-005639",
"start_time": "20250118-002141"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250405-060951",
"start_time": "20250405-060604"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
256
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
256
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 2,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 2,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
8
],
"name": "dense_6",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
8
],
"name": "dense_7",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
8
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
8
],
"name": "dense_8",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
8
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
8
],
"name": "dense_9",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
8
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
8
],
"name": "dense_10",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 2,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
8
],
"name": "dense_11",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2304,
"reuse_factor": 2,
"trainable_parameters": 2304,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
256
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 2,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "156.0",
"dsp": "0.0",
"ff": "16801.0",
"lut": "92627.0",
"uram": "0.0"
} | {
"bram": "78.0",
"dsp": "0.0",
"ff": "10601.0",
"lut": "29086.0",
"uram": null
} | {
"cycles_max": "562.0",
"cycles_min": "562.0",
"estimated_clock": "8.746",
"interval_max": "2.0",
"interval_min": "2.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "007c2af506e4ad7b0bc5acf690841c5b.tar.gz",
"model_id": "007c2af506e4ad7b0bc5acf690841c5b",
"model_name": "model_Dense_512in_Dense_4in_Dense_128in_Dense_16in_Dense_64in_Dense_8in_Dense_4in_Dense_64in_20out_ap_fixed<16, 6>_16rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.6000 GHz",
"brand": "Intel(R) Core(TM) i9-10850K",
"logical_count": 20,
"physical_count": 10
},
"end_time": "20241201-231752",
"start_time": "20241201-231117"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250220-153107",
"start_time": "20250220-152509"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
512
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
512
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 16,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 16,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
128
],
"name": "dense_2",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 2064,
"reuse_factor": 16,
"trainable_parameters": 2064,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
16
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
16
],
"name": "dense_3",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 1088,
"reuse_factor": 16,
"trainable_parameters": 1088,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
64
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
64
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 520,
"reuse_factor": 16,
"trainable_parameters": 520,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 36,
"reuse_factor": 16,
"trainable_parameters": 36,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
4
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
4
],
"name": "dense_6",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 320,
"reuse_factor": 16,
"trainable_parameters": 320,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
64
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
64
],
"name": "dense_7",
"neurons": 20,
"output_shape": [
null,
20
],
"parameters": 1280,
"reuse_factor": 16,
"trainable_parameters": 1280,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
20
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
20
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<16, 6>",
"ReuseFactor": 16,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "290.0",
"dsp": "482.0",
"ff": "49762.0",
"lut": "539016.0",
"uram": "0.0"
} | {
"bram": "37.0",
"dsp": "482.0",
"ff": "55059.0",
"lut": "68734.0",
"uram": null
} | {
"cycles_max": "693.0",
"cycles_min": "685.0",
"estimated_clock": "8.084",
"interval_max": "16.0",
"interval_min": "16.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00816035fa82135f1601856c937c4739.tar.gz",
"model_id": "00816035fa82135f1601856c937c4739",
"model_name": "model_Dense_1024in_Dense_2in_Dense_4in_Dense_512in_Dense_4in_Dense_128in_BatchNormalization_4in_Dense_4in_Dense_128in_Dropout_4in_Dense_4in_42out_ap_fixed<2, 1>_1rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20250122-202547",
"start_time": "20250122-201118"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250325-182808",
"start_time": "20250325-182047"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
1024
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
1024
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
1024
],
"name": "dense",
"neurons": 2,
"output_shape": [
null,
2
],
"parameters": 2050,
"reuse_factor": 1,
"trainable_parameters": 2050,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
2
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
2
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
2
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 12,
"reuse_factor": 1,
"trainable_parameters": 12,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 512,
"output_shape": [
null,
512
],
"parameters": 2560,
"reuse_factor": 1,
"trainable_parameters": 2560,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
512
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
512
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 1,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 1,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
128
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
128
],
"name": "dense_5",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 516,
"reuse_factor": 1,
"trainable_parameters": 516,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
4
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "BatchNormalization",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
4
],
"name": "batch_normalization",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 1,
"trainable_parameters": 8,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"batch_normalization"
],
"input_shape": [
null,
4
],
"name": "dense_6",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 640,
"reuse_factor": 1,
"trainable_parameters": 640,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
128
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
128
],
"name": "dense_7",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 516,
"reuse_factor": 1,
"trainable_parameters": 516,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
4
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dropout",
"dropout_rate": 0.5273279264734181,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
4
],
"name": "dropout",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dropout"
],
"input_shape": [
null,
4
],
"name": "dense_8",
"neurons": 42,
"output_shape": [
null,
42
],
"parameters": 210,
"reuse_factor": 1,
"trainable_parameters": 210,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
42
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
42
],
"parameters": 0,
"reuse_factor": 1,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 1,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "195.0",
"dsp": "0.0",
"ff": "12911.0",
"lut": "96371.0",
"uram": "0.0"
} | {
"bram": "69.0",
"dsp": "0.0",
"ff": "10668.0",
"lut": "11849.0",
"uram": null
} | {
"cycles_max": "1098.0",
"cycles_min": "1098.0",
"estimated_clock": "8.454",
"interval_max": "1.0",
"interval_min": "1.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "008b597a433d9c4710af82006c878d5b.tar.gz",
"model_id": "008b597a433d9c4710af82006c878d5b",
"model_name": "model_Dense_64in_Dense_16in_Dense_16in_Dense_16in_64out_ap_fixed<8, 3>_32rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20250118-000100",
"start_time": "20250117-235900"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250404-092857",
"start_time": "20250404-092718"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
64
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
64
],
"name": "dense",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 1024,
"reuse_factor": 32,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
16
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
16
],
"name": "dense_1",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 256,
"reuse_factor": 32,
"trainable_parameters": 256,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
16
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
16
],
"name": "dense_2",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 256,
"reuse_factor": 32,
"trainable_parameters": 256,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
16
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
16
],
"name": "dense_3",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 1024,
"reuse_factor": 32,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
64
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 3>",
"ReuseFactor": 32,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "52.0",
"dsp": "0.0",
"ff": "9235.0",
"lut": "41014.0",
"uram": "0.0"
} | {
"bram": "23.0",
"dsp": "0.0",
"ff": "8129.0",
"lut": "9737.0",
"uram": null
} | {
"cycles_max": "282.0",
"cycles_min": "278.0",
"estimated_clock": "8.621",
"interval_max": "32.0",
"interval_min": "32.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00accb0fb3f05c802947cb608986ad4f.tar.gz",
"model_id": "00accb0fb3f05c802947cb608986ad4f",
"model_name": "model_Dense_64in_Dense_16in_Dense_8in_Dense_8in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_Dense_8in_Dense_8in_Dense_16in_64out_ap_fixed<2, 1>_8rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20250119-110204",
"start_time": "20250119-105846"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250403-061032",
"start_time": "20250403-060900"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
64
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
64
],
"name": "dense",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 1024,
"reuse_factor": 8,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
16
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 128,
"reuse_factor": 8,
"trainable_parameters": 128,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 8,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 32,
"reuse_factor": 8,
"trainable_parameters": 32,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 8,
"trainable_parameters": 16,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
4
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
4
],
"name": "dense_5",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 8,
"trainable_parameters": 16,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
4
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
4
],
"name": "dense_6",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 8,
"trainable_parameters": 16,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
4
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
4
],
"name": "dense_7",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 16,
"reuse_factor": 8,
"trainable_parameters": 16,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
4
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
4
],
"name": "dense_8",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 32,
"reuse_factor": 8,
"trainable_parameters": 32,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
8
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
8
],
"name": "dense_9",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 8,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
8
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
8
],
"name": "dense_10",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 128,
"reuse_factor": 8,
"trainable_parameters": 128,
"use_bias": false
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
16
],
"name": "dense_11",
"neurons": 64,
"output_shape": [
null,
64
],
"parameters": 1024,
"reuse_factor": 8,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
64
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
64
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 8,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "60.0",
"dsp": "0.0",
"ff": "5243.0",
"lut": "74165.0",
"uram": "0.0"
} | {
"bram": "22.0",
"dsp": "0.0",
"ff": "3543.0",
"lut": "3847.0",
"uram": null
} | {
"cycles_max": "272.0",
"cycles_min": "260.0",
"estimated_clock": "8.621",
"interval_max": "8.0",
"interval_min": "8.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00bf14ab4abfe2e7d37163c50616f48f.tar.gz",
"model_id": "00bf14ab4abfe2e7d37163c50616f48f",
"model_name": "model_Dense_32in_Dense_4in_Dense_4in_Dense_8in_Dense_256in_Dense_4in_Dense_8in_Dense_16in_Dense_128in_Dense_16in_Dense_32in_Dense_8in_Dense_32in_Dense_4in_367out_ap_fixed<8, 4>_2rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.6000 GHz",
"brand": "Intel(R) Core(TM) i9-10850K",
"logical_count": 20,
"physical_count": 10
},
"end_time": "20241205-190818",
"start_time": "20241205-171009"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250222-075905",
"start_time": "20250222-075727"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250224-164720",
"start_time": "20250224-163149"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
32
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
32
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 2,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 2,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 2,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2304,
"reuse_factor": 2,
"trainable_parameters": 2304,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
256
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
256
],
"name": "dense_4",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1024,
"reuse_factor": 2,
"trainable_parameters": 1024,
"use_bias": false
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
4
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
4
],
"name": "dense_5",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 40,
"reuse_factor": 2,
"trainable_parameters": 40,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "dense_6",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 128,
"reuse_factor": 2,
"trainable_parameters": 128,
"use_bias": false
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
16
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
16
],
"name": "dense_7",
"neurons": 128,
"output_shape": [
null,
128
],
"parameters": 2176,
"reuse_factor": 2,
"trainable_parameters": 2176,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
128
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
128
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
128
],
"name": "dense_8",
"neurons": 16,
"output_shape": [
null,
16
],
"parameters": 2064,
"reuse_factor": 2,
"trainable_parameters": 2064,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
16
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
16
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
16
],
"name": "dense_9",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 544,
"reuse_factor": 2,
"trainable_parameters": 544,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
32
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
32
],
"name": "dense_10",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 264,
"reuse_factor": 2,
"trainable_parameters": 264,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
8
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_9"
],
"input_shape": [
null,
8
],
"name": "dense_11",
"neurons": 32,
"output_shape": [
null,
32
],
"parameters": 288,
"reuse_factor": 2,
"trainable_parameters": 288,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
32
],
"name": "activation_10",
"neurons": null,
"output_shape": [
null,
32
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_10"
],
"input_shape": [
null,
32
],
"name": "dense_12",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 132,
"reuse_factor": 2,
"trainable_parameters": 132,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_12"
],
"input_shape": [
null,
4
],
"name": "activation_11",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_11"
],
"input_shape": [
null,
4
],
"name": "dense_13",
"neurons": 367,
"output_shape": [
null,
367
],
"parameters": 1835,
"reuse_factor": 2,
"trainable_parameters": 1835,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_13"
],
"input_shape": [
null,
367
],
"name": "activation_12",
"neurons": null,
"output_shape": [
null,
367
],
"parameters": 0,
"reuse_factor": 2,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 4>",
"ReuseFactor": 2,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "1322.0",
"dsp": "40.0",
"ff": "47150.0",
"lut": "526563.0",
"uram": "0.0"
} | {
"bram": "123.0",
"dsp": "40.0",
"ff": "73872.0",
"lut": "241241.0",
"uram": null
} | {
"cycles_max": "498.0",
"cycles_min": "484.0",
"estimated_clock": "8.687",
"interval_max": "2.0",
"interval_min": "2.0",
"target_clock": "10.0"
} | xczu9eg-ffvb1156-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00c172e77b585a9d4e70b2fc2307253e.tar.gz",
"model_id": "00c172e77b585a9d4e70b2fc2307253e",
"model_name": "model_Dense_256in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_256out_ap_fixed<8, 4>_8rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20250118-093559",
"start_time": "20250118-085455"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250307-113350",
"start_time": "20250307-112746"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
256
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
256
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 8,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 8,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 8,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 8,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 8,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2048,
"reuse_factor": 8,
"trainable_parameters": 2048,
"use_bias": false
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
256
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 8,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<8, 4>",
"ReuseFactor": 8,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "19.0",
"dsp": "256.0",
"ff": "175783.0",
"lut": "303359.0",
"uram": "0.0"
} | {
"bram": "9.5",
"dsp": "220.0",
"ff": "46388.0",
"lut": "39175.0",
"uram": null
} | {
"cycles_max": "834.0",
"cycles_min": "834.0",
"estimated_clock": "8.67",
"interval_max": "131.0",
"interval_min": "131.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00c314933ea6956e5ff04b747c56eeb3.tar.gz",
"model_id": "00c314933ea6956e5ff04b747c56eeb3",
"model_name": "model_Dense_512in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_Dense_4in_512out_ap_fixed<16, 6>_32rf_R",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241217-092619",
"start_time": "20241217-083753"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250307-175148",
"start_time": "20250307-173046"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
512
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
512
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2052,
"reuse_factor": 32,
"trainable_parameters": 2052,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_2",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
4
],
"name": "dense_3",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
4
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
4
],
"name": "dense_4",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 20,
"reuse_factor": 16,
"trainable_parameters": 20,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
4
],
"name": "dense_5",
"neurons": 512,
"output_shape": [
null,
512
],
"parameters": 2560,
"reuse_factor": 32,
"trainable_parameters": 2560,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
512
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
512
],
"parameters": 0,
"reuse_factor": 32,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<16, 6>",
"ReuseFactor": 32,
"Strategy": "Resource",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "100.0",
"dsp": "644.0",
"ff": "188596.0",
"lut": "3199751.0",
"uram": "0.0"
} | {
"bram": "36.0",
"dsp": "644.0",
"ff": "74844.0",
"lut": "91234.0",
"uram": "0.0"
} | {
"cycles_max": "1587.0",
"cycles_min": "1581.0",
"estimated_clock": "8.709",
"interval_max": "413.0",
"interval_min": "413.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00dc2b8706bf0ba8c228d14ff41d99f9.tar.gz",
"model_id": "00dc2b8706bf0ba8c228d14ff41d99f9",
"model_name": "model_Dense_256in_Dense_4in_Dense_512in_4out_ap_fixed<2, 1>_64rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241205-134400",
"start_time": "20241205-131250"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250405-025940",
"start_time": "20250405-025828"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
256
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
256
],
"name": "dense",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 1028,
"reuse_factor": 64,
"trainable_parameters": 1028,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
4
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
4
],
"name": "dense_1",
"neurons": 512,
"output_shape": [
null,
512
],
"parameters": 2560,
"reuse_factor": 64,
"trainable_parameters": 2560,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
512
],
"name": "dense_2",
"neurons": 4,
"output_shape": [
null,
4
],
"parameters": 2048,
"reuse_factor": 64,
"trainable_parameters": 2048,
"use_bias": false
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
4
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
4
],
"parameters": 0,
"reuse_factor": 64,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<2, 1>",
"ReuseFactor": 64,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "2.0",
"dsp": "4.0",
"ff": "2972.0",
"lut": "24178.0",
"uram": "0.0"
} | {
"bram": "1.0",
"dsp": "4.0",
"ff": "309.0",
"lut": "865.0",
"uram": null
} | {
"cycles_max": "280.0",
"cycles_min": "280.0",
"estimated_clock": "8.621",
"interval_max": "3.0",
"interval_min": "3.0",
"target_clock": "10.0"
} | xc7z020clg400-1 | VivadoAccelerator | 2019.1 | 0.8.1 |
{
"artifacts_file": "00dc4052e3335845847ca5aeb94e7518.tar.gz",
"model_id": "00dc4052e3335845847ca5aeb94e7518",
"model_name": "model_Dense_256in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_Dense_8in_256out_ap_fixed<16, 6>_16rf_L",
"synthesis_info": [
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": true,
"validation": false,
"vsynth": false
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "2.4000 GHz",
"brand": "Intel(R) Xeon(R) E5-2680 v4",
"logical_count": 24,
"physical_count": 24
},
"end_time": "20241218-070725",
"start_time": "20241218-053145"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250324-114626",
"start_time": "20250324-114450"
},
{
"build_args": {
"bitfile": false,
"cosim": false,
"csim": false,
"export": false,
"fifo_opt": false,
"reset": false,
"synth": false,
"validation": false,
"vsynth": true
},
"cpu": {
"architecture": "X86_64",
"base_frequency": "3.7928 GHz",
"brand": "AMD Ryzen 7 9700X 8-Core Processor",
"logical_count": 16,
"physical_count": 8
},
"end_time": "20250324-225359",
"start_time": "20250324-224437"
}
]
} | [
{
"activation": null,
"class_name": "InputLayer",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [],
"input_shape": [
null,
256
],
"name": "input_1",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"input_1"
],
"input_shape": [
null,
256
],
"name": "dense",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 2056,
"reuse_factor": 16,
"trainable_parameters": 2056,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense"
],
"input_shape": [
null,
8
],
"name": "dense_1",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 16,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_1"
],
"input_shape": [
null,
8
],
"name": "activation",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation"
],
"input_shape": [
null,
8
],
"name": "dense_2",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_2"
],
"input_shape": [
null,
8
],
"name": "activation_1",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_1"
],
"input_shape": [
null,
8
],
"name": "dense_3",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_3"
],
"input_shape": [
null,
8
],
"name": "dense_4",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_4"
],
"input_shape": [
null,
8
],
"name": "activation_2",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_2"
],
"input_shape": [
null,
8
],
"name": "dense_5",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 16,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_5"
],
"input_shape": [
null,
8
],
"name": "activation_3",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_3"
],
"input_shape": [
null,
8
],
"name": "dense_6",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_6"
],
"input_shape": [
null,
8
],
"name": "activation_4",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_4"
],
"input_shape": [
null,
8
],
"name": "dense_7",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 64,
"reuse_factor": 16,
"trainable_parameters": 64,
"use_bias": false
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_7"
],
"input_shape": [
null,
8
],
"name": "activation_5",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_5"
],
"input_shape": [
null,
8
],
"name": "dense_8",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_8"
],
"input_shape": [
null,
8
],
"name": "dense_9",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_9"
],
"input_shape": [
null,
8
],
"name": "dense_10",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "relu",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_10"
],
"input_shape": [
null,
8
],
"name": "activation_6",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_6"
],
"input_shape": [
null,
8
],
"name": "dense_11",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_11"
],
"input_shape": [
null,
8
],
"name": "activation_7",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_7"
],
"input_shape": [
null,
8
],
"name": "dense_12",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_12"
],
"input_shape": [
null,
8
],
"name": "activation_8",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_8"
],
"input_shape": [
null,
8
],
"name": "dense_13",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_13"
],
"input_shape": [
null,
8
],
"name": "activation_9",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_9"
],
"input_shape": [
null,
8
],
"name": "dense_14",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_14"
],
"input_shape": [
null,
8
],
"name": "activation_10",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_10"
],
"input_shape": [
null,
8
],
"name": "dense_15",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "sigmoid",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_15"
],
"input_shape": [
null,
8
],
"name": "activation_11",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_11"
],
"input_shape": [
null,
8
],
"name": "dense_16",
"neurons": 8,
"output_shape": [
null,
8
],
"parameters": 72,
"reuse_factor": 16,
"trainable_parameters": 72,
"use_bias": true
},
{
"activation": "tanh",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_16"
],
"input_shape": [
null,
8
],
"name": "activation_12",
"neurons": null,
"output_shape": [
null,
8
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
},
{
"activation": null,
"class_name": "Dense",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"activation_12"
],
"input_shape": [
null,
8
],
"name": "dense_17",
"neurons": 256,
"output_shape": [
null,
256
],
"parameters": 2304,
"reuse_factor": 16,
"trainable_parameters": 2304,
"use_bias": true
},
{
"activation": "softmax",
"class_name": "Activation",
"dropout_rate": null,
"dtype": "float32",
"inbound_layers": [
"dense_17"
],
"input_shape": [
null,
256
],
"name": "activation_13",
"neurons": null,
"output_shape": [
null,
256
],
"parameters": 0,
"reuse_factor": 16,
"trainable_parameters": 0,
"use_bias": null
}
] | {
"Model": {
"BramFactor": 1000000000,
"Precision": "ap_fixed<16, 6>",
"ReuseFactor": 16,
"Strategy": "Latency",
"TraceOutput": false
},
"clock_period": 10,
"io_type": "io_parallel"
} | {
"bram": "39.0",
"dsp": "576.0",
"ff": "92785.0",
"lut": "422751.0",
"uram": "0.0"
} | {
"bram": "19.5",
"dsp": "576.0",
"ff": "65807.0",
"lut": "112830.0",
"uram": "0.0"
} | {
"cycles_max": "1035.0",
"cycles_min": "1035.0",
"estimated_clock": "8.738",
"interval_max": "156.0",
"interval_min": "156.0",
"target_clock": "10.0"
} | xcu200-fsgd2104-2-e | VivadoAccelerator | 2019.1 | 0.8.1 |
Dataset Card for wa-hls4ml Benchmark Dataset
The wa-hls4ml resource and latency estimation benchmark dataset
Dataset Details
We introduce wa-hls4ml[^1]: a dataset unprecedented in scale and features and a benchmark for common evaluation
The open dataset is unprecedented in terms of its size, with over 680,000 fully synthesized dataflow models.
The goal is to continue to grow and extend the dataset over time.
We include all steps of the synthesis chain from ML model to HLS representation to register-transfer level (RTL) and save the full logs.
This will enable a much broader set of applications beyond those in this paper.
The benchmark standardizes evaluation of the performance of resource usage and latency estimators across a suite of metrics, such as the coefficient of determination (R^2), symmetric mean absolute percentage error (SMAPE), and root mean square error (RMSE), and provides sample models, both synthetic and from scientific applications, to support and encourage the continued development of better surrogate models.
[^1]: Named after Wario and Waluigi who are doppelgΓ€ngers of Mario and Luigi, respectively, in the Nintendo Super Mario platform game series.
Dataset Description
The dataset has two primary components, each designed to test different aspects of a surrogate model's performance.
The first part is based on synthetic neural networks generated with various layer types, micro-architectures, and precisions.
This synthetic dataset lets us systematically explore the FPGA resources and latencies as we vary different model parameters.
The second part of the benchmark targets models from exemplar realistic scientific applications, requiring real-time processing at the edge, near the data sources.
Models with real-time constraints constitute a primary use case for ML-to-FPGA pipelines like hls4ml.
This part tests the ability of the surrogate model to extrapolate its predictions to new configurations and architectures beyond the training set, assessing the model's robustness and performance for real applications.
Exemplar Model Descriptions
- Jet: A fully connected neural network that classifies simulated particle jets originating from one of five particle classes in high-energy physics experiments.
- Top Quarks: A binary classifier for top quark jets, helping probe fundamental particles and their interactions.
- Anomaly: An autoencoder trained on audio data to reproduce the input spectrogram, whose loss value differentiates between normal and abnormal signals.
- BiPC: An encoder that transforms high-resolution images, producing sparse codes for further compression.
- CookieBox: Dedicated to real-time data acquisition for the CookieBox system, designed for advanced experimental setups requiring rapid handling of large data volumes generated by high-speed detectors.
- AutoMLP: A fully connected network from the AutoMLP framework, focusing on accelerating MLPs on FPGAs, providing significant improvements in computational performance and energy efficiency.
- Particle Tracking: Tracks charged particles in real-time as they traverse silicon detectors in large-scale particle physics experiments.
Exemplar Model Architectures
Model | Size | Input | Architecture |
---|---|---|---|
Jet | 2,821 | 16 | β[ReLU]32 β[ReLU]32 β[ReLU]32 β[Softmax]5 |
Top Quarks | 385 | 10 | β[ReLU]32 β[Sigmoid]1 |
Anomaly | 2,864 | 128 | β[ReLU]8 β[ReLU]4 β[ReLU]128 β[ReLU]4 β[Softmax]128 |
BiPC | 7,776 | 36 | β[ReLU]36 β[ReLU]36 β[ReLU]36 β[ReLU]36 β[ReLU]36 |
CookieBox | 3,433 | 512 | β[ReLU]4 β[ReLU]32 β[ReLU]32 β[Softmax]5 |
AutoMLP | 534 | 7 | β[ReLU]12 β[ReLU]16 β[ReLU]12 β[Softmax]2 |
Particle Tracking | 2,691 | 14 | β[ReLU]32 β[ReLU]32 β[ReLU]32 β[Softmax]3 |
- Curated by: Fast Machine Learning Lab
- Funded by: See "Acknowledgements" in the paper for full funding details
- Language(s) (NLP): English
- License: cc-by-nc-4.0
Dataset Sources
The Dataset was consists of data generated by the authors using the following methods:
Generation of Synthetic Data
The train, validation, and test sets were created by first generating models of varying architectures in the Keras and QKeras Python libraries, varying their hyperparameters.
The updated rule4ml dataset follows the same generation method and hyperparameter ranges described in prior work, while adding II information and logic synthesis results to the reports.
For the remaining subsets of the data, the two-layer and three-layer fully-connected models were generated using a grid search method according to the parameter ranges mentioned below, whereas larger fully-connected models and convolutional models (one- and two-dimensional) were randomly generated, where convolutional models also contain dense, flatten, and pooling layers.
The weight and bias precision was implemented in HLS as datatype ap_fixed<X,1>
, where X
is the specified precision and the total number of bits allocated to the weight and bias values, with one bit being reserved for the integer portion of the value.
These models were then converted to HLS using hls4ml and synthesized through AMD Vitis version 2023.2 and 2024.2, targeting the AMD Xilinx Alveo U250 FPGA board.
The model sets have the following parameter ranges:
- Number of layers: 2β7 for fully-connected models; 3β7 for convolutional models.
- Activation functions: Linear for most 2β3 layer fully-connected models; ReLU, tanh, and sigmoid for all other fully-connected models and convolutional models.
- Number of features/neurons: 8β128 (step size: 8 for 2β3 layer) for fully-connected models; 32β128 for convolution models with 8β64 filters.
- Weight and bias bit precision: 2β16 bits (step size: 2) for 2β3 layer fully-connected models, 4β16 bits (step size: powers of 2) for 3β7 layer fully-connected and convolutional models.
- hls4ml target reuse factor: 1β4093 for fully-connected models; 8192β32795 for convolutional models.
- hls4ml implementation strategy: Resource strategy, which controls the degree of parallelism by explicitly specifying the number of MAC operations performed in parallel per clock cycle, is used for most fully-connected models and all convolutional models, while Latency strategy, where the computation is unrolled, is used for some 3β7 layer fully-connected models.
- hls4ml I/O type: The io_parallel setting, which directly wires the output of one layer to the input of the next layer, is used for all fully-connected models, and the io_stream setting, which uses FIFO buffers between layers, is used for all convolutional models.
Exemplar Model Synthesis Parameters
The exemplar models were synthesized with the following parameters:
Hyperparameter | Values |
---|---|
Precision | ap_fixed<2,1> , ap_fixed<8,3> , ap_fixed<16,6> |
Strategy | Latency , Resource |
Target reuse factor | 1, 128, 1024 |
Target board | Alveo U200, Alveo U250 |
Target clock | 5 ns, 10 ns |
Vivado version | 2019.1, 2020.1 |
The synthesis was repeated multiple times, varying the hls4ml reuse factor, a tunable setting that proportionally limits the number of multiplication operations used.
The hls4ml conversion, HLS synthesis, and logic synthesis of the train and test sets were all performed in parallel on the National Research Platform Kubernetes Hypercluster and the Texas A&M ACES HPRC Cluster.
On the National Research Platform, synthesis was run inside a container with a guest OS of Ubuntu 20.04.4 LTS, the containers being slightly modified versions of the xilinx-docker v2023.2 "user" images, with 3 virtual CPU cores and 16 GB of RAM per pod, with all AMD tools mounted through a Ceph-based persistent volume.
Jobs run on the Texas A&M ACES HPRC Cluster were run using Vitis 2024.2, each with 2 virtual CPU cores and 32 GB of RAM.
The resulting projects, reports, logs, and a JSON file containing the resource/latency usage and estimates of the C and logic synthesis were collected for each sample in the dataset.
The data, excluding the projects and logs, were then further processed into a collection of JSON files, distributed alongside this paper and described below.
- Repository: fastmachinelearning/wa-hls4ml-paper
- Paper [optional]: [In Review]
Uses
This dataset is inteded to be used to train surrogate models for the purpose of estimating resource utilization and latency of neural networks that are implemented on hardware (FPGAs).
Direct Use
This dataset is generated using the tool hls4ml, and should be used to train surrogate models and/or other models for use with the hls4ml workflow.
Out-of-Scope Use
As this dataset is generated using the hls4ml tool, it should not be used to train surrogate models for other tools, as results and implementation details may vary across those tools compared to hls4ml.
Dataset Structure
The training, validation, and test sets of the benchmark currently consist of 683,176 synthetic samples, consisting of data about synthesized samples of 608,679 fully-connected neural networks, 31,278 one-dimensional convolutional neural networks, and 43,219 two-dimensional convolutional neural networks.
Each sample contains the model architecture, hls4ml conversion parameters, the latency and resource usage numbers for that network post-logic synthesis, and associated metadata.
In addition to the training, validation, and test sets, the dataset also includes 887 samples representing the successful logic synthesis of the exemplar models with varying conversion parameters.
The dataset as a whole is split, distributed, and intended to be used as follows:
- Training set: The set of 478,220 samples intended to be used for training a given estimator.
- Validation set: The set of 102,472 samples intended to be used during training for validation purposes.
- Test set: The set of 102,484 samples intended to be used for testing and generating results for a given estimator.
- Exemplar test set: The set of 887 samples, comprising the models described in the benchmark, intended to be used for testing and generating results for a given estimator.
Within each subset, excluding the exemplar test set, the data is further grouped as follows.
These categories explain the composition of our dataset but have no bearing on how a given estimator should be trained.
- 2_20 (rule4ml): The updated rule4ml dataset, containing fully-connected neural networks that were randomly generated with layer counts between 2 and 20 layers, using hls4ml resource and latency strategies.
- 2_layer: A subset containing 2-layer deep fully-connected neural networks generated via a grid search using hls4ml resource and io_parallel strategies.
- 3_layer: A subset containing 3-layer deep fully-connected neural networks generated via a grid search using hls4ml resource and io_parallel strategies.
- conv1d: A subset containing 3β7 layer deep 1-dimensional convolutional neural networks that were randomly generated and use hls4ml resource and io_stream strategies.
- conv2d: A subset containing 3β7 layer deep 2-dimensional convolutional neural networks that were randomly generated and use hls4ml resource and io_stream strategies.
- latency: A subset containing 3β7 layer deep fully-connected neural networks that were randomly generated and use hls4ml latency and io_parallel strategies.
- resource: A subset containing 3β7 layer deep fully-connected neural networks that were randomly generated and use hls4ml resource and io_parallel strategies.
Structure of JSON Files
The distributed JSON files contain 683,176 total samples. The samples are split into three subsets, as described in the dataset section. The format across the three subsets is the same, where each sample is an object in JSON file, each sample containing 9 fields:
- meta_data: A unique identifier, model name, and name of the corresponding gzipped tarball of the fully synthesized project, logs, and reports for the sample (contained in an accompanying dataset released alongside the primary dataset).
- model_config: A JSON representation of the Keras/QKeras model synthesized in the sample, including the actual reuse factor as synthesized per layer.
- hls_config: The hls4ml configuration dictionary used to convert the model for the sample, including the target reuse factor as synthesized per layer.
- resource_report: A report of the post-logic synthesis resources used for the sample, reported as the actual number of components used.
- hls_resource_report: A report of the post-hls synthesis resources estimated for the sample, reported as the actual number of components estimated.
- latency_report: A report of the post-hls synthesis latency estimates for the sample.
- target_part: The FPGA part targeted for HLS and logic synthesis for the sample.
- vivado_version: The version of Vivado used to synthesize the sample.
- hls4ml_version: The version of hls4ml used to convert the sample.
Curation Rationale
With the introduction of ML into FPGA toolchains, e.g., for resource and latency prediction or code generation, there is a significant need for large datasets to support and train these tools.
We found that existing datasets were insufficient for these needs, and therefore sought to build a dataset and a highly scalable data generation framework that is useful for a wide variety of research surrounding ML on FPGAs.
This dataset serves as one of the few openly accessible, large-scale collections of synthesized neural networks available for ML research.
Exemplar Realistic Models
The exemplar models utilized in this study include several key architectures, each tailored for specific ML tasks and targeting scientific applications with low-latency constraints.
Source Data
The data was generated via randomly generated neural networks and specifically selected exemplar models, converted into HLS Code via hls4ml, with the resulting latency values collected after performing C-Synthesis through Vivado/Vitis HLS on the resulting HLS Code, and resource values collected after performing logic synthesis through Vivado/Vitis on the resulting HDL Code.
Who are the source data producers?
Benjamin Hawks, Fermi National Accelerator Laboratory, USA
Hamza Ezzaoui Rahali, University of Sherbrooke, Canada
Mohammad Mehdi Rahimifar, University of Sherbrooke, Canada
Personal and Sensitive Information
This data contains no personally identifiable or sensitive information except for the names/usernames of the authors in some file paths.
Bias, Risks, and Limitations
In it's inital form, a majority of this dataset is comprised of very small (2-3 layer) dense neural networks without activations. This should be considered when training a model on it, and appropriate measures should be taken to weight the data at training time. We intend to continuously update this dataset, addressing this imbalance over time as more data is generated.
Recommendations
Appropriate measures should be taken to weight the data to account for the dataset imbalance at training time.
Citation [optional]
Paper currently in review.
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Dataset Card Authors
Benjamin Hawks, Fermi National Accelerator Laboratory, USA
Hamza Ezzaoui Rahali, University of Sherbrooke, Canada
Mohammad Mehdi Rahimifar, University of Sherbrooke, Canada
Dataset Card Contact
- Downloads last month
- 313